͟d͟ ͟\<͟p͟\>͟ = - 〈͟d͟ ͟V͟(͟X͟)͟〉 dt dx If a particle is subject to potential 〈V(x)〉 The potential is known, and in the absense of any non-conservative influences, the Hamiltonian is equal to the potential. H(x) = V(x) H|E〉 = E|E〉 Ĥ = ͟p̂͟²͟ + V(x̂) 2m x̂ ≐ x p̂ ≐ -ι ħ ͟d͟ dx p̂² ≐ -ħ² ͟d͟² dx² Ĥ = ͟p̂͟²͟ + V(x̂) 2m ∞ 〈p̂〉 = ∫ dx p(x) = -∞ d/dt ∫ dx p(x) = Probably start here: 〈V(x)〉 = ∫ dx V(x) 〈d/dx V(x)〉 = ∫ d/dx V(x) dx = V(x) d/dt 〈p〉 = d/dt ∫ dx p(x) the definition of momentum in function space is d/dt p(x) = -d/dx V(x)