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Preface

This text is designed to introduce undergraduates at the junior and senior levels to quantum mechan-
ics. The text is an outgrowth of the new physics major curriculum developed by the Paradigms in
Physics program at Oregon State University. This new curriculum distributes material from the sub-
disciplines throughout the two upper-division years and provides students with a more gradual tran-
sition between introductory and advanced levels. We have also incorporated and developed modern
pedagogical strategies to help improve student learning. This text covers the quantum mechanical
aspects of our curriculum in a way that can also be used in traditional curricula, but that still pre-
serves the advantages of the Paradigms approach to the ordering of materials and the use of student
engagement activities.

PARADIGMS PROGRAM

The Paradigms project began in 1997, when the Department of Physics at Oregon State University
began an extensive revision of the upper-division physics major. In an effort to encourage students
to draw connections between the subdisciplines of physics, the structure of the Paradigms has been
crafted to mimic the organization of expert physics knowledge. Students are presented with a model
of how physicists organize their understanding of physical phenomena and problem solving. Each
of the nine short junior-year Paradigms courses focuses on a specific paradigm or class of physics
problems that serves as the centerpiece of the course and on which different tools and skills are built.
In the senior year, students resume a more traditional curriculum, taking six capstone courses in
the traditional disciplines. This curriculum incorporates a diverse set of student activities that allow
students to stay actively engaged in the classroom and to work together in constructing their under-
standing of physics. Computer resources are used frequently to help students visualize the systems
they are studying.

CONTENT AND APPROACH

Quantum mechanics is integrated into four of the junior-year Paradigms courses and one senior-year
capstone course at Oregon State University. This text includes all the quantum mechanics topics
covered in those five courses. We adopt a “spins-first” approach by introducing quantum mechanics
through the analysis of sequential Stern-Gerlach spin measurements. This approach is based upon
previous presentations of spin systems by Feynman, Leighton, and Sands; Cohen-Tannoudji, Diu,
and Laloe; Sakurai; and Townsend. The aim of the spins-first approach is twofold: (1) To imme-
diately immerse students in the inherently quantum mechanical aspects of physics by focusing on
simple measurements that have no classical explanation, and (2) To give students early and extensive
experience with the mechanics of quantum mechanics in the forms of Dirac and matrix notation.

XV
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The simplicity of the spin-1/2 and spin-1 systems allows the students to focus on these new features,
which run counter to classical mechanics.

The first three chapters of this text deal exclusively with spin systems and extensions to general
two- and three-state quantum mechanical systems. The basic postulates of quantum mechanics are
illustrated through their manifestation in the Stern-Gerlach experiments. After these three chapters,
students have the tools to tackle any quantum mechanical problem presented in Dirac or matrix
notation. After a brief interlude into quantum spookiness (the EPR Paradox and Schrodinger’s cat)
in Chapter 4, we tackle the traditional wave function aspects of quantum mechanics. We present
several quantum systems—a particle in a box, on a ring, on a sphere, the hydrogen atom, and the
harmonic oscillator—and emphasize their common features and their connections to the basic pos-
tulates. The differential equations of angular momentum and the hydrogen atom radial problem are
solved in detail to expose students to the rigor of series solutions, though we stress that these are
again eigenvalue equations, no different in principle from the spin eigenvalue equations. Whenever
possible, we continue the use of Dirac notation and matrix notation learned in the spin chapters,
emphasizing the importance of fluency in multiple representations. We build upon the spins-first
approach by using the spin-1/2 example to introduce perturbation theory, the addition of angular
momentum, and identical particles.

USAGE

At Oregon State University, the content of this text is taught in five courses as shown below.

Junior-Year Paradigms Courses

Spin and Quantum
Measurement Waves Central Forces Period Systems
1. Stern-Gerlach Mechanical waves Planetary orbits Coupled
Experiments and EM waves 7. Angular Oscillations
2. Operators and 5. Quantized Energies: Momentum 15. Periodic
Measurement Particle in a Box 8. Hydrogen Atom Systems
3. Schrodinger Time 6. Unbound States
Evolution
4. Quantum Spookiness

Senior-Year Quantum Mechanics Capstone Course

9. Harmonic Oscillator ~ 11. Hyperfine Structure ~ 13. Identical Particles  16. Modern

10. Perturbation Theory and the Addition of ~ 14. Time-Dependent Applications
Angular Momentum Perturbation
12. Perturbation of Theory
Hydrogen

For a traditional curriculum, the content of this text would cover a full-year course, either two
semesters or three quarters. A proposed weekly outline for two 15-week semesters or three 10-week
quarters is shown below.
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Stern-Gerlach experiment, Quantum State Vectors, Bra-ket notation
Matrix notation, General Quantum Systems

Operators, Measurement, Commuting Observables

Uncertainty Principle, S* Operator, Spin-1 System

Schrodinger Equation, Time Evolution

Spin Precession, Neutrino Oscillations, Magnetic Resonance

EPR Paradox, Bell’s Inequalities, Schrodinger’s Cat

Energy Eigenvalue Equation, Wave Function

One-Dimensional Potentials, Finite Well, Infinite Well

Free Particle, Wave Packets, Momentum Space

Uncertainty Principle, Barriers

Three-Dimensional Energy Eigenvalue Equation, Separation of Variables
Angular Momentum, Motion on a Ring and Sphere, Spherical Harmonics
Hydrogen Atom, Radial Equation, Energy Eigenvalues

Hydrogen Wave Functions, Spectroscopy

1-D Harmonic Oscillator, Operator Approach, Energy Spectrum
Harmonic Oscillator Wave Functions, Matrix Representation

Momentum Space Wave Functions, Time Dependence, Molecular Vibrations
Time-Independent Perturbation Theory: Nondegenerate, Degenerate
Perturbation Examples: Harmonic Oscillator, Stark Effect in Hydrogen
Hyperfine Structure, Coupled Basis

Addition of Angular Momenta, Clebsch-Gordan Coefficients

Hydrogen Atom: Fine Structure, Spin-Orbit, Zeeman Effect

Identical Particles, Symmetrization, Helium Atom

Time-Dependent Perturbation Theory, Harmonic Perturbation

Radiation, Selection Rules

Periodic Potentials, Bloch’s Theorem

Dispersion Relation, Density of States, Semiconductors

Modern Applications of Quantum Mechanics, Laser Cooling and Trapping

Quantum Information Processing
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AUDIENCE AND EXPECTED BACKGROUND

The intended audience is junior and senior physics majors, who are expected to have taken intermediate-
level courses in modern physics and linear algebra. No other upper-level physics or mathematics courses
are required. For our own students, we review matrix algebra in a seven contact hour “preface” course
that precedes the Paradigms courses that teach quantum mechanics. The material for that preface course
is in Appendix C. The material in Appendix B summarizes an earlier Paradigms course on oscillations,
and the material in Appendix D summarizes the classical wave part of the Paradigms course on waves.

STUDENT ACTIVITIES AND WEBSITE

Student engagement activities are an integral part of the Paradigms curriculum. All of the activities
that we have developed are freely available on our wiki website:

http://physics.oregonstate.edu/portfolioswiki

The wiki contains a wealth of information about the Paradigms project, the courses we teach, and the
materials we have developed. Details about individual activities include descriptions, student handouts,
instructor’s guides, advice about how to use active engagement strategies, videos of classroom prac-
tice, narratives of classroom activities, and comments from users—both internal and external to Oregon
State University. This is a dynamic website that is continually updated as we develop new activities and
improve existing ones. We encourage you to visit the website and join the community. E-mail us with
corrections, additions, and suggestions.

Each of the quantum mechanics activities that we use in our five courses is referenced in the
resource section at the end of the appropriate chapter in the text. The quantum mechanics activities are
collected within the wiki website with a direct link:

www.physics.oregonstate.edu/qmactivities

These activities include different types of activities such as computer-based activities, group activities,
and class response activities. The most extensive activity is a computer simulation of Stern-Gerlach
experiments. This SPINS software is a full-featured, menu-driven application that allows students to
simulate successive Stern-Gerlach measurements and explore incompatible observables, eigenstate
expansions, interference, and quantum dynamics. The use of the SPINS software facilitates our spins-
first approach. The beauty of the simulation is that students steeped in classical physics perform a foun-
dational quantum experiment and learn the most fascinating and counterintuitive aspects of quantum
mechanics at an early stage.
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Prologue

It was a dark and stormy night. Erwin huddled under his covers as he had done numerous times that
summer. As the wind and rain lashed at the window, he feared having to retreat to the storm cellar
once again. The residents of Erwin’s apartment building sought shelter whenever there were threats of
tornadoes in the area. While it was safe down there, Erwin feared the ridicule he would face once again
from the other school boys. In the rush to the cellar, Erwin seemed to always end up with a random
pair of socks, and the other boys teased him about it mercilessly.

Not that Erwin hadn’t tried hard to solve this problem. He had a very simple collection of
socks—black or white, for either school or play; short or long, for either trousers or lederhosen.
After the first few teasing episodes from the other boys, Erwin had sorted his socks into two sepa-
rate drawers. He placed all the black socks in one drawer and all the white socks in another drawer.
Erwin figured he could determine an individual sock’s length in the dark of night simply by feel-
ing it, but he had to have them presorted into white and black because the apartment generally lost
power before the call to the shelter.

Unfortunately, Erwin found that this presorting of the socks by color was ineffective. Whenever
he reached into the white sock drawer and chose two long socks, or two short socks, there was a 50%
probability of any one sock being black or white. The results from the black sock drawer were the
same. The socks seemed to have “forgotten” the color that Erwin had determined previously.

Erwin also tried sorting the socks into two drawers based upon their length, without regard to
color. When he chose black or white socks from these long and short drawers, the socks had also “for-
gotten” whether they were long or short.

After these fruitless attempts to solve his problem through experiments, Erwin decided to save
himself the fashion embarrassment, and he replaced his sock collection with a set of medium length
brown socks. However, he continued to ponder the mysteries of the socks throughout his childhood.

After many years of daydreaming about the mystery socks, Erwin Schrédinger proposed his the-
ory of “Quantum Socks” and become famous. And that is the beginning of the story of the quantum
socks.

The End.

Farfetched?? You bet. But Erwin’s adventure with his socks is the way quantum mechanics works.
Read on.

Xxi
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CHAPTER

Stern-Gerlach Experiments

It was not a dark and stormy night when Otto Stern and Walther Gerlach performed their now famous
experiment in 1922. The Stern-Gerlach experiment demonstrated that measurements on microscopic
or quantum particles are not always as certain as we might expect. Quantum particles behave as mys-
teriously as Erwin’s socks—sometimes forgetting what we have already measured. Erwin’s adven-
ture with the mystery socks is farfetched because you know that everyday objects do not behave like
his socks. If you observe a sock to be black, it remains black no matter what other properties of the
sock you observe. However, the Stern-Gerlach experiment goes against these ideas. Microscopic or
quantum particles do not behave like the classical objects of your everyday experience. The act of
observing a quantum particle affects its measurable properties in a way that is foreign to our classical
experience.

In these first three chapters, we focus on the Stern-Gerlach experiment because it is a conceptu-
ally simple experiment that demonstrates many basic principles of quantum mechanics. We discuss
a variety of experimental results and the quantum theory that has been developed to predict those
results. The mathematical formalism of quantum mechanics is based upon six postulates that we will
introduce as we develop the theoretical framework. (A complete list of these postulates is in Section 1.5.)
We use the Stern-Gerlach experiment to learn about quantum mechanics theory for two primary reasons:
(1) It demonstrates how quantum mechanics works in principle by illustrating the postulates of quan-
tum mechanics, and (2) it demonstrates how quantum mechanics works in practice through the use
of Dirac notation and matrix mechanics to solve problems. By using a simple example, we can focus
on the principles and the new mathematics, rather than having the complexity of the physics obscure
these new aspects.

1.1 B STERN-GERLACH EXPERIMENT

In 1922 Otto Stern and Walther Gerlach performed a seminal experiment in the history of quantum
mechanics. In its simplest form, the experiment consisted of an oven that produced a beam of neu-
tral atoms, a region of space with an inhomogeneous magnetic field, and a detector for the atoms, as
depicted in Fig. 1.1. Stern and Gerlach used a beam of silver atoms and found that the beam was split
into two in its passage through the magnetic field. One beam was deflected upwards and one down-
wards in relation to the direction of the magnetic field gradient.

To understand why this result is so at odds with our classical expectations, we must first analyze
the experiment classically. The results of the experiment suggest an interaction between a neutral parti-
cle and a magnetic field. We expect such an interaction if the particle possesses a magnetic moment pt.
The potential energy of this interaction is E = —u+B, which results in a force F = V(u+B). In the
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FIGURE 1.1 Stern-Gerlach experiment to measure the spin component of neutral
particles along the z-axis. The magnet cross section at right shows the inhomogeneous
field used in the experiment.

Stern-Gerlach experiment, the magnetic field gradient is primarily in the z-direction, and the resulting
z-component of the force is

J
F.= —(uB
L az(” )

9B (1.1)

=, —<
= M 9z
This force is perpendicular to the direction of motion and deflects the beam in proportion to the com-
ponent of the magnetic moment in the direction of the magnetic field gradient.

Now consider how to understand the origin of the atom’s magnetic moment from a classical view-
point. The atom consists of charged particles, which, if in motion, can produce loops of current that give
rise to magnetic moments. A loop of area A and current / produces a magnetic moment

w=IA (1.2)

in MKS units. If this loop of current arises from a charge ¢ traveling at speed v in a circle of radius r,
then

o2
27r/v

= (1.3)

where L = mrv is the orbital angular momentum of the particle. In the same way that the earth
revolves around the sun and rotates around its own axis, we can also imagine a charged particle in
an atom having orbital angular momentum L and a new property, the intrinsic angular momen-
tum, which we label S and call spin. The intrinsic angular momentum also creates current loops,
so we expect a similar relation between the magnetic moment m and S. The exact calculation
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involves an integral over the charge distribution, which we will not do. We simply assume that we
can relate the magnetic moment to the intrinsic angular momentum in the same fashion as Eq. (1.3),
giving

a4

2mS, (1.4)

n =g
where the dimensionless gyroscopic ratio g contains the details of that integral.
A silver atom has 47 electrons, 47 protons, and 60 or 62 neutrons (for the most common isotopes).
The magnetic moments depend on the inverse of the particle mass, so we expect the heavy protons and
neutrons (= 2000 m,) to have little effect on the magnetic moment of the atom and so we neglect them.
From your study of the periodic table in chemistry, you recall that silver has an electronic configura-
tion 15225°2p%35?3p%45%3d'%4p%4d'5s!, which means that there is only the lone 5s electron outside
of the closed shells. The electrons in the closed shells can be represented by a spherically symmetric
cloud with no orbital or intrinsic angular momentum (unfortunately we are injecting some quantum
mechanical knowledge of atomic physics into this classical discussion). That leaves the lone 5s elec-
tron as a contributor to the magnetic moment of the atom as a whole. An electron in an s state has no
orbital angular momentum, but it does have spin. Hence the magnetic moment of this electron, and
therefore of the entire neutral silver atom, is

e
p=-g; -8, (1.5)
me

where e is the magnitude of the electron charge. The classical force on the atom can now be written as

£ g2mezﬁz' ’

The deflection of the beam in the Stern-Gerlach experiment is thus a measure of the component (or pro-
jection) S, of the spin along the z-axis, which is the orientation of the magnetic field gradient.

If we assume that the 5s electron of each atom has the same magnitude |S| of the intrinsic angular
momentum or spin, then classically we would write the z-component as S, = |S|cos 6, where 6 is
the angle between the z-axis and the direction of the spin S. In the thermal environment of the oven,
we expect a random distribution of spin directions and hence all possible angles 6. Thus we expect
some continuous distribution (the details are not important) of spin components from S, = —|S| to
S. = +|8S|, which would yield a continuous spread in deflections of the silver atomic beam. Rather,
the experimental result that Stern and Gerlach observed was that there are only two deflections, indi-
cating that there are only two possible values of the z-component of the electron spin. The magnitudes
of these deflections are consistent with values of the spin component of

S.= = (1.7)

where 7 is Planck’s constant 4 divided by 277 and has the numerical value

f = 1.0546 X 1073 Jes
= 6.5821 X 10710 eVes.

(1.8)

This result of the Stern-Gerlach experiment is evidence of the quantization of the electron’s
spin angular momentum component along an axis. This quantization is at odds with our classical
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expectations for this measurement. The factor of 1/2 in Eq. (1.7) leads us to refer to this as a
spin-1/2 system.

In this example, we have chosen the z-axis along which to measure the spin component, but there
is nothing special about this direction in space. We could have chosen any other axis and we would
have obtained the same results.

Now that we know the fine details of the Stern-Gerlach experiment, we simplify the experiment
for the rest of our discussions by focusing on the essential features. A simplified schematic representa-
tion of the experiment is shown in Fig. 1.2, which depicts an oven that produces the beam of atoms, a
Stern-Gerlach device with two output ports for the two possible values of the spin component, and two
counters to detect the atoms leaving the output ports of the Stern-Gerlach device. The Stern-Gerlach
device is labeled with the axis along which the magnetic field is oriented. The up and down arrows
indicate the two possible measurement results for the device; they correspond respectively to the
results S, = £7/2 in the case where the field is oriented along the z-axis. There are only two possible
results in this case, so they are generally referred to as spin up and spin down. The physical quantity
that is measured, S, in this case, is called an observable. In our detailed discussion of the experiment
above, we chose the field gradient in such a manner that the spin up states were deflected upwards.
In this new simplification, the deflection itself is not an important issue. We simply label the output
port with the desired state and count the particles leaving that port. The Stern-Gerlach device sorts
(or filters, selects or analyzes) the incoming particles into the two possible outputs S, = *#/2 in the
same way that Erwin sorted his socks according to color or length. We follow convention and refer to
a Stern-Gerlach device as an analyzer.

In Fig. 1.2, the input and output beams are labeled with a new symbol called a ket. We use the
ket |+) as a mathematical representation of the quantum state of the atoms that exit the upper port
corresponding to S, = +%/2. The lower output beam is labeled with the ket | —), which corresponds
to S, = —#%/2, and the input beam is labeled with the more generic ket | ). The kets are representa-
tions of the quantum states. They are used in mathematical expressions and they represent all the
information that we can know about the state. This ket notation was developed by Paul A. M. Dirac
and is central to the approach to quantum mechanics that we take in this text. We will discuss the
mathematics of these kets in full detail later. With regard to notation, you will find many different
ways of writing the same ket. The symbol within the ket brackets is any simple label to distinguish
the ket from other different kets. For example, the kets |+), [+#/2), |S, = +4/2), |+Z), and | 1)
are all equivalent ways of writing the same thing, which in this case signifies that we have measured
the z-component of the spin and found it to be +#/2 or spin up. Though we may label these kets in
different ways, they all refer to the same physical state and so they all behave the same mathemati-
cally. The symbol | + ) refers to both the |+) and | —) kets. The first postulate of quantum mechanics
tells us that kets in general describe the quantum state mathematically and that they contain all the
information that we can know about the state. We denote a general ket as | ).

DTMW @

FIGURE 1.2 Simplified schematic of the Stern-Gerlach experiment,
depicting a source of atoms, a Stern-Gerlach analyzer, and two counters.
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Postulate 1

The state of a quantum mechanical system, including all the information you
can know about it, is represented mathematically by a normalized ket | ).

We have chosen the particular simplified schematic representation of the Stern-Gerlach
experiment shown in Fig. 1.2, because it is the same representation used in the SPINS software
program that you may use to simulate these experiments. The SPINS program allows you to per-
form all the experiments described in this text. This software is freely available, as detailed in
Resources at the end of the chapter. In the SPINS program, the components are connected with
simple lines to represent the paths the atoms take. The directions and magnitudes of deflections
of the beams in the program are not relevant. That is, whether the spin up output beam is drawn
as deflected upwards, downwards, or not at all, is not relevant. The labeling on the output port is
enough to tell us what that state is. Thus the extra ket label |+) on the spin up output beam in Fig.
1.2 is redundant and will be dropped soon.

The SPINS program permits alignment of Stern-Gerlach analyzing devices along all three axes
and also at any angle ¢ measured from the x-axis in the x-y plane. This would appear to be difficult, if
not impossible, given that the atomic beam in Fig. 1.1 is directed along the y-axis, making it unclear
how to align the magnet in the y-direction and measure a deflection. In our depiction and discussion of
Stern-Gerlach experiments, we ignore this technical complication.

In the SPINS program, as in real Stern-Gerlach experiments, the numbers of atoms detected
in particular states can be predicted by probability rules that we will discuss later. To simplify
our schematic depictions of Stern-Gerlach experiments, the numbers shown for detected atoms
are those obtained by using the calculated probabilities without any regard to possible statistical
uncertainties. That is, if the theoretically predicted probabilities of two measurement possibilities
are each 50%, then our schematics will display equal numbers for those two possibilities, whereas
in a real experiment, statistical uncertainties might yield a 55% /45% split in one experiment and
a 47% /53% split in another, etc. The SPINS program simulations are designed to give statistical
uncertainties, so you will need to perform enough experiments to convince yourself that you have a
sufficiently good estimate of the probability (see SPINS Lab 1 for more information on statistics).

Now let’s consider a series of simple Stern-Gerlach experiments with slight variations that help to
illustrate the main features of quantum mechanics. We first describe the experiments and their results
and draw some qualitative conclusions about the nature of quantum mechanics. Then we introduce the
formal mathematics of the ket notation and show how it can be used to predict the results of each of
the experiments.

1.1.1 W Experiment 1

The first experiment is shown in Fig. 1.3 and consists of a source of atoms, two Stern-Gerlach ana-
lyzers both aligned along the z-axis, and counters for the output ports of the analyzers. The atomic
beam coming into the first Stern-Gerlach analyzer is split into two beams at the output, just like the
original experiment. Now instead of counting the atoms in the upper output beam, the spin compo-
nent is measured again by directing those atoms into the second Stern-Gerlach analyzer. The result of
this experiment is that no atoms are ever detected coming out of the lower output port of the second
Stern-Gerlach analyzer. All atoms that are output from the upper port of the first analyzer also pass



6 Stern-Gerlach Experiments

E}FEM @

FIGURE 1.3 Experiment 1 measures the spin component along the z-axis twice in succession.

through the upper port of the second analyzer. Thus we say that when the first Stern-Gerlach analyzer
measures an atom to have a z-component of spin S, = +#/2, then the second analyzer also measures
S. = +1/2 for that atom. This result is not surprising, but it sets the stage for results of experiments
to follow.

Though both Stern-Gerlach analyzers in Experiment 1 are identical, they play different roles in
this experiment. The first analyzer prepares the beam in a particular quantum state (|+)) and the
second analyzer measures the resultant beam, so we often refer to the first analyzer as a state prepa-
ration device. By preparing the state with the first analyzer, the details of the source of atoms can be
ignored. Thus our main focus in Experiment 1 is what happens at the second analyzer because we
know that any atom entering the second analyzer is represented by the |+) ket prepared by the first
analyzer. All the experiments we will describe employ a first analyzer as a state preparation device,
though the SPINS program has a feature where the state of the atoms coming from the oven is deter-
mined but unknown, and the user can perform experiments to determine the unknown state using only
one analyzer in the experiment.

1.1.2 W Experiment 2

The second experiment is shown in Fig. 1.4 and is identical to Experiment 1 except that the sec-
ond Stern-Gerlach analyzer has been rotated by 90° to be aligned with the x-axis. Now the second
analyzer measures the spin component along the x-axis rather the z-axis. Atoms input to the second
analyzer are still represented by the ket | +) because the first analyzer is unchanged. The result of this
experiment is that atoms appear at both possible output ports of the second analyzer. Atoms leaving
the upper port of the second analyzer have been measured to have S, = +#/2, and atoms leaving
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FIGURE 1.4 Experiment 2 measures the spin component along the z-axis and then along the x-axis.
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the lower port have S, = —#/2. On average, each of these ports has 50% of the atoms that left the
upper port of the first analyzer. As shown in Fig. 1.4, the output states of the second analyzer have
new labels |+), and | —),, where the x subscript denotes that the spin component has been measured
along the x-axis. We assume that if no subscript is present on the quantum ket (e.g., |+)), then the
spin component is along the z-axis. This use of the z-axis as the default is a common convention
throughout our work and also in much of physics.

A few items are noteworthy about this experiment. First, we notice that there are still only two
possible outputs of the second Stern-Gerlach analyzer. The fact that it is aligned along a different axis
doesn’t affect the fact that we get only two possible results for the case of a spin-1/2 particle. Second,
it turns out that the results of this experiment would be unchanged if we used the lower port of the first
analyzer. That is, atoms entering the second analyzer in state |—) would also result in half the atoms
in each of the | & ), output ports. Finally, we cannot predict which of the second analyzer output ports
any particular atom will come out. This can be demonstrated in actual experiments by recording the
individual counts out of each port. The arrival sequences at any counter are completely random. We
can say only that there is a 50% probability that an atom from the second analyzer will exit the upper
analyzer port and a 50% probability that it will exit the lower port. The random arrival of atoms at the
detectors can be seen clearly in the SPINS program simulations.

This probabilistic nature is at the heart of quantum mechanics. One might be tempted to say that
we just don’t know enough about the system to predict which port the atom will exit. That is to say,
there may be some other variables, of which we are ignorant, that would allow us to predict the results.
Such a viewpoint is known as a local hidden variable theory. John Bell proved that such theories are
not compatible with the experimental results of quantum mechanics. The conclusion to draw from this
is that even though quantum mechanics is a probabilistic theory, it is a complete description of reality.
We will have more to say about this in Chapter 4.

Note that the 50% probability referred to above is the probability that an atom input to the second
analyzer exits one particular output port. It is not the probability for an atom to pass through the whole sys-
tem of Stern-Gerlach analyzers. It turns out that the results of this experiment (the 50 /50 split at the sec-
ond analyzer) are the same for any combination of two orthogonal axes of the first and second analyzers.

1.1.3 H Experiment 3

Experiment 3, shown in Fig. 1.5, extends Experiment 2 by adding a third Stern-Gerlach analyzer aligned
along the z-axis. Atoms entering the third analyzer have been measured by the first Stern-Gerlach
analyzer to have spin component up along the z-axis, and by the second analyzer to have spin component
up along the x-axis. The third analyzer then measures how many atoms have spin component up or down

EE ) ®I I+)

I+
125

125

500 250

FIGURE 1.5 Experiment 3 measures the spin component three times in succession.
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along the z-axis. Classically, one would expect that the final measurement would yield the result spin
up along the z-axis, because that was measured at the first analyzer. That is to say: classically the first
two analyzers tell us that the atoms have S, = +#/2 and S, = +#/2, so the third measurement must
yield S, = +#/2. But that doesn’t happen, as Erwin learned with his quantum socks in the Prologue.
The quantum mechanical result is that the atoms are split with 50% probability into each output port at
the third analyzer. Thus the last two analyzers behave like the two analyzers of Experiment 2 (except
with the order reversed), and the fact that there was an initial measurement that yielded S, = +#/2 is
somehow forgotten or erased.

This result demonstrates another key feature of quantum mechanics: a measurement disturbs the
system. The second analyzer has disturbed the system such that the spin component along the z-axis
does not have a unique value, even though we measured it with the first analyzer. Erwin saw this
when he sorted, or measured, his socks by color and then by length. When he looked, or measured,
a third time, he found that the color he had measured originally was now random—the socks had
forgotten about the first measurement. One might ask: Can I be more clever in designing the experi-
ment such that I don’t disturb the system? The short answer is no. There is a fundamental incompat-
ibility in trying to measure the spin component of the atom along two different directions. So we say
that S, and S, are incompatible observables. We cannot know the measured values of both simul-
taneously. The state of the system can be represented by the ket |+) = |S, = +#/2) or by the ket
|+) = |S, = +4/2), but it cannot be represented by a ket |S, = +%/2, S, = +#/2) that specifies
values of both components. Having said this, it should be said that not all pairs of quantum mechanical
observables are incompatible. It is possible to do some experiments without disturbing some of the
other aspects of the system. We will see in Section 2.4 that whether two observables are compatible or
not is very important in how we analyze a quantum mechanical system.

Not being able to measure both the S, and S, spin components is clearly distinct from the classi-
cal case where we can measure all three components of the spin vector, which tells us which direction
the spin is pointing. In quantum mechanics, the incompatibility of the spin components means that we
cannot know which direction the spin is pointing. So when we say “the spin is up,” we really mean
only that the spin component along that one axis is up (vs. down). The quantum mechanical spin vec-
tor cannot be said to be pointing in any given direction. As is often the case, we must check our classi-
cal intuition at the door of quantum mechanics.

1.1.4 W Experiment 4

Experiment 4 is depicted in Fig. 1.6 and is a slight variation on Experiment 3. Before we get into the
details, note a few changes in the schematic drawings. As promised, we have dropped the ket labels on
the beams because they are redundant. We have deleted the counters on all but the last analyzer and
instead simply blocked the unwanted beams and given the average number of atoms passing from one
analyzer to the next. The beam blocks are shown explicitly in Fig. 1.6 but will not be shown after this to
be consistent with the SPINS program. Note also that in Experiment 4c two output beams are combined
as input to the following analyzer. This is simple in principle and in the SPINS program but can be
difficult in practice. The recombination of the beams must be done properly so as to avoid “disturbing”
the beams. If you care to read more about this problem, see Feynman’s Lectures on Physics, volume 3.
We will have more to say about the “disturbance” later in Section 2.2. For now we simply assume that
the beams can be recombined in the proper manner.

Experiment 4a is identical to Experiment 3. In Experiment 4b, the upper beam of the second ana-
lyzer is blocked and the lower beam is sent to the third analyzer. In Experiment 4c, both beams are
combined with our new method and sent to the third analyzer. It should be clear from our previous
experiments that Experiment 4b has the same results as Experiment 4a. We now ask about the results of
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FIGURE 1.6 Experiment 4 measures the spin component three times in succession
and uses (a and b) one or (c) two beams from the second analyzer.

Experiment 4c. If we were to use classical probability analysis, then Experiment 4a would indicate that
the probability for an atom leaving the first analyzer to take the upper path through the second analyzer
and then exit through the upper port of the third analyzer is 25%, where we are now referring to the total
probability for those two steps. Likewise, Experiment 4b would indicate that the total probability to
take the lower path through the second analyzer and exit through the upper port of the third analyzer is
also 25%. Hence the total probability to exit from the upper port of the third analyzer when both paths
are available, which is Experiment 4c, would be 50%, and likewise for the exit from the lower port.

However, the quantum mechanical result in Experiment 4c is that all the atoms exit the upper
port of the third analyzer and none exits the lower port. The atoms now appear to “remember” that
they were initially measured to have spin up along the z-axis. By combining the two beams from
the second analyzer, we have avoided the quantum mechanical disturbance that was evident in
Experiments 3, 4a, and 4b. The result is now the same as Experiment 1, which means it is as if the
second analyzer is not there.

To see how odd this is, look carefully at what happens at the lower port of the third analyzer. In
this discussion, we refer to percentages of atoms leaving the first analyzer, because that analyzer is
the same in all three experiments. In Experiments 4a and 4b, 50% of the atoms are blocked after the
middle analyzer and 25% of the atoms exit the lower port of the third analyzer. In Experiment 4c,
100% of the atoms pass from the second analyzer to the third analyzer, yet fewer atoms come out
of the lower port. In fact, no atoms make it through the lower port! So we have a situation where



10

Stern-Gerlach Experiments

VY

Pinhole Double Screen Single Slit Double Slit
Source Slit Patterns Pattern

(a) (b)

FIGURE 1.7 (a) Young’s double-slit interference experiment and (b) resultant intensity patterns
observed on the screen, demonstrating single-slit diffraction and double-slit interference.

allowing more ways or paths to reach a counter results in fewer counts. Classical probability theory
cannot explain this aspect of quantum mechanics. It is as if you opened a second window in a room to
get more sunlight and the room went dark!

However, you may already know of a way to explain this effect. Imagine a procedure whereby
combining two effects leads to cancellation rather than enhancement. The concept of wave interfer-
ence, especially in optics, comes to mind. In the Young’s double-slit experiment, light waves pass
through two narrow slits and create an interference pattern on a distant screen, as shown in Fig. 1.7.
Either slit by itself produces a nearly uniform illumination of the screen, but the two slits combined
produce bright and dark interference fringes, as shown in Fig. 1.7(b). We explain this by adding
together the electric field vectors of the light from the two slits, then squaring the resultant vector to
find the light intensity. We say that we add the amplitudes and then square the total amplitude to find
the resultant intensity. See Section 6.6 or an optics textbook for more details about this experiment.

We follow a similar prescription in quantum mechanics. We add together amplitudes and then
take the square to find the resultant probability, which opens the door to interference effects. Before
we discuss quantum mechanical interference, we must explain what we mean by an amplitude in
quantum mechanics and how we calculate it.

1.2 B QUANTUM STATE VECTORS

Postulate 1 of quantum mechanics stipulates that kets are to be used for a mathematical description of a
quantum mechanical system. These kets are abstract entities that obey many of the rules you know about
ordinary spatial vectors. Hence they are called quantum state vectors. As we will show in Example 1.3,
these vectors must employ complex numbers in order to properly describe quantum mechanical systems.
Quantum state vectors are part of a vector space that we call a Hilbert space. The dimensionality of
the Hilbert space is determined by the physics of the system at hand. In the Stern-Gerlach example,
the two possible results for a spin component measurement dictate that the vector space has only two
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dimensions. That makes this problem mathematically as simple as it can be, which is why we have chosen
to study it. Because the quantum state vectors are abstract, it is hard to say much about what they are,
other than how they behave mathematically and how they lead to physical predictions.

In the two-dimensional vector space of a spin-1/2 system, the two kets | + ) form a basis, just like
the unit vectors i s j, and k form a basis for describing vectors in three-dimensional space. However,
the analogy we want to make with these spatial vectors is only mathematical, not physical. The spatial
unit vectors have three important mathematical properties that are characteristic of a basis: the basis
vectors 1 J and k are normalized, orthogonal, and complete. Spatial vectors are normalized if their
magnitudes are unity, and they are orthogonal if they are geometrically perpendicular to each other.
The basis is complete if any general vector in the space can be written as a linear superposition of the
basis vectors. These properties of spatial basis vectors can be summarized as follows:

i'i= j-j kk=1 normalization
;j =ik=]j 12 0 orthogonality (1.9)
A= ax +a j + Zf( completeness,

where A is a general vector. Note that the dot product, also called the scalar product, is central to the
description of these properties.

Continuing the mathematical analogy between spatial vectors and abstract vectors, we require that
these same properties (at least conceptually) apply to quantum mechanical basis vectors. For the S,
measurement, there are only two possible results, corresponding to the states |+) and |—), so these
two states comprise a complete set of basis vectors. This basis is known as the S, basis. We focus on
this basis for now and refer to other possible basis sets later. The completeness of the basis kets | + )
implies that a general quantum state vector | ) is a linear combination of the two basis kets:

lg) = al+) + b|—), (1.10)

where a and b are complex scalar numbers multiplying each ket. This addition of two kets yields
another ket in the same abstract space. The complex scalar can appear either before or after the ket
without affecting the mathematical properties of the ket (i.e., a|+) = |+)a). It is customary to use
the Greek letter i (psi) for a general quantum state. You may have seen ¢s(x) used before as a quan-
tum mechanical wave function. However, the state vector or ket | ) is not a wave function. Kets do
not have any spatial dependence as wave functions do. We will study wave functions in Chapter 5.
To discuss orthogonality and normalization (known together as orthonormality) we must first
define scalar products as they apply to these new kets. As we said above, the machinery of quantum
mechanics requires the use of complex numbers. You may have seen other fields of physics use com-
plex numbers. For example, sinusoidal oscillations can be described using the complex exponential
! rather than cos(wr). However, in such cases, the complex numbers are not required, but are rather
a convenience to make the mathematics easier. When using complex notation to describe classical
vectors like electric and magnetic fields, the definition of the dot product is generalized slightly, such
that one of the vectors is complex conjugated. A similar approach is taken in quantum mechanics. The
analog to the complex conjugated vector of classical physics is called a bra in the Dirac notation of
quantum mechanics. Thus corresponding to a general ket | i), there is a bra, or bra vector, which is
written as (i |. If a general ket |) is specified as |y) = a|+) + b|—), then the corresponding bra
(4| is defined as

(pl=a(+|+ (- (1.11)
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where the basis bras (+]| and {—| correspond to the basis kets |+) and |—), respectively, and the
coefficients a and b have been complex conjugated.

The scalar product in quantum mechanics is defined as the product of a bra and a ket taken in the
proper order—bra first, then ket second:

({bra|)(|ket)).

When the bra and ket are combined together in this manner, we get a bracket (bra ket)—a little physics
humor—that is written in shorthand as

(1.12)

(bralket). (1.13)
Thus, given the basis kets |+) and | —), one inner product, for example, is written as
((+DU=)) = {+1=) (1.14)

and so on. Note that we have eliminated the extra vertical bar in the middle. The scalar product in
quantum mechanics is generally referred to as an inner product or a projection.

So how do we calculate the inner product (+|+)? We do it the same way we calculate the dot
product i+i. We define it to be unity because we like basis vectors to be unit vectors. There is a little
more to it than that, because in quantum mechanics (as we will see shortly) using normalized basis
vectors is more rooted in physics than in our personal preferences for mathematical cleanliness. But
for all practical purposes, if someone presents a set of basis vectors to you, you can probably assume
that they are normalized. So the normalization of the spin-1/2 basis vectors is expressed in this new
notation as (+|+) = land (—|—) = 1.

Now, what about orthogonality? The spatial unit vectors i, j, and k used for spatial vectors are
orthogonal to each other because they are at 90° with respect to each other. That orthogonality is
expressed mathematically in the dot products ij = ik = j*k = 0. For the spin basis kets |+) and
| —), there is no spatial geometry involved. Rather, the spin basis kets |+) and | —) are orthogonal in
the mathematical sense, which we express with the inner product as (+|—) = 0. Again, we do not
prove to you that these basis vectors are orthogonal, but we assume that a well-behaved basis set obeys
orthogonality. Though there is no geometry in this property for quantum mechanical basis vectors,
the fundamental idea of orthogonality is the same, so we use the same language—if a general vector
“points” in the direction of a basis vector, then there is no component in the “direction” of the other
unit vectors.

In summary, the properties of normalization, orthogonality, and completeness can be expressed
in the case of a two-state spin-1/2 quantum system as:

(+1+) =1 o

(—|-) =1 normalization

(+]-) = . 19
(—]+) =0 orthogonality

| ) = a|+) + b|—) completeness

Note that a product of kets (e.g., |+)|+)) or a similar product of bras (e.g., {+|{+]) is meaningless
in this new notation, while a product of a ket and a bra in the “wrong” order (e.g., |+ )(+]) has a
meaning that we will define in Section 2.2.3. Equations (1.15) are sufficient to define how the basis
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kets behave mathematically. Note that the inner product is defined using a bra and a ket, though it is
common to refer to the inner product of two kets, where it is understood that one is converted to a bra
first. The order does matter, as we will see shortly.

Using this new notation, we can learn a little more about general quantum states and derive some
expressions that will be useful later. Consider the general state vector | ) = a|+) + b|—). Take the
inner product of this ket with the bra (+| and obtain

(+1w) = (+](al+) + b))

(
(+lal+) + (+[p]=)
= a{+[+) + b(+]-)

=a,

(1.16)

using the properties that inner products are distributive and that scalars can be moved freely through
bras or kets. Likewise, you can show that (— |1y) = b. Hence the coefficients multiplying the basis
kets are simply the inner products or projections of the general state |f) along each basis ket, albeit in
an abstract complex vector space rather than the concrete three-dimensional space of normal vectors.
Using these results, we rewrite the general state as

[¥) = al+) + b[-)
= |+)a +[=)b (1.17)
= [+ {{(+v)} + {1y}
where the rearrangement of the second equation again uses the property that scalars (e.g.,a = (+|))
can be moved through bras or kets.
For a general state vector |) = al+) + b|—), we defined the corresponding bra to be

(¢| = a"(+|+b"(—|. Thus, the inner product of the state | ) with the basis ket |+) taken in the
reverse order compared to Eq. (1.16) yields

(w[+) = (+|a'[+) + (=[p"]+)
=a"(+|+) + b (—|+) (1.18)

Thus, we see that an inner product with the states reversed results in a complex conjugation of the

inner product:

(+ly) = (wl+)" (1.19)
This important property holds for any inner product. For example, the inner product of two general
states is

(olw) = (o). (1.20)

Now we come to a new mathematical aspect of quantum vectors that differs from the use of vec-
tors in classical mechanics. The rules of quantum mechanics (postulate 1) require that all state vectors
describing a quantum system be normalized, not just the basis kets. This is clearly different from
ordinary spatial vectors, where the length or magnitude of a vector means something and only the unit
vectors f, j, and k are normalized to unity. This new rule means that in the quantum mechanical state
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space only the direction—in an abstract sense—is important. If we apply this normalization require-
ment to a general state | ), then we obtain

(ply) = {a’(+] + b (= Hal+) + b]=)} =1
=a"a(+|+) + a’b(+|-) + ba(—|+) + bB(—|-) =1

; A (1.21)
=aa+bb=1
= la|* + |p" = 1,
or using the expressions for the coefficients obtained above,
2 2
() 7+ (=) = 1. (122)

Example 1.1 Normalize the vector |#) = C(1|+) + 2i|—)). The complex constant C is often
referred to as the normalization constant.

To normalize | ), we set the inner product of the vector with itself equal to unity and then
solve for C—note the requisite complex conjugations

1= (y[y)
= Cc{1{+| = 2i{=[}c{u|+) + 2i]-)}
= Cc{1(+]+) + 2i(+]—) = 2i(=[+) + 4—[-)} (1.23)
= s|c|?
1
=|C| = —=.

Vs

The overall phase of the normalization constant is not physically meaningful (Problem 1.3), so
we follow the standard convention and choose it to be real and positive. This yields C = 1/ V5.
The normalized quantum state vector is then

gy = —=
Vs

(1]+) + 2i|-)). (1.24)

Now comes the crucial element of quantum mechanics. We postulate that each term in the sum
of Eq. (1.22) is equal to the probability that the quantum state described by the ket | ) is measured
to be in the corresponding basis state. Thus

Ps.—tip = ‘<+‘¢’>‘2 (1.25)

is the probability that the state | ) is found to be in the state |+) when a measurement of S, is made,
meaning that the result S, = +#/2 is obtained. Likewise,

Po—un = (= |¥)|° (1.26)

is the probability that the measurement yields the result S, = —7#/2. The subscript on the probability
indicates the measured value. For the spin component measurements, we will usually abbreviate this
to, for example, P, foran S, = +#% /2 result or ?_ for an S, = —#/2 measurement.
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We now have a prescription for predicting the outcomes of the experiments we have been dis-
cussing. For example, the experiment shown in Fig. 1.8 has the state |y) = |+) prepared by the
first Stern-Gerlach device and then input to the second Stern-Gerlach device aligned along the z-axis.
Therefore the probabilities of measuring the input state |¢4) = |+) to have the two output values are
as shown. Because the spin-1/2 system has only two possible measurement results, these two prob-
abilities must sum to unity—there is a 100% probability of recording some value in the experiment.
This basic rule of probabilities is why the rules of quantum mechanics require that all state vectors
be properly normalized before they are used in any calculation of probabilities. The experimental
predictions shown in Fig. 1.8 are an example of the fourth postulate of quantum mechanics, which is
presented below.

Postulate 4 (Spin-1/2 system)

The probability of obtaining the value *#/2 in a measurement of the observ-
able S on a system in the state | ) is

Pr = [(£[w)

2

where | +) is the basis ket of S. corresponding to the result 7 /2.

This is labeled as the fourth postulate because we have written this postulate using the language of the
spin-1/2 system, while the general statement of the fourth postulate presented in Section 1.5 requires
the second and third postulates of Section 2.1. A general spin component measurement is shown in
Fig. 1.9, along with a histogram that compactly summarizes the measurement results.

Because the quantum mechanical probability is found by squaring an inner product, we refer to
an inner product, (+| ) for example, as a probability amplitude or sometimes just an amplitude;
much like a classical wave intensity is found by squaring the wave amplitude. Note that the conven-
tion is to put the input or initial state on the right and the output or final state on the left: (out|in), so
one would read from right to left in describing a problem. Because the probability involves the com-
plex square of the amplitude, and (out|in) = (in|out)”, this convention is not critical for calculat-
ing probabilities. Nonetheless, it is the accepted practice and is important in situations where several
amplitudes are combined.

Armed with these new quantum mechanical rules and tools, let’s continue to analyze the experi-
ments discussed earlier. Using the experimental results and the new rules we have introduced, we can
learn more about the mathematical behavior of the kets and the relationships among them. We will
focus on the first two experiments for now and return to the others in the next chapter.

[-) | P_=K-I+)? =0

Bﬂ @I [+) @

FIGURE 1.8 Probabilities of spin component measurements.

+) Po=+H)I2 =1
50

<=




16

Stern-Gerlach Experiments
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FIGURE 1.9 (a) Spin component measurement for a general input state and
(b) histogram of measurement results.

1.2.1 W Analysis of Experiment 1

In Experiment 1, the first Stern-Gerlach analyzer prepared the system in the |+) state and the sec-
ond analyzer later measured this state to be in the |+) state and not in the |—) state. The results of
the experiment are summarized in the histogram in Fig. 1.10. We can use the fourth postulate to pre-
dict the results of this experiment. We take the inner product of the input state |+) with each of the
possible output basis states |+) and |—). Because we know that the basis states are normalized and
orthogonal, we calculate the probabilities to be

2
P, = |(+|+)]* =1
Sl .
p. = |(-I+) = 0.

These predictions agree exactly with the histogram of experimental results shown in Fig. 1.10. A |+)
state is always measured to have S, = +7/2.

1.2.2 W Analysis of Experiment 2

In Experiment 2, the first Stern-Gerlach analyzer prepared the system in the |+) state and the sec-
ond analyzer performed a measurement of the spin component along the x-axis, finding 50% prob-
abilities for each of the two possible states |+), and | —),, as shown in the histogram in Fig. 1.11(a).
For this experiment, we cannot predict the results of the measurements, because we do not yet have

P
=1 ?,
P_
: S,
_h n
2 2

FIGURE 1.10 Histogram of S, spin component measurements
for Experiment 1 with [if;,) = |+).
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FIGURE 1.11 Histograms of S, spin component measurements for Experiment 2
for different input states (a) |¢;,) = |+) and (b) |f;,,) = |—).

enough information about how the states |+), and | —), behave mathematically. Rather, we will use
the results of the experiment to determine these states. Recalling that the experimental results would
be the same if the first analyzer prepared the system to be in the |—) state [see Fig. 1.11(b)], we have
four results for the two experiments:

P = [+ =3
2
P = I {=[H) =3
, (1.28)
P = KH [ =2
2
P = =) =1

Because the kets | +) and | —) form a complete basis, the kets describing the S, measurement, |+)
and |—),, can be written in terms of them. We do not yet know the specific coefficients of the | + ),
states, so we use general expressions

|+)x = al+) + b]-)

(1.29)
|=)x = c|+) +d|-),

and now our task is to use the results of Experiment 2 to determine the coefficients a, b, ¢, and d. The
first measured probability in Eq. (1.28) is

2
Prir = |{+]H) =3 (1.30)

Using the general expression for |+), in Eq. (1.29), we calculate the probability that the |+) input
state is measured to be in the | +), output state, that is, to have S, = +7#/2:
2
Prox = [{+]+)]
= {a"(+]+ b (= [})] (1.31)
2

s

— [ = la

where we convert the |+), ket to a bra ,(+| in order to calculate the inner product. Equating the
experimental result in Eq. (1.30) and the prediction in Eq. (1.31), we find

la* = 1. (1.32)
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Similarly, one can calculate the other three probabilities to arrive at |b|” = |c|* = |d|” = L. (Prob-
lem 1.4) Because each coefficient is complex, each has an amplitude and phase. However, the overall
phase of a quantum state vector is not physically meaningful (see Problem 1.3). Only the relative
phase between different components of the state vector is physically measurable. Hence, we are free to
choose one coefficient of each vector to be real and positive without any loss of generality. This allows
us to write the desired states as

[+)e = J5l1+) + =)

) (1.33)

=) = 5l1+) + eP1-) ],
where « and f3 are relative phases that we have yet to determine. Note that these states are already nor-
malized because we used all of the experimental results, which reflect the fact that the probability for
all possible results of an experiment must sum to unity.

We have used all the experimental results from Experiment 2, but the | & ), kets are still not deter-
mined. We need some more information. If we perform Experiment 1 with both analyzers aligned
along the x-axis, the results will be as you expect—all |+ ), states from the first analyzer will be mea-
sured to have S, = +#/2 at the second analyzer, that is, all atoms exit in the | +), state and none in the
|—).. The probability calculations for this experiment are

p—%—x = |x<+|+>x =1
) (1.34)
P = |x<_|+>x| =0,

which tell us mathematically that the | £ ), states are orthonormal to each other, just like the | £ )
states. This also implies that the | £ ), kets form a basis, the S, basis, which you might expect because
they correspond to the distinct results of a different spin component measurement. The general expres-
sions we used for the | £ ), kets are already normalized but are not yet orthogonal. That is the new
piece of information we need. The orthogonality condition leads to

{=[+)=0

Gl + B[+ + =) ] =0

%[1 + ei(a*B)] =90 (1.35)
elle=B) — 4

ol = —iB,

where the complex conjugation of the second coefficient of the ,(—| bra should be noted.

We now have an equation relating the remaining coefficients o and 3, but we need some more
information to determine their values. Unfortunately, there is no more information to be obtained, so
we are free to choose the value of the phase «. This freedom comes from the fact that we have required
only that the x-axis be perpendicular to the z-axis, which limits the x-axis only to a plane rather than to
a unique direction. We follow convention here and choose the phase a = 0. Thus we can express the
S, basis kets in terms of the S, basis kets as

(1.36)
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We generally use the S, basis as the preferred basis for writing general states, but we could use
any basis we choose. If we were to use the S, basis, then we could write the | + ) kets as general states
in terms of the | & ), kets. This can be done by solving Eq. (1.36) for the | + ) kets, yielding

|+> :\ji[+>x+ |_>x] (1.37)

|_> = \/§[|+>x - |_>x]'

With respect to the measurements performed in Experiment 2, Eq. (1.37) tells us that the |+)
state is a combination of the states |+ ), and | —),. The coefficients tell us that there is a 50% probabil-
ity for measuring the spin component to be up along the x-axis, and likewise for the down possibility,
which is in agreement with the histogram of measurements shown in Fig. 1.11(a). We must now take
a moment to describe carefully what a combination of states, such as in Egs. (1.36) and (1.37), is and
what it is not.

1.2.3 W Superposition States

A general spin-1/2 state vector | ¢s) can be expressed as a combination of the basis kets |+) and | —)
l¥) = al+) + b[-). (1.38)

We refer to such a combination of states as a superposition state. To understand the importance of a
quantum mechanical superposition state, consider the particular state

lw) = 55(+) +1-) (1.39)

and measurements on this state, as shown in Fig. 1.12(a). Note that the state |) is none other
than the state |+), that we found in Eq. (1.36), so we already know what the measurement results
are. If we measure the spin component along the x-axis for this state, then we record the result
S, = +#/2 with 100% probability (Experiment 1 with both analyzers along the x-axis). If we mea-
sure the spin component along the orthogonal z-axis, then we record the two results S, = *7#/2
with 50% probability each (Experiment 2 with the first and second analyzers along the x- and
z-axes, respectively). Based upon this second set of results, one might be tempted to consider the
state | /) as describing a beam that contains a mixture of atoms with 50% of the atoms in the |+)
state and 50% in the |—) state. Such a state is called a mixed state and is very different from a
superposition state.

To clarify the difference between a mixed state and a superposition state, let’s carefully exam-
ine the results of experiments on the proposed mixed-state beam, as shown in Fig. 1.12(b). If
we measure the spin component along the z-axis, then each atom in the |+) state yields the result
S. = +#/2 with 100% certainty and each atom in the |—) state yields the result S, = —%/2 with
100% certainty. The net result is that 50% of the atoms yield S, = +#/2 and 50% yield S, = —7i/2.
This is exactly the same result as that obtained with all atoms in the |+), state, as seen in Fig. 1.12(a).
If we instead measure the spin component along the x-axis, then each atom in the |+) state yields the
two results S, = t#/2 with 50% probability each (Experiment 2 with the first and second analyzers
along the z- and x-axes, respectively). The atoms in the | —) state yield the same results. The net result
is that 50% of the atoms yield S, = +#/2 and 50% yield S, = —#/2. This is in stark contrast to the
results of Experiment 1, which tell us that once we have prepared the state to be |+),, then subsequent
measurements yield S, = +7/2 with certainty, as seen in Fig. 1.12(a).
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FIGURE 1.12 (a) Superposition state measurements and (b) mixed state measurements.

Hence we must conclude that the system described by the |) = |+), state is not a mixed
state with some atoms in the |+) state and some in the |—) state. Rather, each atom in the |+),
beam is in a state that itself is a superposition of the |+) and |—) states. A superposition state is
often called a coherent superposition because the relative phase of the two terms is important. For
example, if the input beam were in the | —), state, then there would be a relative minus sign between
the two coefficients, which would result in an S, = —#/2 measurement but would not affect the S,
measurement.
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We will not have any further need to speak of mixed states, so any combination of states we use
is a superposition state. Note that we cannot even write down a ket describing a mixed state. So if
someone gives you a quantum state written as a ket, then it must be a superposition state and not a
mixed state. The random option in the SPINS program produces a mixed state, while the unknown
states are all superposition states.

Example 1.2 Consider the input state
[Win) = 3[+) + 4]=). (1.40)

Normalize this state vector and find the probabilities of measuring the spin component along the
z-axistobe S, = £#/2.

To normalize this state, introduce an overall complex multiplicative factor and solve for this
factor by imposing the normalization condition:

i) = C[3]+) +4]=)]

(Winlthin) =1
{C B3+ + (=[] HcBl+) +4]-)] =1
C'C[9(+][+) + 12(+]=) + 12(=|+) + 16(=|-)] =1 (1.41)
c'cles] =1
2 1
IC| =55

Because an overall phase is physically meaningless, we choose C to be real and positive: C = 1/5.
Hence the normalized input state is

i) = 3[+) +3]-). (1.42)

The probability of measuring S, = +#A/2 is

2o = |{+|wi)
2
= |(+[31+) + ¢[=)]] (1.43)
= [3(+]+) + ¢{+[ )
- =%

P = (-l
= [(=[[31+) + £-)]F
= B=[+) + - A
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FIGURE 1.13 Histogram of S, spin component measurements.

Note that the two probabilities add to unity, which indicates that we normalized the input state
properly. A histogram of the predicted measurement results is shown in Fig. 1.13.

1.3 H MATRIX NOTATION

Up to this point, we have defined kets mathematically in terms of their inner products with other kets.
Thus, in the general case we write a ket as

[y) = (+l)[+) + (=[w)[-). (1.45)

or in a specific case, we write

[+)e = (F[H) [ +) + (=) ) (1.46)
= 14 + ),

In both of these cases, we have chosen to write the kets in terms of the |+) and |—) basis kets. If we
agree on that choice of basis as a convention, then the two coefficients (+|+), and (—|+), uniquely
specify the quantum state, and we can simplify the notation by using just those numbers. Thus, we
represent a ket as a column vector containing the two coefficients that multiply each basis ket. For
example, we represent |+), as

[+), = 1<1> (1.47)
X \/5 1 9 o

where we have used the new symbol = to signify “is represented by,” and it is understood that we
are using the |+) and |—) basis or the S. basis. We cannot say that the ket equals the column vector,
because the ket is an abstract vector in the state space and the column vector is just two complex num-
bers. If we were to choose a different basis for representing the vector, then the complex coefficients
would be different even though the vector is unchanged. We need to have a convention for the order-
ing of the amplitudes in the column vector. The standard convention is to put the spin up amplitude
first (at the top). Thus, the representation of the | —), state in Eq. (1.36) is

=) = \]/5<_]1> :Ii; (1.48)
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where we have explicitly labeled the rows according to their corresponding basis kets. Using this con-
vention, it should be clear that the basis kets themselves are written as

2= ()
-

This demonstrates the important feature that basis kets are unit vectors when written in their own basis.

This new way of expressing a ket simply as the collection of coefficients that multiply the basis
kets is referred to as a representation. Because we have assumed the S, kets as the basis kets, this is
called the S, representation. It is always true that basis kets have the simple form shown in Eq. (1.49)
when written in their own representation. A general ket | ) is written as

) = <t|i§> (1.50)

This use of matrix notation simplifies the mathematics of bras and kets. The advantage is not so evident for
the simple two-dimensional state space of spin-1/2 systems, but it is very evident for larger dimensional
problems. This notation is indispensable when using computers to calculate quantum mechanical results.
For example, the SPINS program employs matrix calculations coded in the Java computer language to
simulate the Stern-Gerlach experiments using the same probability rules you are learning here.

We saw earlier [Eq. (1.11)] that the coefficients of a bra are the complex conjugates of the coef-
ficients of the corresponding ket. We also know that an inner product of a bra and a ket yields a single
complex number. In order for the matrix rules of multiplication to be used, a bra must be represented
by a row vector, with the entries being the coefficients ordered in the same sense as for the ket. For
example, if we use the general ket

(1.49)

lg) = al+) +b]-), (1.51)
which is represented as
a
[y) = (b), (1.52)
then the corresponding bra
(| = a'(+]+ (-] (1.53)
is represented by a row vector as
(W] = (a" D). (1.54)

The rules of matrix algebra can then be applied to find an inner product. For example,

wiv) =@ (%)

= lal” + [b]".

(1.55)

So a bra is represented by a row vector that is the complex conjugate and transpose of the column vec-
tor representing the corresponding ket.
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Example 1.3 To get some practice using this new matrix notation, and to learn some more about
the spin-1/2 system, use the results of Experiment 2 to determine the S, basis kets using the matrix
approach instead of the Dirac bra-ket approach.

Consider Experiment 2 in the case where the second Stern-Gerlach analyzer is aligned along
the y-axis. We said before that the results are the same as in the case shown in Fig. 1.4. Thus, we
have

2
oy = [{+H[H)] =13
2
Py = L=+ =3
- (1.56)
Priy = [+ ) =3
2
P2y = (=19 =3

as depicted in the histograms of Fig. 1.14.

These results allow us to determine the kets | & ), corresponding to the spin component up and
down along the y-axis. The argument and calculation'proceeds exactly as it did earlier for the | £ ),
states up until the point [Eq. (1.35)] where we arbitrarily chose the phase « to be zero. Having done
that for the | & ), states, we are no longer free to make that same choice for the | + >y states. Thus
we use Eq. (1.35) to write the | ), states as

ey ()
4, = gl + et ] = ()

= =l = )] = =L )

To determine the phase «, we use some more information at our disposal. Experiment 2 could be
performed with the first Stern-Gerlach analyzer aligned along the x-axis and the second analyzer
along the y-axis. Again the results would be identical (50% at each output port), yielding

(1.57)

?3+), = ‘>’<+‘+>X‘2 = % (1.58)
(a) » (b) »
vm=r 1 =1 1
?_, P,y P, P,y
s s
_h n g _n o
2 2 2 2

FIGURE 1.14  Histograms of S, spin component measurements for input states (a) [¢;,) = [+)
and (b) [¢;,) = [—).
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as one of the measured quantities. Now use matrix algebra to calculate this:

(1)

1+ e_i“)

At )=

Sl
i
-

|
I

1.59
L+ [+ (159

(

(1+ eii")%(l + ™)
(1 +e@+e@+1)
(

[ e

1 + cosa) = 3.

This result requires that cos @ = 0, or that « = T 7 /2. The two choices for the phase correspond
to the two possibilities for the direction of the y-axis relative to the already determined x- and z-axes.
The choice @ = +7r /2 can be shown to correspond to a right-handed coordinate system, which is the
standard convention, so we choose that phase. We thus represent the | &) ykets as

e
== \1/£<—]z>

Note that the imaginary components of these kets are required. They are not merely a mathemati-
cal convenience as one sees in classical mechanics. In general, quantum mechanical state vectors
have complex coefficients. But this does not mean that the results of physical measurements are
complex. On the contrary, we always calculate a measurement probability using a complex square,
so all quantum mechanics predictions of probabilities are real.

(1.60)

1.4 B GENERAL QUANTUM SYSTEMS
The machinery we have developed for spin-1/2 systems can be generalized to other quantum systems.

For example, if an observable A yields quantized measurement results a, for some finite range of n,
then we generalize the schematic depiction of a Stern-Gerlach measurement to a measurement of the

las)

i) a1
@ Ao |ag)
ag

lag)

FIGURE 1.15 Generic depiction of the quantum mechanical measurement of observable A.
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observable A, as shown in Fig. 1.15. The observable A labels the measurement device and the possible
results ay, a,, as, etc. label the output ports. The basis kets corresponding to the results a,, are then |a,,).
The mathematical rules about kets in this general case are

aja;) = 6; orthonormali
(afa;) =8, 1y (6D
ly) = E(a,-\dtﬂa,-) completeness,
where we use the Kronecker delta
0 i#j
o = { ‘Y (1.62)
1 i=j

to express the orthonormality condition compactly. In this case, the generalization of postulate 4 says
that the probability of a measurement of one of the possible results a,, is

P, = (anpin) . (1.63)

Example 1.4 Imagine a quantum system with an observable A that has three possible measure-
ment results: a,, a,, and a;. The three kets |a;), |a,), and |a;) corresponding to these possible
results form a complete orthonormal basis. The system is prepared in the state

[¥) = 2[a)) = 3[ay) + 4ilas). (1.64)

Calculate the probabilities of all possible measurement results of the observable A.
The state vector in Eq. (1.64) is not normalized, so we must normalize it before calculating
probabilities. Introducing a complex normalization constant C, we find

_
Il

(W)
C (2{a1] = 3(ay| — 4ias|)C(2|ar) — 3|ay) + 4ilas))

[l {Ma]ar) — 6{ar|ar) + 8ifay|as)

— 6{ala;) + Haylay) — 12i(ay]as) (1.65)
= 8ifasa;) + 12i{as|ay) + 16{as|as)}

= [cl{4+9+ 16} = |c|*29
_ 1
=C=Lt.

The normalized state is

9) = o= (2la) — 3lar) + 4ilas)). (1.66)
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FIGURE 1.16 (a) Schematic diagram of the measurement of observable A and (b) histogram of the
predicted measurement probabilities.

The probabilities of measuring the results a;, a,, and a5 are

2, = [(a|w)[’
2
= ’<01|\/IT*9{2|611> — 3lay) + 4i|a3>}‘
= S2(a]a)) = 3alay) + di{a]as)]” = % (1.67)

2

2., = lasl )" = [{ad F5{2la) — 3las) + 4ilas)}[ = %
2

70, = el 93] = [{asfghs{2lan) = 3lar) + 4ifas)}] = 35,

A schematic of this experiment is shown in Fig. 1.16(a) and a histogram of the predicted probabili-
ties is shown in Fig. 1.16(b).

1.5 B POSTULATES

We have introduced two of the postulates of quantum mechanics in this chapter. The postulates
of quantum mechanics dictate how to treat a quantum mechanical system mathematically and
how to interpret the mathematics to learn about the physical system in question. These postulates
cannot be proven, but they have been successfully tested by many experiments, and so we accept
them as an accurate way to describe quantum mechanical systems. New results could force us
to reevaluate these postulates at some later time. All six postulates are listed below to give you
an idea where we are headed and a framework into which you can place the new concepts as we
confront them.

Postulates of Quantum Mechanics

1. The state of a quantum mechanical system, including all the information you can know
about it, is represented mathematically by a normalized ket |¢).

2. A physical observable is represented mathematically by an operator A that acts on kets.

3. The only possible result of a measurement of an observable is one of the eigenvalues a,, of
the corresponding operator A.
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4. The probability of obtaining the eigenvalue a, in a measurement of the observable A on the
system in the state | ) is

2, = la,lw) [’

where |a,,) is the normalized eigenvector of A corresponding to the eigenvalue a,,.

5. After a measurement of A that yields the result a,,, the quantum system is in a new state that
is the normalized projection of the original system ket onto the ket (or kets) corresponding
to the result of the measurement:

) = Py
V([P w)

6. The time evolution of a quantum system is determined by the Hamiltonian or total energy
operator H(f) through the Schrodinger equation

m%\w» = H(1) |y (1)).

As you read these postulates for the first time, you will undoubtedly encounter new terms and
concepts. Rather than explain them all here, the plan of this text is to continue to explain them through
their manifestation in the Stern-Gerlach spin-1/2 experiment. We have chosen this example because it
is inherently quantum mechanical and forces us to break away from reliance on classical intuition or
concepts. Moreover, this simple example is a paradigm for many other quantum mechanical systems.
By studying it in detail, we can appreciate much of the richness of quantum mechanics.

SUMMARY

Through the Stern-Gerlach experiment we have learned several key concepts about quantum mechan-
ics in this chapter.

¢ Quantum mechanics is probabilistic.
We cannot predict the results of experiments precisely. We can predict only the probability
that a certain result is obtained in a measurement.

* Spin measurements are quantized.
The possible results of a spin component measurement are quantized. Only these discrete
values are measured.

e Quantum measurements disturb the system.
Measuring one physical observable can “destroy” information about other observables.

We have learned how to describe the state of a quantum mechanical system mathematically using
a ket, which represents all the information we can know about that state. The kets |+) and | —) result
when the spin component S, along the z-axis is measured to be up or down, respectively. These kets
form an orthonormal basis, which we denote by the inner products

(+]+) =1
(—=[-) =1 (1.68)
(+]-) =o.
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The basis is also complete, which means that it can be used to express all possible kets as superposi-
tion states

) = al+) + b|-). (1.69)

For spin component measurements, the kets corresponding to spin up or down along the three
Cartesian axes are

|+) [+) = L+ + )] +), = L+ +il-)]

(1.70)
-) =)= Hl+) = 5] =)y = G+ = il=)].

We also found it useful to introduce a matrix notation for calculations. In this matrix language the kets
in Eq. (1.70) are represented by

() e 550) e 0)
|-) = <?> =) = \2<_11> =)y = \Z<—ll>

The most important tool we have learned so far is the probability postulate (postulate 4). To
calculate the probability that a measurement on an input state |¢;,) will yield a particular result, for
example S, = #/2, we complex square the inner product of the input state with the ket corresponding
to the measured result, |+) in this case:

(1.71)

P, = [(+ |y (1.72)

This is generalized to other systems where a measurement yields a particular result a, corresponding
to the ket |a,,) as:

?an = |<an|lpin>‘2' (173)

PROBLEMS

1.1 Consider the following state vectors:

) = 31+) + 4I-)
2} = 1+) + 201-)
) = 3[+) = e,

a) Normalize each state vector.

b) For each state vector, calculate the probability that the spin component is up or down
along each of the three Cartesian axes. Use bra-ket notation for the entire calculation.

¢) Write each normalized state in matrix notation.

d) Repeat part (b) using matrix notation for the entire calculation.
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1.2 Consider the three quantum states:
1) = Ll+) + i)
o) = Z=1+) = &I-)

93) = 55 |+) + e =)

Use bra-ket notation (not matrix notation) to solve the following problems. Note
that (+|+) = 1, (~|=) = 1,and (+|-) = 0.
a) For each of the |¢;) above, find the normalized vector |¢;) that is orthogonal to it.
b) Calculate the inner products (i;[;) foriand j = 1,2, 3.
1.3 Show that a change in the overall phase of a quantum state vector does not change

the probability of obtaining a particular result in a measurement. To do this, consider
how the probability is affected by changing the state | /) to the state e”| ).

1.4 Show by explicit bra-ket calculations using the states in Eq (1. 29) that the four
experimental results in Eq. (1.28) lead to the results |b| =lc | |d |

1.5 A beam of spin-1/2 particles is prepared in the state
) = \ﬁ|+>+l\ﬁ‘_>

a) What are the possible results of a measurement of the spin component S, and with
what probabilities would they occur?

b) What are the possible results of a measurement of the spin component S, and with
what probabilities would they occur?

¢) Plot histograms of the predicted measurement results from parts (a) and (b).

1.6 A beam of spin-1/2 particles is prepared in the state

) = F5l+)e +ig5 1)

a) What are the possible results of a measurement of the spin component S, and with
what probabilities would they occur?

b) What are the possible results of a measurement of the spin component S,, and with
what probabilities would they occur?

¢) Plot histograms of the predicted measurement results from parts (a) and (b).

1.7 A classical coin is thrown in the air and lands on the ground, where a measurement is
made of its state.

a) What are the possible results of this measurement?
b) What are the predicted probabilities for these possible outcomes?
¢) Plot a histogram of the predicted measurement results.

1.8 A classical cubical die is thrown onto a table and comes to rest, where a measurement
is made of its state.

a) What are the possible results of this measurement?
b) What are the predicted probabilities for these possible outcomes?
¢) Plot a histogram of the predicted measurement results.
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1.9 A pair of dice (classical cubes) are thrown onto a table and come to rest, where a
measurement is made of the state of the system (i.e., the sum of the two dice).

a) What are the possible results of this measurement?
b) What are the predicted probabilities for these possible outcomes?
¢) Plot a histogram of the predicted measurement results.

1.10 Consider the three quantum states:

i) = 2+) +i3]-)
) =3

s} = =51+) + i3] -).

a) For each of the |¢;) above, calculate the probabilities of spin component measurements
along the x-, y-, and z-axes.

b) Use your results from (a) to comment on the importance of the overall phase and of the
relative phases of the quantum state vector.

1.11 A beam of spin-1/2 particles is prepared in the state

W) =5 14) +iggl-).

a) What are the possible results of a measurement of the spin component S, and with what
probabilities would they occur?

b) Suppose that the S, measurement yields the result S, = —7#/2. Subsequent to that result
a second measurement is performed to measure the spin component S,. What are the
possible results of that measurement, and with what probabilities would they occur?

¢) Draw a schematic diagram depicting the successive measurements in parts (a) and (b).

1.12 Consider a quantum system with an observable A that has three possible measurement
results: ay, a,, and a;. Write down the orthogonality, normalization, and completeness
relations for the three kets comprising the basis corresponding to the possible results of the
A measurement.

1.13 Consider a quantum system with an observable A that has three possible measurement
results: a;, a,, and as.

a) Write down the three kets |a, ), |a,), and |a;) corresponding to these possible results
using matrix notation.

b) The system is prepared in the state
[¥) = 1la)) = 2|ay) + 5las).

Write this state in matrix notation and calculate the probabilities of all possible measurement
results of the observable A. Plot a histogram of the predicted measurement results.

¢) In a different experiment, the system is prepared in the state
l¥) = 2|a)) + 3ilay).

Write this state in matrix notation and calculate the probabilities of all possible measurement
results of the observable A. Plot a histogram of the predicted measurement results.
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1.14 Consider a quantum system in which the energy E is measured and there are four possible
measurement results: 2 eV, 4 eV, 7 eV, and 9 eV. The system is prepared in the state

ly) = J={3[2eV) = il4eV) + 277[TeV) + 5[9eV)}.

Calculate the probabilities of all possible measurement results of the energy E. Plot a
histogram of the predicted measurement results.

1.15 Consider a quantum system described by a basis |a; ),
in a state

a,), and |a;). The system is initially

) = lar) + V2 a).

Find the probability that the system is measured to be in the final state

1+i

W) = Filay) + Flas) + Jelas).

1.16 The spin components of a beam of atoms prepared in the state |¢;,) are measured and the fol-
lowing experimental probabilities are obtained:

P, = P, = 2., = 0.067

y

P = P_, = 0.933.

[STESN TR
EN T

P =

From the experimental data, determine the input state.

1.17 In part (1) of SPINS Lab #2, you measured the probabilities of all the possible spin compo-
nents for each of the unknown initial states [if;) (i = 1,2, 3, 4). Using your data from that
lab, find the unknown states |, ), [,), [3), and |4). Express each of the unknown states
as a linear superposition of the S. basis states |+ ) and |—). For each state, use your result
to calculate the theoretical values of the probabilities for each component measurement and
compare these theoretical predictions with your experimental results.

RESOURCES

Activities

SPINS: A software program to simulate Stern-Gerlach spin experiments. The Java software runs on
all platforms and can be downloaded in two forms:

Open Source Physics framework
www.physics.oregonstate.edu/~mcintyre/ph425/spins/index_SPINS_OSP.html

or

Standalone Java

www.physics.oregonstate.edu/~mcintyre/ph425/spins

The bulleted activities are available at

www.physics.oregonstate.edu/qmactivities


www.physics.oregonstate.edu/~mcintyre/ph425/spins/index_SPINS_OSP.html
www.physics.oregonstate.edu/~mcintyre/ph425/spins
www.physics.oregonstate.edu/qmactivities

Resources 33

* SPINS Lab 1: An introduction to successive Stern-Gerlach spin-1/2 measurements. The random-
ness of measurements is demonstrated and students use statistical analysis to deduce probabilities
from measurements.

e SPINS Lab 2: Students deduce unknown quantum state vectors from measurements of spin projec-
tions (part 3 requires material from Chapter 2 to do the calculations).

Stern-Gerlach simulation: A different simulation of the Stern-Gerlach experiment from the PHET
group at the University of Colorado (somewhat Flashier version):
http://phet.colorado.edu/en/simulation/stern-gerlach

Further Reading

The history of the Stern-Gerlach experiment and how a bad cigar helped are chronicled in
a Physics Today article:
B. Friedrich and D. Herschbach, “Stern and Gerlach: How a Bad Cigar Helped Reorient
Atomic Physics,” Phys. Today 56(12), 53-59 (2003).
http://dx.doi.org/10.1063/1.1650229

A different spin on the quantum mechanics of socks is discussed by John S. Bell in this article:
J. S. Bell, “Bertlmann’s socks and the nature of reality, ” J. Phys. Collog. 42, C22
C2.41-C2.62 (1981).
http://cdsweb.cern.ch/record/142461

Nature has published a supplement on the milestones in spin physics. An extensive timeline
of historical events, review articles, and links to original articles are included.
Nature Phys. 4, S1-S43 (2008).
www.nature.com/milestones/spin

The SPINS lab software is described in this pedagogical article:
D. V. Schroeder and T. A. Moore, “A computer-simulated Stern-Gerlach laboratory,”
Am. J. Phys. 61, 798-805 (1993).
http://dx.doi.org/10.1119/1.17172

Some other textbooks that take a spins-first approach or have an extensive treatment
of Stern-Gerlach experiments:
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics,
Volume 3, Quantum Mechanics, Reading, MA: Addison-Wesley Publishing Company,
Inc., 1965.
J. J. Sakurai, Modern Quantum Mechanics, Redwood City, CA: Addison-Wesley
Publishing Company, Inc., 1985.
J. S. Townsend, A Modern Approach to Quantum Mechanics, New Y ork: McGraw
Hill, Inc., 1992.
C. Cohen-Tannoudji, B. Diu, and F. Lalog, Quantum Mechanics, New York: John Wiley &
Sons, 1977.
D. F. Styer, The Strange World of Quantum Mechanics, Cambridge: Cambridge University
Press, 2000.
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http://dx.doi.org/10.1063/1.1650229
http://cdsweb.cern.ch/record/142461
www.nature.com/milestones/spin
http://dx.doi.org/10.1119/1.17172

CHAPTER

Operators and Measurement

In Chapter 1 we used the results of experiments to deduce a mathematical description of the spin-1/2
system. The Stern-Gerlach experiments demonstrated that spin component measurements along the
x-, y-, or z-axes yield only t#/2 as possible results. We learned how to predict the probabilities of
these measurements using the basis kets of the spin component observables S, S,, and S,, and these
predictions agreed with the experiments. However, the real power of a theory is its ability to predict
results of experiments that you haven’t yet done. For example, what are the possible results of a mea-
surement of the spin component S, along an arbitrary direction i and what are the predicted probabili-
ties? To make these predictions, we need to learn about the operators of quantum mechanics.

2.1 B OPERATORS, EIGENVALUES, AND EIGENVECTORS

The mathematical theory we developed in Chapter 1 used only quantum state vectors. We said that
the state vector represents all the information we can know about the system and we used the state
vectors to calculate probabilities. With each observable S, Sy, and S, we associated a pair of kets
corresponding to the possible measurement results of that observable. The observables themselves are
not yet included in our mathematical theory, but the distinct association between an observable and its
measurable kets provides the means to do so.

The role of physical observables in the mathematics of quantum theory is described by the two
postulates listed below. Postulate 2 states that physical observables are represented by mathematical
operators, in the same sense that physical states are represented by mathematical vectors or kets (postu-
late 1). An operator is a mathematical object that acts or operates on a ket and transforms it into a new
ket, for example A|y) = |¢). However, there are special kets that are not changed by the operation
of a particular operator, except for a possible multiplicative constant, which we know does not change
anything measurable about the state. An example of a ket that is not changed by an operator would be
Alr) = a|if). Such kets are known as eigenvectors of the operator A and the multiplicative constants
are known as the eigenvalues of the operator. These are important because postulate 3 states that the only
possible result of a measurement of a physical observable is one of the eigenvalues of the corresponding
operator.

Postulate 2

A physical observable is represented mathematically by an operator A
that acts on kets.
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Postulate 3

The only possible result of a measurement of an observable is one of the
eigenvalues a,, of the corresponding operator A.

We now have a mathematical description of that special relationship we saw in Chapter 1 between
a physical observable, S, say, the possible results £7%/2, and the kets |£) corresponding to those
results. This relationship is known as the eigenvalue equation and is depicted in Fig. 2.1 for the case
of the spin up state in the z-direction. In the eigenvalue equation, the observable is represented by an
operator, the eigenvalue is one of the possible measurement results of the observable, and the eigen-
vector is the ket corresponding to the chosen eigenvalue of the operator. The eigenvector appears on
both sides of the equation because it is unchanged by the operator.

The eigenvalue equations for the S, operator in a spin-1/2 system are:

S+ = +314)
2.1)
h
$4-)=—31-).

These equations tell us that +7/2 is the eigenvalue of S, corresponding to the eigenvector |+) and
—#/2 is the eigenvalue of S, corresponding to the eigenvector | —). Equations (2.1) are sufficient to
define how the S, operator acts mathematically on kets. However, it is useful to use matrix notation
to represent operators in the same sense that we used column vectors and row vectors in Chapter 1 to
represent bras and kets, respectively. For Egs. (2.1) to be satisfied using matrix algebra with the kets
represented as column vectors of size 1X2, the operator S, must be represented by a 2 X2 matrix. The
eigenvalue equations (2.1) provide sufficient information to determine this matrix.

To determine the matrix representing the operator S, assume the most general form for a 2 X2 matrix

(a b
Sz—<c d)’ (2.2)

where we are again using the = symbol to mean “is represented by.” Now write the eigenvalue equa-

tions in matrix form:
(6 =+50)
_l’_i
c d/\0 2\0
(0 --50)
c d/\1 2\1/°

(2.3)

operator eigenvalue
S,1+) =51

\

eigenvector

FIGURE 2.1 Eigenvalue equation for the spin up state.
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Note that we are still using the convention that the | ) kets are used as the basis for the representation.
It is crucial that the rows and columns of the operator matrix are ordered in the same manner as used
for the ket column vectors; anything else would amount to nonsense. An explicit labeling of the rows
and columns of the operator and the basis kets makes this clear:

(+|]o. (2.4)

(2.5)
which results in
f
a = +5 b =0
2.6
% (2.6)
c=0 d=——.
2
Thus the matrix representation of the operator S, is
h/2 0
(1)
: 0 —h/2
2.7

(o)
2\0 -1/°

Note two important features of this matrix: (1) it is a diagonal matrix—it has only diagonal elements—
and (2) the diagonal elements are the eigenvalues of the operator, ordered in the same manner as the
corresponding eigenvectors. In this example, the basis used for the matrix representation is that formed
by the eigenvectors | 1) of the operator S,. That the matrix representation of the operator in this case
is a diagonal matrix is a necessary and general result of linear algebra that will prove valuable as we
study quantum mechanics. In simple terms, we say that an operator is always diagonal in its own
basis. This special form of the matrix representing the operator is similar to the special form that the
eigenvectors |*) take in this same representation—the eigenvectors are unit vectors in their own
basis. These ideas cannot be overemphasized, so we repeat them:

An operator is always diagonal in its own basis.
Eigenvectors are unit vectors in their own basis.

Let’s also summarize the matrix representations of the S, operator and its eigenvectors:

2 0) () e e
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2.1.1 B Matrix Representation of Operators

Now consider how matrix representation works in general. Consider a general operator A describ-
ing a physical observable (still in the two-dimensional spin-1/2 system), which we represent by the

general matrix
b
A= (Z d) (2.9)

in the S, basis. The operation of A on the basis ket | +) yields

w0 0)-()

The inner product of this new ket A|+) with the ket |+) (converted to a bra following the rules) results in

(=0 o%) - i

which serves to isolate one of the elements of the matrix. Hence an individual element such as
(+|A|+) or (+|A|—) is generally referred to as a matrix element. This “sandwich” of a bra, an
operator, and a ket

(bra| OPERATOR| ket) (2.12)

plays an important role in many quantum mechanical calculations. Even in cases where the bra and ket
are not basis kets, such as in (¢/|A|¢ ), we still refer to this as a matrix element. A schematic diagram
of a generic matrix element is depicted in Fig. 2.2(a).

All four elements of the matrix representation of A can be determined in the same manner as

Eq. (2.11), with the final result
+|Al+)  (+|A]—
as (L g o1
{(=la[+)  (=|Al=)
To emphasize the structure of the matrix, let’s write it with explicit labeling of the rows and columns:

Al 10 1)
CH| AR A=) .14

(=[] =lal+)y (=1A]=)

(a) bra \ / ket (b) row \ / column
(PIAlY) (n|A[m)
operator operator
(bra|] OPERATOR|ket)

FIGURE 2.2 (a) Schematic diagram of a generic matrix element. (b) Schematic diagram
of the row and column labeling convention for matrix elements.
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In a more general problem with more than two dimensions in the complex vector space, the matrix
representation of an operator is

Ay Ap A
| An An Ay o
A= , (2.15)
A3z Ap Asy o
where the matrix elements are
A, = (ilAl)) 2.16)

and the basis is assumed to be the states labeled |i), with the subscripts i and j labeling the rows and
columns respectively, as depicted in Fig. 2.2(b). Using this matrix representation, the action of this
operator on a general ket |¢y) = > ¢li) is

Ay Ap A o C Ajcp + Apey + Apez + -
| A Ay Ay e &) Agiep + Apey + Apez + -
Alg) = = N CAY))

Az Ay Ay oo (&) Azicp + Azey + Agzez + -

If we write the new ket | ¢) = A[) as|¢) = D b;i), then from Eq. (2.17) the coefficients b, are

J

in summation notation.

2.1.2 W Diagonalization of Operators

In the case of the operator S, above, we used the experimental results and the eigenvalue equations to
find the matrix representation of the operator in Eq. (2.7). It is more common to work the other way.
That is, one is given the matrix representation of an operator and is asked to find the possible results of
a measurement of the corresponding observable. According to the third postulate, the possible results
are the eigenvalues of the operator, and the eigenvectors are the quantum states representing them. In
the case of a general operator A in a two-state system, the eigenvalue equation is

Ala,) = a,la,), (2.19)

where we have labeled the eigenvalues a,, and we have labeled the eigenvectors with the correspond-
ing eigenvalues. In matrix notation, the eigenvalue equation is

A A c c
< 11 12)( nl) _ an( nl>’ (220)
Ay Ap/\cp Cn2
where ¢,; and c,;, are the unknown coefficients of the eigenvector |a,) corresponding to the eigen-
value a,. This matrix equation yields the set of homogeneous equations

(A = a,)en + Apc,, =0

2.21)
Asien + (Ap — a,)c,n = 0.
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The rules of linear algebra dictate that a set of homogeneous equations has solutions for the unknowns
¢,1 and ¢, only if the determinant of the coefficients vanishes:

Ay — A
‘“ in 2 =o. (2.22)

Ay Ay —a,

It is common notation to use the symbol A for the eigenvalues, in which case this equation is

det(A — M) =0, (2.23)

1 0
I_<O l>' (2.24)

Equation (2.23) is known as the secular or characteristic equation. It is a second order equation in the
parameter A and the two roots are identified as the two eigenvalues a; and a, that we are trying to find.
Once these eigenvalues are found, they are then individually substituted back into Eqs. (2.21), which
are solved to find the coefficients of the corresponding eigenvector.

where / is the identity matrix

Example 2.1 Assume that we know (e.g., from Problem 2.1) that the matrix representation for

the operator S, is
(0 —i
= — . 22
L4

Find the eigenvalues and eigenvectors of the operator S,.
The general eigenvalue equation is

S,

A) = AlA), (2.26)

and the possible eigenvalues A are found using the secular equation

det[S, — Al = 0. (2.27)
The secular equation is
_A —i—
=0, 2.28
ho (2.28)
2

and solving yields the eigenvalues

>
(S}
+
o
N———
[\]
I
o

S}
Il
=)

o> —
SN—— o |

(2.29)

>
™~
Il
+ —~
SMERSE
%

>
I
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which was to be expected, because we know that the only possible results of a measurement of any
spin component are +7/2.
As before, we label the eigenvectors | 1) y- The eigenvalue equation for the positive eigenvalue is

h
Sy\+>y = +5|+>y, (2.30)

a0 —i\la hia
5(;‘ 0><b>_+5<b)’ 2.31)

where we must solve for a and b to determine the eigenvector. Multiplying through and canceling

the common faCtor ylelds
ia b ’ ’

This results in two equations, but they are not linearly independent, so we need some more infor-
mation. The normalization condition provides what we need. Thus we have two equations that
determine the eigenvector coefficients:

or in matrix notation

b = ia
2.33
la]> + |b|* = 1. 39
Solving these yields
la* + |ia)* = 1
(2.34)

ja|” = 2.
Again we follow the convention of choosing the first coefficient to be real and positive, resulting in

v 2.35
(2.35)
= ;L
b=iy.
Thus the eigenvector corresponding to the positive eigenvalue is
[+)y = 1<1) (2.36)
SRS VA '
Likewise, one can find the eigenvector for the negative eigenvalue to be
=) *L(l) (2.37)
YoV :

These are, of course, the same states we found in Chapter 1 (Eq. 1.60).

This procedure of finding the eigenvalues and eigenvectors of a matrix is known as diagonaliza-
tion of the matrix and is the key step in many quantum mechanics problems. Generally, if we find a
new operator, the first thing we do is diagonalize it to find its eigenvalues and eigenvectors. However,
we stop short of the mathematical exercise of finding the matrix that transforms the original matrix to
its new diagonal form. This would amount to a change of basis from the original basis to a new basis
of the eigenvectors we have just found, much like a rotation in three dimensions changes from one
coordinate system to another. We don’t want to make this change of basis. In the example above, the
S, matrix is not diagonal, whereas the S, matrix is diagonal, because we are using the S basis. It is
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common practice to use the S, basis as the default basis, so you can assume that is the case unless you
are told otherwise.

In summary, we now know three operators and their eigenvalues and eigenvectors. The spin com-
ponent operators S,, S,, and S, all have eigenvalues F7/2. The matrix representations of the opera-
tors and eigenvectors are (see Problem 2.1)

Y2\ 0 AN N2
(0 RN\
A0 ) e h

s B0 () ()

2.2 M NEW OPERATORS

1
(Y] e

2.2.1 M Spin Component in a General Direction

Now that we know the three operators corresponding to the spin components along the three Cartesian
axes, we can use them to find the operator S, for the spin component along a general direction . This
new operator will allow us to predict results of experiments we have not yet performed. The direction
n is specified by the polar and azimuthal angles 6 and ¢ as shown in Fig. 2.3. The unit vector n is

A = isinfcos¢ + jsinfsing + kcoso. (2.39)

The spin component along this direction is obtained by projecting the spin vector S onto this new unit

vector
S, = Sen
= Sysinfcos¢ + Sysinfsing + S cos.

(2.40)

The matrix representations we found for §,, Sy, and S, lead to the matrix representation of the spin
component operator S, (Problem 2.6):

(2.41)

f [ cos6 sinf ¢ ¢
n 2 M

2 sinf €®  —cos6

=5>

X

FIGURE 2.3 General direction along which to measure the spin component.
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We have found a new operator, so to learn about its properties, we diagonalize it. Following
the diagonalization procedure outlined in Section 2.1.2, we find that the eigenvalues of S, are +7/2
(Problem 2.7). So if we measure the spin component along any direction, we get only two possible
results. This is to be expected from the experiments in Chapter 1. The eigenvectors for these two pos-
sible measurements are (Problem 2.7):

0 0 .
|+), = cos5|+> + singe“”\—>

. ] (2.42)
O = sind) — cosLeitl—
[ =) = sin_|+) = cosje'|-),

where we again use the convention of choosing the first coefficient to be real and positive. It is important
to point out that the |+), eigenstate (or equivalently the | —),, eigenstate) can be used to represent any
possible ket in a spin-1/2 system, if one allows for all possible angles) = 0 < wand 0 = ¢ < 27.
We generally write the most general state as |) = a|+) + b|—), where a and b are complex. Requir-
ing that the state be normalized and using the freedom to choose the first coefficient real and positive

reduces this to
) = lal|+) +\/1 = |a]*?|-). (2.43)

If we change the parametrization of |a| to cos (8/2), we see that | +),, is equivalent to the most general
state /). This correspondence between the | +), eigenstate and the most general state is only valid in a
two-state system such as spin 1/2. In systems with more dimensionality, it does not hold because more
parameters are needed to specify the most general state than are afforded by the two angles 6 and ¢.

Example 2.2 Find the probabilities of the measurements shown in Fig. 2.4, assuming that the
first Stern-Gerlach analyzer is aligned along the direction i defined by the angles 6 = 27 /3 and
¢ = /4.

The measurement by the first Stern-Gerlach analyzer prepares the system in the spin up state
|+), along the direction f. This state is then the input state to the second Stern-Gerlach analyzer.
The input state is

i) = [+), = cosg|+> + singeiﬂ_)

= cos§|+) + sin%e"”/“\—) (2.44)

%|+> + \ggeiﬂ/4_>.

| 7)er = |x<+|+>n|2

@

FIGURE 2.4 Measurement of the spin component after state preparation in a new direction.
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The second analyzer is aligned along the x-axis, so the probabilities are

2
7)+x:x+lybin :x++n
(] >\2 \<|>2 (2.45)
P = L=l |7 = (=1l

Let’s calculate the first probability using bra-ket notation, recalling that |+), = \%H +)+ | )]
7)+x = |x<+‘+>n|2
. 2
= [G5L6+ + (I + Vaem)-))
I i
%[1 + V§ei7/4][1 + \/gefmm} (2.46)
é[l + \f( mh 4, 177/4) + 3]
= 3[4 + 2V3cos(m/4) ]
(4 +2Vv3/Vv2] = 0.806.

Let’s calculate the second probability using matrix notation, recalling that | —), = \/Li[ [+) — [—)]:

2
P = |x<_ ‘ +>n|

1
172(1 —1)%(\/§eiw/4>
' 2.47
ol - Vi -
= 1[4 — 2V3cos(m/4)]
=14 - 2V3/V2] = 0.194.

2

The two results sum to unity as they must. A histogram of the measured results is shown in Fig. 2.5.

P
W’in) = |+>n ]
1 Pix
P_x
-m | S,
_h i
2 2

FIGURE 2.5 Histogram of spin component S, measurement.
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2.2.2 B Hermitian Operators

So far we have defined how operators act upon kets. For example, an operator A acts on a ket |if) to
produce a new ket |¢p) = Alyr). The operator acts on the ket from the left; if the operator is on the
right of the ket, the result is not defined, which is clear if you try to use matrix representation. Simi-
larly, an operator acting on a bra must be on the right side of the bra

(€] = (ylA (2.48)

and the result is another bra. However, the bra (¢] = (i/|A is not the bra (| that corresponds to the
ket |¢) = A|iy). Rather the bra (¢| is found by defining a new operator A" that obeys

(o] = (y]A". (2.49)

This new operator A is called the Hermitian adjoint of the operator A. We can learn something about the
Hermitian adjoint by taking the inner product of the state |¢) = A|) with another (unspecified) state |3)

(0lB) = (Blo)"
[(wla™]IB) = {(Bl[Alw)]}" (2:50)
(wla™|g) = (BlAly)",

which relates the matrix elements of A and AT, Equation (2.50) tells us that the matrix representing the
Hermitian adjoint A" is found by transposing and complex conjugating the matrix representing A. This
is consistent with the definition of Hermitian adjoint used in matrix algebra.

An operator A is said to be Hermitian if it is equal to its Hermitian adjoint A. If an operator is
Hermitian, then the bra (i/|A is equal to the bra (¢| that corresponds to the ket |¢) = Alis). That is, a
Hermitian operator can act to the right on a ket or to the left on a bra with the same result. In quantum
mechanics, all operators that correspond to physical observables are Hermitian. This includes the spin
operators we have already encountered as well as the energy, position, and momentum operators that
we will introduce in later chapters. The Hermiticity of physical observables is important in light of two
features of Hermitian matrices: (1) Hermitian matrices have real eigenvalues, which ensures that results
of measurements are always real; and (2) the eigenvectors of a Hermitian matrix comprise a complete
set of basis states, which ensures that we can use the eigenvectors of any observable as a valid basis.

2.2.3 W Projection Operators

For the spin-1/2 system, we now know four operators: S, S, S, and §,,. Let’s look for some other
operators. Consider the ket |¢) written in terms of its coefficients in the S, basis

W) = al+) + b|-)
((HlD ) + (=) =)

Looking for the moment only at the first term, we can write it as a number times a ket, or as a ket times
a number:

2.51)

(FHlyN)[+) = 1) () (2:52)

without changing its meaning. Using the second form, we can separate the bra and ket that form the
inner product and obtain

) ((FHw)) = (D DIy (2.53)
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The new term in parentheses is a product of a ket and a bra but in the opposite order compared to the

inner product defined earlier. This new object must be an operator because it acts on the ket |¢) and

produces another ket: ({+|i))|+). This new type of operator is known as an outer product.
Returning now to Eq. (2.51), we write |1/} using these new operators:

W) = (+ly)|+) + (=) =)
= [ ) () + [ =) =ly) (2.54)
= ([ [+ = {=Dw).

The term in parentheses is a sum of two outer products and is clearly an operator because it acts on a
ket to produce another ket. In this special case, the result is the same as the original ket, so the operator
must be the identity operator 1. This relationship is often written as

[+ =I=1 (2.55)

and is known as the completeness relation or closure. It expresses the fact that the basis states | )
comprise a complete set of states, meaning any arbitrary ket can be written in terms of them. To make
it obvious that outer products are operators, it is useful to express Eq. (2.55) in matrix notation using
the standard rules of matrix multiplication:

e+ = () 0+ (o
- ((1) g)+(8 (1)) (2.56)
09

Each outer product is represented by a matrix, as we expect for operators, and the sum of these two
outer products is represented by the identity matrix, which we expected from Eq. (2.54).

Now consider the individual operators |+){+| and | —){—|. These operators are called projec-
tion operators, and for spin 1/2 they are given by

po= 190 = () 1)

0 0 (2.57)
P9 = () ))
In terms of these new operators the completeness relation can also be written as
P.+P =1. (2.58)

When a projection operator for a particular eigenstate acts on a state |i), it produces a new ket that is
aligned along the eigenstate and has a magnitude equal to the amplitude (including the phase) for the
state [1f) to be in that eigenstate. For example,

Pilip) = | +) (+]) = ({(+]w))|+)

(2.59)
Ply) = | =) {=lw) = ((=[¥))|=).
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Note also that a projector acting on its corresponding eigenstate results in that eigenstate, and a projec-

tor acting on an orthogonal state results in zero:
P|+) = |+)(+]+) = |+
) = ) {+]+) = [+) 2.:60)
P|+) =[=)(=|+) = 0.

Because the projection operator produces the probability amplitude, we expect that it must be inti-
mately tied to measurement in quantum mechanics.

We found in Chapter 1 that the probability of a measurement is given by the square of the inner
product of initial and final states (postulate 4). Using the new projection operators, we rewrite the
probability as

2
[(+1y)]
(1) (+1w)
= (¢[+)(+ly)
= (Y| P.|y).

Py

(2.61)

Thus we say that the probability of the measurement S, = #/2 can be calculated as a matrix element
of the projection operator, using the input state |1) and the projector Py corresponding to the result.

The other important aspect of quantum measurement that we learned in Chapter 1 is that a mea-
surement disturbs the system. That is, if an input state |i) is measured to have S, = +#/2, then the
output state is no longer |) but is changed to | +). We saw above that the projection operator does this
operation for us, with a multiplicative constant of the probability amplitude. Thus, if we divide by this
amplitude, which is the square root of the probability, then we can describe the abrupt change of the
input state as

Ply)
V(| Plyp)

where |i') is the output state. This effect is described by the fifth postulate, which is presented below
and is often referred to as the projection postulate.

') = = |+), (2.62)

Postulate 5

After a measurement of A that yields the result a,,, the quantum system is in a
new state that is the normalized projection of the original system ket onto the
ket (or kets) corresponding to the result of the measurement:

P,lyr)

V) = ey

The projection postulate is at the heart of quantum measurement. This effect is often referred to as the
collapse (or reduction or projection) of the quantum state vector. The projection postulate clearly states
that quantum measurements cannot be made without disturbing the system (except in the case where the
input state is the same as the output state), in sharp contrast to classical measurements. The collapse of
the quantum state makes quantum mechanics irreversible, again in contrast to classical mechanics.
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|=) (-1
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FIGURE 2.6 Schematic diagram of the role of the projection operator in a Stern-Gerlach spin measurement.

We can use the projection postulate to make a model of quantum measurement, as shown in the
revised depiction of a Stern-Gerlach measurement system in Fig. 2.6. The projection operators act on
the input state to produce output states with probabilities given by the squares of the amplitudes that
the projection operations yield. For example, the input state |¢;,) is acted on the projection operator
P, = |+)(+/|, producing an output ket |¢,,,) = |+)({+|¢;,)) with probability P, = |{+]|¢,)|*
The output ket |i,,,) = |+)({+|i;,)) is really just a|+) ket that is not properly normalized, so we
normalize it for use in any further calculations. We do not really know what is going on in the mea-
surement process, so we cannot explain the mechanism of the collapse of the quantum state vector.
This lack of understanding makes some people uncomfortable with this aspect of quantum mechan-
ics and has been the source of much controversy surrounding quantum mechanics. Trying to better
understand the measurement process in quantum mechanics is an ongoing research problem. How-
ever, despite our lack of understanding, the theory for predicting the results of experiments has been
proven with very high accuracy.

2.2.4 W Analysis of Experiments 3 and 4

We can now return to Experiments 3 and 4 from Chapter 1 and analyze them with these new tools.
Recall that Experiment 3 is the same as Experiment 4a, and Experiments 4a and 4b are similar in that
they each use only one of the output ports of the second Stern-Gerlach analyzer as input to the third
analyzer. Figure 2.7 depicts these experiments again, with Fig. 2.7(a) showing a hybrid experiment
that is essentially Experiment 4a in its upper half and Experiment 4b in its lower half, and Fig. 2.7(b)
showing Experiment 4c. In this problem, we discuss the probability that an atom leaving the first
analyzer in the |+) state is detected in one of the counters connected to the output ports of the third
analyzer. Such a probability involves two measurements at the second and third analyzers. The total
probability is the product of the individual probabilities of each measurement.

For the hybrid experiment shown in Fig. 2.7(a), the probability of measuring an atom at the top-

most counter is the probability of measuring S, = +7#/2 at the second analyzer, | (+|+)|, times the
probability of measuring S, = +7#/2 at the third analyzer, |(+|+),|", giving
2 2
?upper,+ = |<+‘+>x| ‘x<+|+>| . (263)
Likewise the probability of measuring the atom to have S, = +#/2 and then S, = —#%/2 is
2 2
7Jupper,— = ‘<_|+>x| |x<+|+> > (2.64)
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where we have written the product so as to be read from right to left as is the usual practice with
quantum mechanical amplitudes and probabilities. For atoms that take the lower path from the second
analyzer, the final probabilities are

2 2
(plower,+ = |<+|_>x| |x<_|+>|

, , (2.65)
Prower,— = [{= =0 "=} [

For Experiment 4c, shown in Fig. 2.7(b), we have a new situation at the second analyzer. Both
output ports are connected to the third analyzer, which means that the probability of an atom from
the first analyzer being input to the third analyzer is 100%. So we need only calculate the probability
of passage through the third analyzer. The crucial step is determining the input state, for which we
use the projection postulate. Because both states are used, the relevant projection operator is the sum
of the two projection operators for each port, Py, + P_, where P, = |+), (+]and P_, = |—), {—|.
Thus the state after the second analyzer is

(P + P |hy)

) = \/<l/j1|(p+x + P)|yy) (2.66)
(Poy + P)|+) |
V(P P

J— 25

© |(Z)!

N_100 0 —

(a) Em—@\l/ @ \l/ (_/l\ 25
5 @ ] 25
25
o 5100 7 100
0

FIGURE 2.7 (a) Hybrid Experiment 4a and 4b, and (b) Experiment 4c.
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In this simple example, the projector P, + P_, is equal to the identity operator because the two states
form a complete basis. This clearly simplifies the calculation, giving |,) = |+), but to illustrate our
point, let’s simplify only the denominator (which equals one), giving

) = (4D +] + =) =) +) (2.67)
= [ )l H )+ [ =] H).

Thus the beam entering the third analyzer can be viewed as a coherent superposition of the eigenstates
of the second analyzer. Now calculate the probability of measuring spin up at the third analyzer:

2
P = |(t+
= L) 2 o)
= [ )l ) + (=) =9
The probability of measuring spin down at the third analyzer is similarly
2
P = |(~|y
(=) 2.69)

|<_|+>xx<+|+> + <_|_>xx<_|+>|2'

In each case, the probability is a square of a sum of amplitudes, each amplitude being the amplitude
for a successive pair of measurements. For example, in ?_ the amplitude (—|+), ,(+|+) refers to the
upper path that the initial |+) state takes as it is first measured to be in the |+), state and then mea-
sured to be in the | —) state (read from right to left). This amplitude is added to the amplitude for the
lower path because the beams of the second analyzer are combined, in the proper fashion, to create the
input beam to the third analyzer. When the sum of amplitudes is squared, four terms are obtained, two
squares and two cross terms, giving

P = (=) HD + =)l =D
) (=)l =1 )

H el H )= +)
=9

(2.70)

wpper,— T Plower, - T interference terms.

This tells us that the probability of detecting an atom to have spin down when both paths are used is the
sum of the probabilities for detecting a spin down atom when either the upper path or the lower path is
used alone plus additional cross terms involving both amplitudes, which are commonly called interference
terms. It is these additional terms, which are not complex squares and so could be positive or negative, that
allow the total probability to become zero in this case, illustrating the phenomenon of interference.

This interference arises from the nature of the superposition of states that enters the third analyzer.
To illustrate, consider what happens if we change the superposition state to a mixed state, as we dis-
cussed previously in Section 1.2.3. Recall that a superposition state implies a beam with each atom in
the same state, which is a combination of states, while a mixed state implies that the beam consists of
atoms in separate states. As we have described it so far, Experiment 4c involves a superposition state
as the input to the third analyzer. We can change this to a mixed state by “watching” to see which of
the two output ports of the second analyzer each atom travels through. There are a variety of ways to
imagine doing this experimentally. The usual idea proposed is to illuminate the paths with light and
watch for the scattered light from the atoms. With proper design of the optics, the light can be localized
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sufficiently to determine which path the atom takes. Hence, such experiments are generally referred to
as “Which Path” or “Welcher Weg” experiments. Such experiments can be performed in the SPINS
program by selecting the “Watch” feature. Once we know which path the atom takes, the state is not
the superposition |i,) described above, but is either |+), or | —),, depending on which path produces
the light signal. To find the probability that atoms are detected at the spin down counter of the third
analyzer, we add the probabilities for atoms to follow the path |+) — |+),— |—) to the probability
for other atoms to follow the path |+) — |—), — | —) because these are independent events, giving

(pwatch,* = |<_|+>xx<+|+>|2 + |<_‘_>xx<_|+>‘2

- ?upper, -+ (Plower,fv

@2.71)

in which no interference terms are present.

This interference example illustrates again the important distinction between a coherent superpo-
sition state and a statistical mixed state. In a coherent superposition, there is a definite relative phase
between the different states, which gives rise to interference effects that are dependent on that phase. In a
statistical mixed state, the phase relationship between the states has been destroyed and the interference
is washed out. Now we can understand what it takes to have the beams “properly” combined after the
second analyzer of Experiment 4c. The relative phases of the two paths must be preserved. Anything that
randomizes the phase is equivalent to destroying the superposition and leaving only a statistical mixture.
If the beams are properly combined to leave the superposition intact, the results of Experiment 4c are
the same as if no measurement were made at the second analyzer. So even though we have used a mea-
suring device in the middle of Experiment 4c, we generally say that no measurement was made there.
We can summarize our conclusions by saying that if no measurement is made on the intermediate state,
then we add amplitudes and then square to find the probability, while if an intermediate measurement is
performed (i.e., watching), then we square the amplitudes first and then add to find the probability. One
is the square of a sum and the other is the sum of squares, and only the former exhibits interference.

2.3 B MEASUREMENT

Let’s discuss how the probabilistic nature of quantum mechanics affects the way experiments are
performed and compared with theory. In classical physics, a theoretical prediction can be reliably
compared to a single experimental result. For example, a prediction of the range of a projectile can be
tested by doing an experiment. The experiment may be repeated several times in order to understand
and possibly reduce any systematic errors (e.g., wind) and measurement errors (e.g., misreading the
tape measure). In quantum mechanics, a single measurement is meaningless. If we measure an atom to
have spin up in a Stern-Gerlach analyzer, we cannot discern whether the original state was |+) or | =),
or any arbitrary state |1,lf> (except |—> ) Moreover, we cannot repeat the measurement on the same
atom, because the original measurement changed the state, per the projection postulate.

Thus, one must, by necessity, perform identical measurements on identically prepared systems.
In the spin-1/2 example, an initial Stern-Gerlach analyzer is used to prepare atoms in a particular state
|i). Then a second Stern-Gerlach analyzer is used to perform the same experiment on each identically
prepared atom. Consider performing a measurement of S, on N identically prepared atoms. Let N, be the
number of times the result +7 /2 is recorded and N_ be the number of times the result —# /2 is recorded.
Because there are only two possible results for each measurement, we must have N = N, + N_. The
probability postulate (postulate 4) predicts that the probability of measuring +7%/2 is

P = [(+]y)]" (2.72)
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For a finite number N of atoms, we expect that N, is only approximately equal to ;. N due to the statis-
tical fluctuations inherent in a random process. Only in the limit of an infinite number N do we expect
exact agreement:

N, 2
hmﬁ =92, = [(+|y)|". (2.73)

N—x

It is useful to characterize a data set in terms of the mean and standard deviation (see Appendix
A for further information on probability). The mean value of a data set is the average of all the mea-
surements. The expected or predicted mean value of a measurement is the sum of the products of each
possible result and its probability, which for this spin-1/2 measurement is

(5= (+2)o. + (-2)o.

where the angle brackets signify average or mean value. Using the rules of quantum mechanics we
rewrite this mean value as

(59 =+ 21 + (<)l P

2.74)

= +§(¢|+><+|¢) + (—§)<¢|—><—\w>

= <¢[+Z+)(+|¢,> + <_z>|_><_¢ﬂ (2.75)

= (l[S ] H) () + S.[=)(=ly)]
= (IS} + [ {=[Tly).

According to the completeness relation, the term in square brackets in the last line is unity, so
we obtain

(S.) = (WIS:ly)|. (2.76)

We now have two ways to calculate the predicted mean value, Eq. (2.74) and Eq. (2.76). Which you
use generally depends on what quantities you have readily available. The matrix element version in
Eq. (2.76) is more common and is especially useful in systems that are more complicated than the
2-level spin-1/2 system. This predicted mean value is commonly called the expectation value, but
it is not the expected value of any single experiment. Rather it is the expected mean value of a large
number of experiments. It is not a time average, but an average over many identical experiments. For a
general quantum mechanical observable, the expectation value is

(A) = (ylAly) = Ea

(2.77)

where a,, are the eigenvalues of the operator A.
To see how the concept of expectation values applies to our study of spin-1/2 systems, consider
two examples. First consider a system prepared in the state |+). The expectation value of S is

(S.) = (+]S.]+). (2.78)
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which we calculate with bra-ket notation

(2.79)

This result should seem obvious because +7/2 is the only possible result of a measurement of S, for
the |+) state, so it must be the expectation value.
Next consider a system prepared in the state |+) . In this case, the expectation value of S is

(S.) = (]S ]+).. (2.80)

Using matrix notation, we obtain

(2.81)

Again this is what you expect, because the two possible measurement results *7/2 each have 50%
probability, so the average value is zero. Note that the value of zero is never measured, so it is not the
value “expected” for any given measurement, but rather the expected mean value of an ensemble of
measurements.

In addition to the mean value, it is common to characterize a measurement by the standard devia-
tion, which quantifies the spread of measurements about the mean or expectation value. The standard
deviation is defined as the square root of the mean of the square of the deviations from the mean, and
for an observable A is given by

A =\/((A = (4))?), (2.82)

where the angle brackets signify average value as used in the definition of an expectation value. This
result is also often called the root-mean-square deviation, or r.m.s. deviation. We need to square the
deviations, because the deviations from the mean are equally distributed above and below the mean in
such a way that the average of the deviations themselves is zero. This expression can be simplified by
expanding the square and performing the averages, resulting in

AA =\/((4A? - 24(4) + (A)?
—/(A2) = 2(A)(A) + (A)? (2.83)

~—
~——
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L 2
where one must be clear to distinguish between the square of the mean (A)~ and the mean of the
square <A2) . While the mean of the square of an observable may not be a common experimental quan-
tity, it can be calculated using the definition of the expectation value

(4%) = (yla%y). (2.84)
The square of an operator means that the operator acts twice in succession:
A’p) = AAlp) = A(Aly)). (2.85)

To gain experience with the standard deviation, return to the two examples used above. To calcu-
late the standard deviation, we need to find the mean of the square of the operator S, . In the first case
(] +) initial state), we get

(s2) = (+]s2+) = (+]s.5]+) = (+]s.2]+)

- ()1 286

2
-(8)
)
We already have the mean of the operator S, in Eq. (2.79) so the standard deviation is

AS, =\/(s?) - (s.)}

Z

-6

= 0,

which is to be expected because there is only one possible result, and hence no spread in the results of
the measurement, as shown in the histogram in Fig. 2.8(a).

a
[Win) = |+) 9 [Win) = [+)x ?
Sy==1 P, S)=0 )
S=5 1 (S .1
AS,=0 AS, =12
P_ P,
P S, S,
_h n _h n
2 2 2 2

FIGURE 2.8 Idealized measurements of S, with (a) a |+) input state and (b) with a | +), input state.
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In the second case (|+), initial state), the mean of the square of the operator S, is

(52) = s

4 X

S2

z

+)

X

(8o (s 2 o)
8

5 2
_ el _ 2
= <2> Oh (2.89)

RN

Again this makes sense because each measurement deviates from the mean (0%) by the same value of
fi/2, as shown in the histogram in Fig. 2.8(b).

The standard deviation AA represents the uncertainty in the results of an experiment. In quan-
tum mechanics, this uncertainty is inherent and fundamental, meaning that you cannot design the
experiment any better to improve the result. What we have calculated then is the minimum uncertainty
allowed by quantum mechanics. Any actual uncertainty may be larger due to experimental error.
This is another ramification of the probabilistic nature of quantum mechanics and will lead us to the
Heisenberg uncertainty relation in Section 2.5.

2.4 @ COMMUTING OBSERVABLES

We found in Experiment 3 that two incompatible observables could not be known or measured simul-
taneously, because measurement of one somehow erased knowledge of the other. Let us now explore
further what it means for two observables to be incompatible and how incompatibility affects the results
of measurements. First we need to define a new object called a commutator. The commutator of two
operators is defined as the difference between the products of the two operators taken in alternate orders:

[A,B] = AB — BA. (2.90)

If the commutator is equal to zero, we say that the operators or observables commute; if it is not zero, we
say they don’t commute. Whether or not two operators commute has important ramifications in analyzing
a quantum system and in making measurements of the two observables represented by those operators.
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Consider what happens when two operators A and B do commute:

[A,B] =0
AB — BA =0 (2.91)
AB = BA.

Thus, for commuting operators the order of operation does not matter, whereas it does for noncom-
muting operators. Now let |a) be an eigenstate of the operator A with eigenvalue a:

Ala) = ala). (2.92)
Operate on both sides of this equation with the operator B and use the fact that A and B commute:
BAla) = Bala)
ABla) = aB|a) (2.93)
A(Bla)) = a(Ba)).

The last equation says that the state B|a) is also an eigenstate of the operator A with the same eigen-
value a. Assuming that each eigenvalue has a unique eigenstate (which is true if there is no degen-
eracy, but we haven’t discussed degeneracy yet), the state B|a) must be some scalar multiple of the
state |a). If we call this multiple b, then we can write

Bla) = bla), (2.94)

which is just an eigenvalue equation for the operator B. Thus, we must conclude that the state |a) is
also an eigenstate of the operator B, with the eigenvalue b. The assumption that the operators A and B
commute has led us to the result that A and B have common or simultaneous sets of eigenstates. This
result bears repeating:

Commuting operators share common eigenstates.

The ramifications of this result for experiments are very important. Recall that a measurement of
the observable A projects the initial state [¢) onto an eigenstate of A: |a). A subsequent measurement
of the observable B then projects the input state |a) onto an eigenstate of B. But the eigenstates of
the commuting operators A and B are the same, so the second measurement does not change the state
|a). Thus, another measurement of A following the measurement of B yields the same result as the
initial measurement of A, as illustrated in Fig. 2.9. Thus we say that we can know the eigenvalues of
these two observables simultaneously. It is common to extend this language and say that these two
observables can be measured simultaneously, although, as illustrated in Fig. 2.9, we do not really measure
them simultaneously. What we mean is that we can measure one observable without erasing our knowl-
edge of the previous results of the other observable. Observables A and B are said to be compatible.

laz) |

[rm a4 las) b, las)
- (e ——BJE
agz b3
0

FIGURE 2.9 Successive measurements of commuting observables.
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Conversely, if two operators do not commute, then they are incompatible observables and cannot
be measured or known simultaneously. This is what we saw in Experiment 3 in Chapter 1. In that case, the
two observables were S, and S, . Let’s take a look at their commutator to show that they are not compatible:

s =500 250 o) 50 s )
~G1C -0 )
goiy

As expected, these two operators do not commute. In fact, none of the spin component operators com-
mute with each other. The complete commutation relations are

[S..8,] = iAsS,
(S,.8.] = ifS, (2.96)
[S..8,] = S, |,

so written to make the cyclic relations clear.

When we represent operators as matrices, we can often decide whether two operators commute
by inspection of the matrices. Recall the important statement: An operator is always diagonal in its
own basis. If you are presented with two matrices that are both diagonal, they must share a common
basis, and so they commute with each other. To be explicit, the product of two diagonal matrices

a, 0 0 --\/b 0 0
AB = 0 as 0 0 bz 0
0 0 as 0 0 b3

(2.97)
a lbl 0 0

0 a2b2 0
0 0 a3b3

is clearly independent of the order of the product. Note, however, that you may not conclude that two
operators do not commute if one is diagonal and one is not, nor if both are not diagonal.

2.5 B UNCERTAINTY PRINCIPLE

The intimate connection between the commutator of two observables and the possible precision of
measurements of the two corresponding observables is reflected in an important relation that we sim-
ply state here (see more advanced texts for a derivation). The product of the uncertainties or standard
deviations of two observables is related to the commutator of the two observables:

AAAB = 1|([A,B])]]. (2.98)
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This is the uncertainty principle of quantum mechanics. Consider what it says about a simple Stern-
Gerlach experiment. The uncertainty principle for the S, and S, spin components is

([S:5,])]
(ifS.)| (2.99)
(8}

These uncertainties are the minimal quantum mechanical uncertainties that would arise in any experi-
ment. Any experimental uncertainties due to experimenter error, apparatus errors, and statistical limi-
tations would be additional.

Let’s now apply the uncertainty principle to Experiment 3 where we first learned of the impact of
measurements in quantum mechanics. If the initial state is |+), then a measurement of S, results in an
expectation value (S.) = #/2 with an uncertainty AS. = 0, as illustrated in Fig. 2.8(a). Thus the uncer-
tainty principle dictates that the product of the other uncertainties for measurements of the |+) state is

ASAS, = 3|
2|
fi
2

=

a2
ASAS, = (5) , (2.100)
or simply
ASAS, # 0. (2.101)
This implies that
AS, # 0
* (2.102)
AS, # 0.

The conclusion to draw from this is that while we can know one spin component absolutely (AS, = 0),
we can never know all three, nor even two, simultaneously. This is in agreement with our results from
Experiment 3. This lack of ability to measure all spin components simultaneously implies that the spin
does not really point in a given direction, as a classical spin or angular momentum does. So when we
say that we have measured “spin up,” we really mean only that the spin component along that axis is up,
as opposed to down, and not that the complete spin angular momentum vector points up along that axis.

2.6 B S OPERATOR

Another indication that the spin does not point along the axis along which you measure the spin com-
ponent is obtained by considering a new operator that represents the magnitude of the spin vector but
has no information about the direction. It is common to use the square of the spin vector for this task.
This new operator is

§? =52 + 52+ 82, (2.103)

and it is calculated in the S, representation as
63 [ R B ) () R Y Y|
S == +{ . i +
2 1 0/\1 O i 0 i 0 0 —-1/\0 -1
2
=16 D6 D6 Y] e
2 0 1 0 1 0 1
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Thus the S? operator is proportional to the identity operator, which means it must commute with all
the other operators S,, Sy, and S, . It also means that all states are eigenstates of the s? operator. Thus,
we can write

Sy} = 3#*lp) (2.105)
for any state |¢) in the spin-1/2 system.
For the case of spin 1/2, note that the expectation value of the operator S is
(8?) = 312, (2.106)

which would imply that the “length” of the spin vector is

S| =\/(s?) = \/52 (2.107)

This is appreciably longer than the measured component of 7/2, implying that the spin vector can
never be fully aligned along any axis. A useful mental model of the spin vector and its component is
shown in Fig. 2.10. In this vector model, one can imagine the total spin vector S precessing around the
z-axis at a constant angle to form a cone, with a constant spin component S,. For a spin-1/2 system in
the “spin up” state | +), this classical model yields the same expectation values and uncertainties as the
quantum model (Problem 2.9)

h
<Sz> = 5 AS, =0
(S)=0 AS, #0 (2.108)
(S,)=0  AS, #0.

FIGURE 2.10 (a) Vector model illustrating the classical precision of a spin vector and the allowed
quantum mechanical components. (b) Two-dimensional version of the vector model with constant spin
vector length and two possible components.
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However, a quantum mechanical experiment on a spin component eigenstate does not yield the time
dependence of the precession implied by the picture in Fig. 2.10(a). Rather, the quantum mechanical
spin vector is more accurately thought of as smeared out over the whole cone in a uniform random sense.
This randomness is often termed quantum fuzziness and will be evident in other systems we will study
later. To avoid the inaccurate precession part of the vector model, it is often illustrated as in Fig. 2.10(b).

2.7 HSPIN-1 SYSTEM

The Stern-Gerlach experiment depicted in Fig. 1.1 can be performed on a variety of atoms or par-
ticles. Such experiments always result in a finite number of discrete beams exiting the analyzer. For
spin-1/2 particles, there are two output beams. For the case of three output beams, the deflections are
consistent with magnetic moments arising from spin angular momentum components of 1%, 0%, and
—1#. For an analyzer aligned along the z-axis, the three output states are labeled |1), |0), and |—1),
as shown in Fig. 2.11. This is what we call a spin-1 system. (Note that the SPINS software and our
Stern-Gerlach schematics use arrows for the |1) and | —1) output beams, but these outputs are not the
same as the spin-1/2 states that are also denoted with arrows.)
The three eigenvalue equations for the spin component operator S, of a spin-1 system are

S|1) = al1)
S5.|0) = 04/0) (2.109)
S.|—1) = —h|—1).

As we did in the spin-1/2 case, we choose the S, basis as the standard basis in which to express kets
and operators using matrix representation. In Section 2.1, we found that eigenvectors are unit vectors
in their own basis and an operator is always diagonal in its own basis. Using the first rule, we can
immediately write down the eigenvectors of the S, operator:

1 0 0
[1) =1]0 0) =11 [-1) ={0], (2.110)
0 0 1

where we again use the convention that the ordering of the rows follows the eigenvalues in descending
order. Using the second rule, we write down the S, operator

1 0 0 1 0 O
S,=10 0a O =#10 0 O (2.111)
0 0 -—-1n 0 0 -1

with the eigenvalues 1%, 0%, and — 1% ordered along the diagonal. The value zero is a perfectly valid
eigenvalue in some systems.

1) |
7 ?
0
{2 '
v ?
I~1) |
?

FIGURE 2.11 Spin-1 Stern-Gerlach experiment.
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The same four experiments performed on the spin-1/2 system can be performed on a spin-1 sys-
tem. Conceptually the results are the same. One important difference occurs in Experiment 2, where a
measurement of S, is first performed to prepare a particular state, and then a subsequent measurement
of S, (or S,) is performed. Based upon the results of the spin-1/2 experiment, one might expect each of
the possible components to have one-third probability. Such is not the case. Rather, one set of results is

IS

2

P = [ {1[1)]
2

P = {01 = 4 @)
2

Py = |x<_l|1>| =1

as illustrated in Fig. 2.12. These experimental results can be used to determine the S, eigenstates in
terms of the S, basis

1) =31} + 0} +3l-1)
0), = 1) = 5| -1) 2.113)
1), = 3[1) = F5l0) + 5[ -1).

Likewise, we can find the S, eigenstates:
1), = 3{1) + ig5lo) — 3 -1)
0), = 35[1) + |- 1) (2.114)
|=1), = 3|1) = ig5/0) - 3|-1).

The matrix representations of the S, and S, operators are

L (010 L (0 0
S.=—1 0 1 S,=—i 0 —i] (2.115)
V2o 1 o V2o i o

1)

[Jm—

FIGURE 2.12 Experiment 2 in the spin-1 case.
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Example 2.3 A spin-1 system is prepared in the state

Win) = J5l1) = 7510) + £l -1)- 2.116)

Find the probabilities of measuring each of the possible spin components along the z-axis.
The probability of measuring S, = + 1% is

Py = (1)
= (11 - 0y + H-0f

2 | | , (2.117)
= [Z(11) = L(1]0) + L (1]-1)|

2
= |2 =2
=& =3

The probability of measuring S, = 0% is
2
Po = [(0fhin)]

= [(0[[Z[1) = o) + &|-1)] 2.118)

2

The probability of measuring S, = —1# is
2
Py = |<* 1 ‘win>|

- ’<—1\[vla|1> - 7l0) + %@|—1>]

2
| (2.119)

The three probabilities add to unity, as they must. A histogram of the predicted measurement results
is shown in Fig. 2.13.

) —L i i P
"/’"‘>‘ve (211)—=i10y+i|-1))

—h 0 h

FIGURE 2.13 Histogram of measurements of z-component of spin for spin-1 particle.
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To generalize to other possible spin systems, we need to introduce new labels. We use the label
s to denote the spin of the system, such as spin 1/2, spin 1, spin 3/2. The number of beams exiting a
Stern-Gerlach analyzer is 2s + 1. In each of these cases, a measurement of a spin component along
any axis yields results ranging from a maximum value of s% to a minimum value of —s#, in unit steps
of the value 7. We denote the possible values of the spin component along the z-axis by the label m,
the integer or half-integer multiplying #. A quantum state with specific values of s and m is denoted as
|sm), yielding the eigenvalue equations
2 — 2
S%sm) = s(s + 1)#|sm) (2.120)
S.|sm) = mh|sm).

The label s is referred to as the spin angular momentum quantum number or the spin quantum
number for short. The label m is referred to as the spin component quantum number or the mag-
netic quantum number because of its role in magnetic field experiments like the Stern-Gerlach
experiment. The connection between this new |sm) notation and the spin-1/2 | +) notation is

b =1+

1
2
(2.121)
5-3) = |-).
For the spin-1 case, the connection to this new notation is
[11) = [1)
[10) = |0) (2.122)
1,-1) = |-1).

We will continue to use the | i) notation, but we will find the new notation useful later (Chapter 7).

2.8 B GENERAL QUANTUM SYSTEMS

Let’s extend the important results of this chapter to general quantum mechanical systems. For a gen-
eral observable A with quantized measurement results a,,, the eigenvalue equation is

Ala,) = a,la,). (2.123)

In the basis formed by the eigenstates |a,,), the operator A is represented by a matrix with the eigen-
values along the diagonal

ap 0 0
A= = L (2.124)

whose size depends on the dimensionality of the system. In this same basis, the eigenstates are repre-
sented by the column vectors

1 0 0
0 1 0
la;) = a) = || le) = (2.125)

ol A
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The projection operators corresponding to measurement of the eigenvalues a,, are
P, = la,){a,|. (2.126)

The completeness of the basis states is expressed by saying that the sum of the projection operators is
the identity operator

>P, = Xla)a,] = 1. (2.127)

n

SUMMARY

In this chapter we have extended the mathematical description of quantum mechanics by using
operators to represent physical observables. The only possible results of measurements are the
eigenvalues of operators. The eigenvectors of the operator are the basis states corresponding to each
possible eigenvalue. We find the eigenvalues and eigenvectors by diagonalizing the matrix representing
the operator, which allows us to predict the results of measurements. The eigenvalue equations for the
spin-1/2 component operator S, are

fi
s14) = +31+)
(2.128)
fi
S:l=)=—51-).
The matrices representing the spin-1/2 operators are
S ;ﬁ<0 1) S ;ﬁ(o —i)
T2\ 0 Yoo2\i 0
(2.129)

_h(1 0 T
SZ*z(o —1> S7401'

We characterized quantum mechanical measurements of an observable A by the expectation value
(A) = (ylAly) = Da,?, (2.130)
and the uncertainty

AA =\/(A%) — (A)% (2.131)

We made a connection between the commutator [A, B] = AB — BA of two operators and the
ability to measure the two observables. If two operators commute, then we can measure both observ-
ables simultaneously, but if they do not commute, then we cannot measure them simultaneously.
We quantified this disturbance that measurement inflicts on quantum systems through the quantum
mechanical uncertainty principle

AAAB = }|([A,B])]. (2.132)

We also introduced the projection postulate, which states how the quantum state vector is changed
after a measurement.
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PROBLEMS

2.1 Given the following information:

S%) = £2), S, = £21%),
%), = 5l14) = |-)] 1), = Hl1+) + d-))

find the matrix representations of S, and S, in the S, basis.
2.2 From the previous problem we know that the matrix representation of S, in the S, basis is

S;g(o 1)
T2\ o)

Diagonalize this matrix to find the eigenvalues and the eigenvectors of S, .

2.3 Find the matrix representation of S, in the S, basis for spin 1/2. Diagonalize this matrix to find
the eigenvalues and the eigenvectors in this basis. Show that the eigenvalue equations for S, are
satisfied in this new representation.

2.4 Show by explicit matrix calculation that the matrix elements of a general operator A (within a
spin-1/2 system) are as shown in Eq. (2.13).

2.5 Calculate the commutators of the spin-1/2 operators S, S, and S, thus verifying Egs. (2.96).

2.6 Verify that the spin component operator S, along the direction i has the matrix representation
shown in Eq. (2.41).

2.7 Diagonalize the spin component operator S, along the direction 1 to find its eigenvalues and
the eigenvectors.

2.8 Find the probabilities of the measurements shown below in Fig. 2.14. The first Stern-Gerlach
analyzer is aligned along the direction n defined by the angles § = 7 /4 and ¢ = 57 /3.

2.9 For the state |+), calculate the expectation values and uncertainties for measurements of S, Sy,
and S, in order to verify Eq. (2.108).

2.10 For the state \+> y» calculate the expectation values and uncertainties for measurements of S,,

Sy, and S,. Draw a diagram of the vector model applied to this state and reconcile your quan-
tum mechanical calculations with the classical results.

2.11 Show that the S operator commutes with each of the spin component operators of ., Sy, and
S.. Do this once with matrix notation for a spin-1/2 system and a second time using only the

component commutation relations in Egs. (2.96) and the definition of S?in Eq. (2.103).

Py

=@

FIGURE 2.14 Measurement of spin components (Prob. 2.8).
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2.12 Diagonalize the S, and S, operators in the spin-1 case to find the eigenvalues and the eigenvec-
tors of both operators.

2.13 For a spin-1 system, show by explicit matrix calculation that the spin component operators
obey the commutation relations in Egs. (2.96).

2.14 Find the matrix representation of the S? operator for a spin-1 system. Do this once by explicit
matrix calculation and a second time by inspection of the S? eigenvalue equation (2.120).

2.15 A beam of spin-1 particles is prepared in the state

) = 1) + ig510) = F5l-1).

a) What are the possible results of a measurement of the spin component S, and with what
probabilities would they occur?

b) What are the possible results of a measurement of the spin component S, and with what
probabilities would they occur?

¢) Plot histograms of the predicted measurement results from parts (a) and (b), and calculate
the expectation values for both measurements.

2.16 A beam of spin-1 particles is prepared in the state

) = Flt), + ig510), — F5l-1),.

a) What are the possible results of a measurement of the spin component S, and with what
probabilities would they occur?

b) What are the possible results of a measurement of the spin component Sy, and with what
probabilities would they occur?

¢) Plot histograms of the predicted measurement results from parts (a) and (b), and calculate
the expectation values for both measurements.

2.17 A spin-1 particle is in the state

a) What are the possible results of a measurement of the spin component S, and with what
probabilities would they occur? Calculate the expectation value of the spin component S, .

b) Calculate the expectation value of the spin component S,. Suggestion: Use matrix mechan-
ics to evaluate the expectation value.

2.18 A spin-1 particle is prepared in the state

W) = 511 = 5l0) + il -1).

a) What are the possible results of a measurement of the spin component S, and with what
probabilities would they occur?

b) Suppose that the S, measurement on the particle yields the result S, = —#. Subsequent to
that result a second measurement is performed to measure the spin component S,. What are
the possible results of that measurement, and with what probabilities would they occur?

¢) Draw a schematic diagram depicting the successive measurements in parts (a) and (b).
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2.19 A spin-1 particle is prepared in the state

) = VA1) = \V/20) + i3 -1).

Find the probability that the system is measured to be in the final state

) = A1), + FH0), — izl =1),.

2.20 In part (2) of SPINS Lab #3, you measured the spin components of the unknown (spin 1) ini-
tial states |i;) (i = 1,2, 3, 4) along the three axes. Using your measured values, deduce the
unknown initial states.

2.21 In part (3) of SPINS Lab #3, you built a spin-1 interferometer and measured the relative prob-
abilities after the final Stern-Gerlach analyzer for the seven possible cases where one beam,

a pair of beams, or all three beams from the second Stern-Gerlach analyzer were used. Show
how you used the projection postulate to calculate the theoretical probabilities.

2.22 A beam of spin-1/2 particles is sent through a series of three Stern-Gerlach analyzers, as shown
in Fig. 2.15. The second Stern-Gerlach analyzer is aligned along the i direction, which makes
an angle 0 in the x-z plane with respect to the z-axis.

a) Find the probability that particles transmitted through the first Stern-Gerlach analyzer are
measured to have spin down at the third Stern-Gerlach analyzer?

b) How must the angle 0 of the second Stern-Gerlach analyzer be oriented so as to maximize
the probability that particles are measured to have spin down at the third Stern-Gerlach
analyzer? What is this maximum fraction?

¢) What is the probability that particles have spin down at the third Stern-Gerlach analyzer if
the second Stern-Gerlach analyzer is removed from the experiment?

2),

2.23 Consider a three-dimensional ket space. In the basis defined by three orthogonal kets |1),
and |3), the operators A and B are represented by

ay 0 0 b] 0 0
A=10 a O B=10 0 b
0 0 as 0 bz 0

where all the quantities are real.
a) Do the operators A and B commute?
b) Find the eigenvalues and normalized eigenvectors of both operators.

=@ @

FIGURE 2.15 Measurement of spin components (Prob. 2.22).
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¢) Assume the system is initially in the state |2 ). Then the observable corresponding to the oper-
ator B is measured. What are the possible results of this measurement and the probabilities of
each result? After this measurement, the observable corresponding to the operator A is mea-
sured. What are the possible results of this measurement and the probabilities of each result?

d) How are questions (a) and (c) above related?

2.24 If a beam of spin-3/2 particles is input to a Stern-Gerlach analyzer, there are four output beams
whose deflections are consistent with magnetic moments arising from spin angular momentum
components of%ﬁ, i, —%ﬁ, and —%h. For a spin-3/2 system:

a) Write down the eigenvalue equations for the S, operator.
b) Write down the matrix representation of the S, eigenstates.
¢) Write down the matrix representation of the S, operator.
d) Write down the eigenvalue equations for the S? operator.
) Write down the matrix representation of the S operator.
2.25 Are the projection operators P, and P_ Hermitian? Explain.

RESOURCES
Activities

This activity is available at
www.physics.oregonstate.edu/qmactivities

Spins Lab 3: Stern-Gerlach measurements of a spin-1 system.


www.physics.oregonstate.edu/qmactivities

CHAPTER

Schrodinger Time Evolution

This chapter marks our final step in developing the mathematical basis of a quantum theory. In
Chapter 1, we learned how to use kets to describe quantum states and how to predict the probabili-
ties of results of measurements. In Chapter 2, we learned how to use operators to represent physical
observables and how to determine the possible measurement results. The key missing aspect is the
ability to predict the future. Physics theories are judged on their predictive power. Classical mechan-
ics relies on Newton’s second law F = ma to predict the future of a particle’s motion. The ability to
predict the quantum future started with Erwin Schrodinger and bears his name.

3.1 B SCHRODINGER EQUATION

The sixth postulate of quantum mechanics says that the time evolution of a quantum system is
governed by the differential equation

d
m;wu» = H(1)|y(1)), 3.1)

where the operator H corresponds to the total energy of the system and is called the Hamiltonian
operator of the system because it is derived from the classical Hamiltonian. This equation is known as
the Schrodinger equation.

Postulate 6

The time evolution of a quantum system is determined by the Hamiltonian
or total energy operator H(¢) through the Schrédinger equation

Ly (0) = H ().

The Hamiltonian is a new operator, but we can use the same ideas we developed in Chapter 2 to
understand its basic properties. The Hamiltonian H is an observable, so it is a Hermitian operator. The
eigenvalues of the Hamiltonian are the allowed energies of the quantum system, and the eigenstates
of H are the energy eigenstates of the system. If we label the allowed energies as E,, then the energy
eigenvalue equation is

H|E,) = E,|E,)|. (3.2)
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If we have the Hamiltonian H in a matrix representation, then we diagonalize the matrix to find the
eigenvalues E, and the eigenvectors |E,) just as we did with the spin operators in Chapter 2. For the
moment, let’s assume that we have already diagonalized the Hamiltonian [i.e., solved Eq. (3.2)] so that
we know the eigenvalues E, and the eigenvectors |E,), and let’s see what we can learn about quantum
time evolution in general by solving the Schrodinger equation.

The eigenvectors of the Hamiltonian form a complete basis because the Hamiltonian is an observ-
able, and therefore a Hermitian operator. Because H is the only operator appearing in the Schrédinger
equation, it would seem reasonable (and will prove invaluable) to consider the energy eigenstates as
the basis of choice for expanding general state vectors:

) = 2el0)|E,). (3.3)
The basis of eigenvectors of the Hamiltonian is also orthonormal, so

<Ek|En> = 8/{11' (34)

We refer to this basis as the energy basis.

For now, we assume that the Hamiltonian is time independent (we will do the time-dependent case
H(f) in Section 3.4). The eigenvectors of a time-independent Hamiltonian come from the diagonaliza-
tion procedure we used in Chapter 2, so there is no reason to expect the eigenvectors themselves to
carry any time dependence. Thus if a general state |¢) is to be time dependent, as the Schrodinger equa-
tion implies, then the time dependence must reside in the expansion coefficients c,(¢), as expressed in
Eq. (3.3). Substitute this general state into the Schrodinger equation (3.1)

mggcmm = H3,0)|E) (3.5)

and use the energy eigenvalue equation (3.2) to obtain

Vg = S EE). 36

n

Each side of this equation is a sum over all the energy states of the system. To simplify this equation,
we isolate single terms in these two sums by taking the inner product of the ket on each side with one
particular ket |E;) (this ket can have any label k, but must not have the label 7 that is already used in
the summation). The orthonormality condition (E|E,) = 8y, then collapses the sums:

. dcn(t)
(Ein >, 0 Ek\Ec t)E,|E,)
de,(t
ihy, Cdi) (E/|E,) Ec E(E]E,)
g (3.7)
de,
2 dt E(, E 8kn
dey(t
ih Ck( ) = Ck([)Ek.

dt

We are left with a single differential equation for each of the possible energy states of the systems
k = 1,2,3,.... This first-order differential equation can be rewritten as

dey(t) Ey

R —zzck(z) (3.8)
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The solution to Eq. (3.8) is a complex exponential
ci(t) = ¢ (0)e B/t (3.9)

In Eq. (3.9), we have denoted the initial condition as c;(0), but we denote it simply as ¢, hereafter.
Each coefficient in the energy basis expansion of the state obeys the same form of the time dependence
in Eq. (3.9), but with a different exponent due to the different energies. The time-dependent solution
for the full state vector is summarized by saying that if the initial state of the system at time t = O is

4(0)) = Dl En), (3.10)
then the time evolution of this state under the action of the time-independent Hamiltonian H is

(1) = D c.e “ME,)|. (3.11)

So the time dependence of the original state vector is found by multiplying each energy eigenstate
coefficient by its own phase factor e Bt/ that depends on the energy of that eigenstate. Note that the
factor E/# is an angular frequency, so that the time dependence is of the form e ' a form commonly
found in many areas of physics. It is important to remember that one must use the energy eigenstates for
the expansion in Eq. (3.10) in order to use the simple phase factor multiplication in Eq. (3.11) to account
for the Schrodinger time evolution of the state. This key role of the energy basis accounts for the impor-
tance of the Hamiltonian operator and for the common practice of finding the energy eigenstates to use
as the preferred basis.

A few examples help to illustrate some of the important consequences of this time evolution of
the quantum mechanical state vector. First, consider the simplest possible situation where the system
is initially in one particular energy eigenstate:

[4(0)) = [E,), (3.12)
for example. The prescription for time evolution tells us that after some time 7 the system is in the state
(1)) = e B Ey). (3.13)

But this state differs from the original state only by an overall phase factor, which we have said before
does not affect any measurements (Problem 1.3). For example, if we measure an observable A, then
the probability of measuring an eigenvalue g is given by

2, = [(a;ly(r))]’
= [{a;|e B E,) | G.14)
= ‘<aj|El>‘2-

This probability is time independent and is equal to the probability at the initial time. Thus, we
conclude that there is no measureable time evolution for this state. Hence, the energy eigenstates are
called stationary states. If a system begins in an energy eigenstate, then it remains in that state.

Now consider an initial state that is a superposition of two energy eigenstates:

$(0)) = ci|Ey) + ol Ey). (3.15)
In this case, time evolution takes the initial state to the later state

(1)) = c1e ™ E) + cre B E,). (3.16)
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A measurement of the system energy at the time # would yield the value E; with a probability

2
Pr, = |(Eil(1))]
= (E\|[ce EHE,) + cre B E,)] | (3.17)
2

s

= |C1

which is independent of time. The same is true for the probability of measuring the energy E,. Thus,
the probabilities of measuring the energies are stationary, as they were in the first example.

However, now consider what happens if another observable is measured on this system in this
superposition state. There are two distinct situations: (1) If the other observable A commutes with the
Hamiltonian H, then A and H have common eigenstates. In this case, measuring A is equivalent to mea-
suring H because the inner products used to calculate the probabilities use the same eigenstates. Hence,
the probability of measuring any particular eigenvalue of A is time independent, as in Eq. (3.17). (2) If
A and H do not commute, then they do not share common eigenstates. In this case, the eigenstates of A
in general consist of superpositions of energy eigenstates. For example, suppose that the eigenstate of
A corresponding to the eigenvalue a; were

la;) = ai|Ey) + ay|E,). (3.18)
Then the probability of measuring the eigenvalue a; would be

2
P, = Haiy(2))]
* * —iE,1/h —i 2
= |[ai(E|| + a5(Ey|][cie ™ E) + coe B E,) ]| (3.19)

#* —i ® —i 2
= ‘alcle iEtfh + arCre lEzt/h‘ .

Factoring out the common phase gives

— 2 *® * —j — 2
?al _ ‘e 1E]t/fz| ’alcl + ahcse i(Ey E,)t/ﬁ‘

(3.20)

= ‘011|2‘01‘2 + |012‘2|02|2 + 2Re((1107(1;0267"(@%')'/,1)

The different time-evolution phases of the two components of |¢s(¢)) lead to a time dependence in the

probability. The overall phase in Eq. (3.20) drops out, and only the relative phase remains in the prob-

ability calculation. Hence, the time dependence is determined by the difference of the energies of the

two states involved in the superposition. The corresponding angular frequency of the time evolution
E, — E,

w0y = (3.21)

is called the Bohr frequency.
To summarize, we list below a recipe for solving a standard time-dependent quantum mechanics
problem with a time-independent Hamiltonian.

Given a Hamiltonian H and an initial state |14(0)), what is the probability that
the eigenvalue g; of the observable A is measured at time #?

1. Diagonalize H (find the eigenvalues E, and eigenvectors |E,)).

2. Write |#(0)) in terms of the energy eigenstates |E, ).

3. Multiply each eigenstate coefficient by e &/ to get [i(r)).

4. Calculate the probability , = [{a;|y(1))|”.
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3.2 B SPIN PRECESSION

3.2.1

Now apply this new concept of Schrodinger time evolution to the case of a spin-1/2 system. The Ham-
iltonian operator represents the total energy of the system, but because only energy differences are
important in time-dependent solutions (and because we can define the zero of potential energy as
we wish), we need consider only energy terms that differentiate between the two possible spin states
in the system. Our experience with the Stern-Gerlach apparatus tells us that the magnetic potential
energy of the magnetic dipole differs for the two possible spin-component states. So to begin, we
consider the potential energy of a single magnetic dipole (e.g., in a silver atom) in a uniform magnetic
field as the sole term in the Hamiltonian. Recalling that the magnetic dipole is given by

u=g-Ls, (3.22)
2m,

the Hamiltonian is
H =-p'B

q
2m

= - S'B
$om, (3.23)

= 258,
mé

where ¢ = —e and ¢ = 2 have been used in the last line. The gyromagnetic ratio, g, is slightly differ-
ent from 2, but we ignore that detail.

B Magnetic Field in the z-Direction

For our first example, we assume that the magnetic field is uniform and directed along the z-axis.
Writing the magnetic field as

B = Byz (3.24)
allows the Hamiltonian to be simplified to
eB
H=—18,
m, (3.25)
== wosz,
where we have introduced the definition
(:'BO
wy = —. (3.26)
m,

This definition of an angular frequency simplifies the notation now and will have an obvious
interpretation at the end of the problem.

The Hamiltonian in Eq. (3.25) is proportional to the S, operator, so H and S, commute and
therefore share common eigenstates. This is clear if we write the Hamiltonian as a matrix in the

S, representation:
H = @(1 0 ) (3.27)
2. \0 -1/ '
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Because H is diagonal, we have already completed step 1 of the Schrodinger time-evolution recipe.
The eigenstates of H are the basis states of the representation, while the eigenvalues are the diagonal
elements of the matrix in Eq. (3.27). The eigenvalue equations for the Hamiltonian are thus

ho

HI+) = ops+) = 2 +) = B, |+)

p (3.28)
@o
H|=) = wyS.|—) = —TH) = E_|-),
with eigenvalues and eigenvectors given by

ﬁwo ﬁwo

= — E = ——
T2 2 (3.29)

[Ey) =1+) [E-) =[-).

The information regarding the energy eigenvalues and eigenvectors is commonly presented in a
graphical diagram, which is shown in Fig. 3.1 for this case. The two energy states are separated
by the energy E; — E_ = hw,, so the angular frequency w, characterizes the energy scale of this
system. The spin-up state |+) has a higher energy because the magnetic moment is aligned against
the field in that state; the negative charge in Eq. (3.22) causes the spin and magnetic moment to be
antiparallel.

Now we look at a few examples to illustrate the key features of the behavior of a spin-1/2 system
in a uniform magnetic field. First, consider the case where the initial state is spin up along the z-axis:

[ (0)) = [+). (3.30)

This initial state is already expressed in the energy basis (step 2 of the Schrodinger recipe), so the
Schrodinger equation time evolution takes this initial state to the state

() = & +)

) (3.31)
= eﬂw<]t/2‘ .|_>
E/h(})o
4
fla)o
05 I E=—%
0.25¢
0.0 fl(UQ
-0.25}
ha)o
05 |0 E=-7%

FIGURE 3.1 Energy level diagram of a spin-1/2 particle in a uniform magnetic field.
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according to step 3 of the Schrodinger recipe. As we saw before [(Eq. (3.13)], because the initial state is
an energy eigenstate, the time-evolved state acquires an overall phase factor, which does not represent
a physical change of the state. The probability for measuring the spin to be up along the z-axis is (step 4
of the Schrodinger recipe)

2
P = [(+]u(1))]
_ ‘<+‘e—iwot/2|+>’2 (3.32)
= 1.
As expected, this probability is not time dependent, and we therefore refer to |+) as a stationary state
for this system. A schematic diagram of this experiment is shown in Fig. 3.2, where we have intro-
duced a new element to represent the applied field. This new depiction is the same as the depictions in
the SPINS software, where the number in the applied magnetic field box (42 in Fig. 3.2) is a measure
of the magnetic field strength. In this experiment, the results shown are independent of the applied
field strength, as indicated by Eq. (3.32), and as you can verify with the software.
Next, consider the most general initial state, which we saw in Chapter 2 corresponds to spin

up along an arbitrary direction defined by the polar angle 6 and the azimuthal angle ¢. The initial
state is

|Mm>=H”=cm%+Mwm;WP% (3.33)

or using matrix notation:

wioy = (o)) )

¢ sin(6/2)
Schrodinger time evolution introduces a time-dependent phase term for each component, giving
o)) = ( Cpos(@r2)
e Ehei® sin(6/2)
N < e 2 cos(0/2) >

€% sin(6/2)

= e—iwgt/2<ei( cos(6/2) >

o) gin(6/2)

(3.35)

100

2

<=

[

FIGURE 3.2 Schematic diagram of a Stern-Gerlach measurement with an applied uniform magnetic field
represented by the box in the middle, with the number 42 representing the strength of the magnetic field.
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Note again that an overall phase does not have a measurable effect, so the evolved state is a spin up
eigenstate along a direction that has the same polar angle € as the initial state and a new azimuthal
angle ¢ + wqt. The state appears to have simply rotated around the z-axis, the axis of the magnetic
field, by the angle wt. Of course, we have to limit our discussion to results of measurements, so let’s
first calculate the probability for measuring the spin component along the z-axis:

o= |(+|y(0)]

‘(1 O)e"“"”/2<‘ cos(6/2) >‘2
ei(¢tan) sin(6/2) (3.36)

= |2 cos(0/2)

cos*(6/2).
This probability is time independent because the S, eigenstates are also energy eigenstates for this
problem (i.e., H and S, commute). The probability in Eq. (3.36) is consistent with the interpretation

that the angle 6 that the spin vector makes with the z-axis does not change.
The probability for measuring spin up along the x-axis is

Po = L{+1w())[’

2
w1 1)e*fwof/2( - cos(6/2)
V2 9o sin(9/2)

; (3.37)

= %|cos(0/2) + ¢ gin(g/2)
= %[0032(9/2) + cos(0/2)sin(9/2)(ei("’*“’O’) + ef"(d’*‘”o’)) + sin2(6/2)]

= 1[1 + sinfcos(¢p + wyr)].

This probability is time dependent because the S, eigenstates are not stationary states (i.e., H and S,
do not commute). The time dependence in Eq. (3.37) is consistent with the spin precessing around
the z-axis.

To illustrate this spin precession further, it is useful to calculate the expectation values for each of
the spin components. For S,, we have

(8 = (w(0)IS.|w(r))

. 0 » (6\\af1 0 _, cos(0/2)
— wgt/2 el i(p+wot) hdl il iwgt/2(
wofols) oS S )

= %[cos2(0/2) - Siﬂz(g/z)]

S,

4

(3.38)

f
= —cos#0,
2
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while the other components are

(8y) = ((2)[8,]w (1))

i o - (0\\a(0O —i) _, cos(6/2)
iwyt/2 et i(ptawpt) v s iwot/2 '
e <cos(2> e s1n<2>> ) <i 0 >€ <e‘(¢’+‘”°’) sin(6/2)> (3.39)

h
= Esinesin(qb + wot)

and
(8) = (W()[S.](r))

f (3.40)
= Esinecos(¢ + wot).
The expectation value of the total spin vector (S) is shown in Fig. 3.3, where it is seen to precess
around the magnetic field direction with an angular frequency w(. The precession of the spin vector is
known as Larmor precession and the frequency of precession is known as the Larmor frequency.

The quantum mechanical Larmor precession is analogous to the classical behavior of a magnetic

moment in a uniform magnetic field. A classical magnetic moment g experiences a torque u X B
when placed in a magnetic field. If the magnetic moment is associated with an angular momentum L,
then we can write

= —L, 3.41
k= (3.41)

where ¢ and m are the charge and mass, respectively, of the system. The equation of motion for the
angular momentum

dL _ X B (3.42)
a M '
then results in
dp g
— = —nu X B. 3.43
a om™ (343)
ZA

FIGURE 3.3 The expectation value of the spin vector precesses in a uniform magnetic field.
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Because the torque p X B is perpendicular to the angular momentum L = 2mpu/q, it causes the
magnetic moment to precess about the field with the classical Larmor frequency w.,; = gB/2m.

In the quantum mechanical example we are considering, the charge ¢ is negative (meaning the
spin and magnetic moment are antiparallel), so the precession is counterclockwise around the field. A
positive charge would result in clockwise precession. This precession of the spin vector makes it clear
that the system has angular momentum, as opposed to simply having a magnetic dipole moment. The
equivalence of the classical Larmor precession and the expectation value of the quantum mechanical
spin vector is one example of Ehrenfest’s theorem, which states that quantum mechanical expecta-
tion values obey classical laws.

Precession experiments like the one discussed here are of great practical value. For example, if
we measure the magnetic field strength and the precession frequency, then the gyromagnetic ratio can
be determined. This spin precession problem is also of considerable theoretical utility because it is
mathematically equivalent to many other quantum systems that can be modeled as two-state systems.
This utility is broader than you might guess at first glance, because many multistate quantum systems
can be reduced to two-state systems if the experiment is designed to interact only with two of the many
levels of the system.

Example 3.1 A spin-1/2 particle with a magnetic moment is prepared in the state |—), and is
subject to a uniform applied magnetic field B = BZ. Find the probability of measuring spin up in
the x-direction after a time . This experiment is depicted in Fig. 3.4.

We solve this problem using the four steps of the Schrodinger time-evolution recipe from
Section 3.1. The initial state is

[4(0)) =[=).. (3.44)

The applied magnetic field is in the z-direction, so the Hamiltonian is H = w,S, and the energy
eigenstates are |*) with energies E+ = Fw,/2 (step 1). The Larmor precession frequency is
wy = eBy/m,. We must express the initial state in the energy basis (step 2):

[W(0)) = =) = Fl+) = 351-)- (3.45)

The time-evolved state is obtained by multiplying each energy eigenstate coefficient by the appro-
priate phase factor (step 3):

() =

e—iE+r/ﬁ|+> _ %e—iE,t/ﬁ|_>
(3.46)

e
V2
%efiwot/2| +> _ \/LEEHEUT/Z |_> )

[

<=

o

FIGURE 3.4 Spin precession experiment.
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FIGURE 3.5 (a) Probability of a spin component measurement and (b) the corresponding
precession of the expectation value of the spin.

The measurement probability is found by projecting |¢(¢)) onto the measured state and complex
squaring (step 4):

2
P = [{+|w(0))|
. ) 2
x<+‘(%e—lwot/2|+> _ %e+zw01/2‘_>)‘

e )
‘2

— %‘e*zwot/Z _ e+1wnt/2

= sin® (wyt/2).
The probability that the system has spin up in the x-direction oscillates between zero and unity

as time evolves, as shown in Fig. 3.5(a), which is consistent with the model of the spin vector
precessing around the applied field, as shown in Fig. 3.5(b).

3.2.2 ® Magnetic Field in a General Direction

For our second example, consider a more general direction for the magnetic field by adding a magnetic
field component along the x-axis to the already existing field along the z-axis. The simplest approach
to solving this new problem would be to redefine the coordinate system so the z-axis pointed along the
direction of the new total magnetic field. Then the solution would be the same as was obtained above,
with a new value for the magnitude of the magnetic field being the only change. This approach would
be considered astute in many circumstances, but we will not take it because we want to get practice
solving this new type of problem and because we want to address some issues that are best posed in the
original coordinate system. Thus, we define a new magnetic field as

B = By + BjX. (3.48)
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This field is oriented in the xz-plane at an angle 6 with respect to the z-axis, as shown in Fig. 3.6. In
light of the solution above, it is useful to define Larmor frequencies associated with each of the field
components:

€BO EBl
wy = —, w = —. (3.49)

Using these definitions, the Hamiltonian becomes

H=—wb 3.50
= (,l)oSz + (,l)ISx, ( ’ )
or in matrix representation
h
H = —<“’° @1 ) (3.51)
2 (O] —wg

This Hamiltonian is not diagonal, so its eigenstates are not the same as the eigenstates of S,. Rather we
must use the diagonalization procedure to find the new eigenvalues and eigenvectors. The characteristic
equation determining the energy eigenvalues is

~ Wy — A Ewl

2

o S = A (3.52)

with solutions
h
A= ia\/wg + o (3.53)

Note that the energy eigenvalues are + (iwy/2) when w; = 0, which they must be given our previ-

ous solution. Rather than solve directly for the eigenvectors, let’s make them obvious by rewriting the

Hamiltonian. From Fig. 3.6 it is clear that the angle is determined by the equation
B, @

tanfg = — =
By

(3.54)

BOA

FIGURE 3.6 A uniform magnetic field in a general direction.
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Using this, the Hamiltonian can be written as
. h > 2 <cos6 sin@ )
H="\/w, + . 3.55
2V T i Ging  —cosh (3:53)

If we let n be the unit vector in the direction of the total magnetic field, then the Hamiltonian is propor-
tional to the spin component S, along the direction n:

H=\/w, + oS, (3.56)

This is what we expected at the beginning: that the problem could be solved by using the field direc-
tion to define a coordinate system. Thus, the eigenvalues are as we found in Section 2.2.1 and the
eigenstates are the spin up and down states along the direction n, which are

(7] 0
|+), = cos5|+> + sin5|—>
(3.57)

=)

for this case, because the azimuthal angle ¢ is zero. These are the same states you would find by
directly solving for the eigenstates of the Hamiltonian. Because we have already done that for the S,
case, we do not repeat it here.

Now consider performing the following experiment: begin with the system in the spin-up state
along the z-axis, and measure the spin component along the z-axis after the system has evolved in
this magnetic field for some time, as depicted in Fig. 3.7. Let’s specifically calculate the probabil-
ity that the initial |+) is later found to have evolved to the |—) state. This is commonly known as a
spin flip. According to our time-evolution prescription, we must first write the initial state in terms
of the energy eigenstates of the system. In the previous examples, this was trivial because the energy
eigenstates were the | T ) states that we used to express all general states. But now this new problem is
more involved, so we proceed more slowly. The initial state

[(0)) = |+) (3.58)

0 0
in~|+) — cos—|—
s1n2\ ) cosz| )

must be written in the | ), basis. Because the |£), basis is complete, we can use the completeness
relation [Eq. (2.55)] to decompose the initial state

[9(0)) = (I+) o+ + [=)uul=D)1+)
= [+ alt1+) + [ =)ual=1+)
= n<+|+>|+>n + n<_|+>|_>n (3.59)

0 .0
= cosf|+>n + sm*|—>n.
2 2

b=—@

FIGURE 3.7 A spin precession experiment with a uniform magnetic field aligned in a general direction n.
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Now that the initial state is expressed in the energy basis, the time-evolved state is obtained by multi-
plying each coefficient by a phase factor dependent on the energy of that eigenstate:

9(0)) = €5 cos T +), + ¢ Ehsind| )., (3.60)
We leave it in this form and substitute the energy eigenvalues

f
Ei::igx/w§+¢ﬁ (3.61)

at the end of the example.
The probability of a spin flip is

P = (= lg(0))”

2
. 0 ; 0
= <—|:e_’E*’/h COSE|+>n + ¢ iE/h sin2|—>nj|

2
= | cos S (=), + M sin (=),

2 (3.62)

) 0 0 . 0 0
= | i/t cos sinE + g iE/h sinE (—COSE)

0 0

220
- Zsin?2|1 =
coszsmz‘ e

(E, — E_)t
: 29 s 2 .
S~ o s %

The probability oscillates at the frequency determined by the difference in energies of the eigen-
states. This time dependence results because the initial state was a superposition state, as we saw in
Eq. (3.20). In terms of the Larmor frequencies used to define the Hamiltonian in Eq. (3.51), the prob-
ability of a spin flip is

i(E+—E,)r/ﬁ|2

(PJF_), -

(3.63)

w% = \/w(z)-l-w%
5 sin t]].
1

w3+ o 2

Eq. (3.63) is often called Rabi’s formula, and it has important applications in many problems as we

shall see.
To gain insight into Rabi’s formula, consider two simple cases. First, if there is no added field in
the x-direction, then w; = 0 and P, _,_ = 0 because the initial state is a stationary state. Second, if

there is no field component in the z-direction, then wy = 0 and ?; _, _ oscillates between 0 and 1 at the
frequency w;, as shown in Fig. 3.8(a). The second situation corresponds to spin precession around the
applied magnetic field in the x-direction, as shown in Fig. 3.8(b), with a complete spin flip from |+) to
| —) and back again occurring at the precession frequency w,. In the general case where both magnetic
field components are present, the probability does not reach unity and so there is no time at which the
spin is certain to flip over. If the x-component of the field is small compared to the z-component, then
) << wy and P, _, _ oscillates between 0 and a value much less than 1 at a frequency approximately
equal to w, as shown in Fig. 3.9.
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FIGURE 3.8 (a) Spin-flip probability for a uniform magnetic field in the x-direction and (b) the
corresponding precession of the expectation value of the spin.
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FIGURE 3.9 (a) Spin-flip probability for a uniform magnetic field with x- and z-components and
(b) the corresponding precession of the expectation value of the spin.

Example 3.2 A spin-1/2 particle with a magnetic moment is prepared in the state | —) and is sub-
ject to a uniform applied magnetic field B = B,y. Find the probability of measuring spin up in the
z-direction after a time 7.

The initial state is

l(0)) =[-). (3.64)

The applied magnetic field is in the y-direction, so the Hamiltonian is H = w,S, and the energy
eigenstates are | 1) , with energies E+ = t#aw/2 (step 1). The Larmor precession frequency is
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wy = eBy/m,. We must express the initial state in the energy basis (step 2), which in this case is

the S, basis:
' [90)) = 1=) = (), [+ [+ =) (=D1=)
= [+, (=) + =) {=1=)
=)y + (== =)y

\_7%|+>y + \%2|_>y

(3.65)

The time evolved state is obtained by multiplying each energy eigenstate coefficient by a phase
factor (step 3):
(1)) = She ), + e ),

_ %e—iwot/2‘+>y T \/Lie+iwot/2‘_>y.

(3.66)

The measurement probability is found by projecting onto the measured state and squaring (step 4):

[(+Hw(0)I’

[+ +), + el -),)

|
(e me(e) + el

_ e 2
;’—ief""f”/z + ie*"”“’/z‘ = H—Zsin(wot/Z) ‘

‘2

)

(3.67)

(+

(+

(Gheeel4), + ewie|-),)f
V2 V2 4

(

sin®(wot/2) .

The probability oscillates between zero and unity as time evolves, as shown in Fig. 3.10(a), which
is consistent with the model of the spin vector precessing around the applied field, as shown in
Fig. 3.10(b).
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FIGURE 3.10 (a) Spin measurement probability and (b) the corresponding precession
of the expectation value of the spin.
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Though we have derived Rabi’s formula [Eq. (3.63)] in the context of a spin-1/2 particle in a
uniform magnetic field, its applicability is much more general. If we can express the Hamiltonian
of any two-state system in the matrix form of Eq. (3.51) with the parameters w, and w;, then we can
use Rabi’s formula to find the probability that the system starts in the “spin-up” state |+) and is then
measured to be in the “spin-down” state | —) after some time z. In the general case, the |+) and |—)
states are whatever states of the system are used to represent the Hamiltonian operator in the form of
Eq. (3.51). In the next section, we’ll look at the example of neutrino oscillations to see how this exam-
ple can be applied more generally.

3.3 B NEUTRINO OSCILLATIONS

Neutrinos have enjoyed an almost mystical history in particle physics because they are very hard to
detect and yet play an important role in many fundamental processes. In 1930, the neutrino was pos-
tulated by Wolfgang Pauli as a solution to the beta decay problem. A free neutron decays to a proton
and an electron with a lifetime of about 10 minutes in the most basic beta decay process. However, the
decay scheme n— p + e violates conservation of angular momentum, and experimental data sug-
gest that conservation of energy is also violated. That’s not good. Rather than reject these two basic
conservation laws, as some suggested, Pauli proposed that a third particle is involved in the decay
process. Enrico Fermi named this new particle the “neutrino.” Fermi developed a theory that used the
neutrino to properly explain beta decay, but it was 25 more years before a neutrino was detected.
Neutrinos are uncharged, relativistic particles. In nuclear beta decay, neutrinos are produced in
processes such as
n—p+e +v,
4 (3.68)
p—n+te +v,
where the subscript labels the neutrino v, as an electron neutrino and the bar labels v, as an antineu-
trino. In the standard model of particle physics, neutrinos are massless, like photons. Neutrinos are so
elusive because they interact via the weak force or weak interaction, which is the weakest of the four
fundamental forces—the strong nuclear force, electromagnetism, and gravity being the other three.
The reaction p —n + e¢" + v, is part of the thermonuclear reaction chain in the sun and other
stars, so we earthlings are constantly bombarded with neutrinos along with the essential photons we
receive from the sun. In the 1960s and 70s, landmark experiments indicated that there are only about
half as many solar neutrinos arriving on earth as we would expect, given reliable models of stellar ther-
monuclear reactions. This solar neutrino problem has recently been solved by experiments detecting
neutrinos from the sun and from nuclear reactors that demonstrate that neutrinos have nonzero mass.
These results are counter to the standard model and so have profound implications for particle physics
and cosmology. Understanding how these experiments provide information on the neutrino mass is a
powerful illustration of the applicability of Rabi’s formula to other two-state systems.
In addition to the electron neutrinos in Eq. (3.68), there are other types of neutrinos associated
with other reactions, such as
st +
777 " " - (3.69)
p —e tv, v,
which represent the decay of a pion (77) to a muon (w) and the decay of a muon to an electron, respectively.
A muon behaves exactly like an electron but has a larger mass. Electrons, muons, and a third particle
(tau) and their associated neutrinos are collectively called leptons. In reactions involving these particles
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it is convenient to define a lepton “flavor” quantum number L, with the assigned values L, = 1 for the
electron ¢” and its associated neutrino v,, L, = —1 for the positron ¢* and the antineutrino v,, L,=1
for the muon i~ and its associated neutrino Vs and L,=~— 1 for the u* and Ve With these assignments,
the individual electron and muon flavor numbers are conserved in the processes shown above. However,
there is no theoretical basis for this conservation, and so we allow for the possibility that these quantum
numbers are only approximately conserved. This possibility then allows for reactions of the type

(3.70)

where an electron neutrino changes its flavor and becomes a muon neutrino, or the reverse. Such
changes are called neutrino mixing or neutrino oscillations.
The labeling of neutrinos according to their association with electrons or muons arises from their behavior
in the weak interaction processes described above. In other words, the quantum states |v,) and |vu> are
eigenstates of the Hamiltonian describing the weak interaction. However, when neutrinos propagate in
free space, the weak interaction is not relevant and the only Hamiltonian of relevance is that due to the
relativistic energy of the particles, which includes their rest masses and momenta. The eigenstates of this
Hamiltonian are generally referred to as the mass eigenstates. If the masses of the two types of neutrinos
(electron and muon) are different, then, in general, the mass eigenstates do not coincide with the weak
interaction eigenstates. This distinction between sets of eigenstates allows for flavor-changing processes.
To see why this is so, let the mass eigenstates be labeled |v,) and |v, ). Either one of the two bases
(mass or weak eigenstates) can be used as a complete basis upon which to expand any general state in
this system. Let’s assume that the relation between the bases is

Vo>V,

0 0
lv,) = cos§|vl> + sin5|1/2)
(3.71)
. o
lv,) = sm5|V1> - cos5|vz).

The angle /2 is generally referred to as the mixing angle (some treatments drop the factor 1/2, but
we retain it to be consistent with the previous spin-1/2 discussion). If the mixing angle is small, then

the relations become
v,) = |v
ve) = ) 3.72)
vu) = |v2).

Assume that an electron neutrino is created in some weak interaction process and then propagates
through free space to a detector. We wish to know the probability that a muon neutrino is detected,
which is the signature of neutrino flavor mixing. The initial state vector is

$(0)) = [v.)

0‘ )+ si 0| > (3.73)
= cos—|v sin—|v,).

2! 272

During the free-space propagation, the energy eigenstates of the system are the mass eigenstates
because there is no weak interaction present. Thus the Schrodinger time evolution for this state is

0 _. 0 _.
l(2)) = cosEef’El’/ﬁ|v]> + SiIlEei[Ezt/ﬁ|V2>. (3.74)

The energy eigenvalues are simply the relativistic energies, which are determined by the rest masses
and the momenta:

E =\/(pe)" + (mc?)’, i=12. (3.75)
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Assuming that the neutrinos are highly relativistic (mc®> << pc), we find
1+
pc
1 m-c2 2:| 3.76
= 1+ —[ = (3.76)
pc{ 2< pc >

2)2

E;, = pc

(mic

= pc +
P 2pc

The beauty of studying two-level systems such as spin-1/2 particles and neutrino oscillations is
that they are formally identical. In the spin-1/2 case, we phrased the problem in terms of finding the
probability of a spin flip, whereas here we are looking for a change in the flavor of the neutrino. In
both cases, the initial and final states are not energy eigenstates, but rather orthogonal states in a dif-
ferent basis. The problems are mathematically identical, so the probability of a transition between the
orthogonal states takes the same form. The probability of a neutrino oscillation is thus given by the
same equation as the spin-flip probability, Eq. (3.62),

Py on, = | (1))

sin20 sin2 <<E1_EZ)1> @77
2h ’

where the parameter 6 has been defined the same in both problems and the energy difference E, — E_
has been changed to the energy difference E; — E,. This energy difference is

(m1C2)2 _ (m2C2)2

3

< ( 2 _ 2)
2 my — mj).
Neutrinos move at nearly the speed of light ¢, so we approximate the time from the creation of the
electron neutrino to the detection of the muon neutrino as r = L/c, where L is the distance from the
source to the detector. We also approximate the relativistic momentum as p = E/c. This gives a prob-
ability for neutrino flavor change of
2 2\7 3
(m] B mz)Lc >

4Eh

As a function of the distance L, the probability oscillates from 0 to a maximum value of sin>/—hence
the term neutrino oscillation. By measuring the fractions of different neutrino flavors at a distance
from a neutrino source (e.g., the sun or a reactor) and comparing to a model for the expected fractions,
experimenters have been able to infer the masses of the different neutrinos, or at least the differences
of the squares of the masses. Recent results from solar neutrino and reactor neutrino experiments
indicate a squared mass difference of approximately

El_Ezz

Py, = SIN°0 sin2< (3.79)

m, —m) =8 X 107 eV?/c*, (3.80)
These experiments also provide information on the mixing angle 6, with recent results indicating
0 = 69° (3.81)

Neutrino experiments such as these continue to provide information about the fundamental physics of
the universe.
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3.4 B TIME-DEPENDENT HAMILTONIANS

Up to now, we have studied the time evolution of quantum mechanical systems where the Hamiltonian
is time independent. We solved the Schrodinger equation once for the general case and developed
a recipe for the time evolution of the system that we can apply to all cases with time-independent
Hamiltonians. However, if the Hamiltonian is time dependent, then we cannot use that simple recipe.
We must know the form of the Hamiltonian time dependence in order to solve the Schrodinger equa-
tion. Fortunately, there are common forms of time dependence that we can solve in general and then
apply in many cases. The most common form of time dependence is sinusoidal time dependence at one
frequency. We will solve this problem in the context of a spin-1/2 particle in a magnetic field and then
also apply it to atom-light interactions.

3.4.1 B Magnetic Resonance

In the spin precession example in Section 3.2.2, we concluded that a complete spin flip required a large
magnetic field in the x-direction, which represents a large change or perturbation compared to the
initial situation of a magnetic field in the z-direction. Now consider whether we can induce a complete
spin flip without such a large perturbation. That is, what small magnetic field can we add to the system
that will cause a |+) state to flip to a | —) state? The answer is that we must apply a time-dependent
magnetic field that oscillates at a frequency close to the Larmor precession frequency w, that charac-
terizes the energy difference between the spin-up and spin-down states, as shown in Fig. 3.1. By mak-
ing the oscillating magnetic field resonant with the Larmor frequency, we induce transitions between
the energy states shown in Fig. 3.1. This effect is known as magnetic resonance. I. I. Rabi won the
Nobel Prize in physics in 1944 for his work in developing the magnetic resonance technique and using
it to measure the magnetic moments of nuclei. Following Rabi’s work, nuclear magnetic resonance
(NMR) became a widely used tool for studying the properties of materials. The Larmor frequency
depends on the magnetic field magnitude at the location of the particular nucleus being studied. This
magnetic field includes the applied external field and any internal fields created by the local environ-
ment, such that measuring the resonance frequency provides valuable information about the environ-
ment of the nucleus. In biology and chemistry, NMR has been used extensively to distinguish different
types of bonds and identify structures. More recently, magnetic resonance imaging (MRI) has been
developed for medical diagnosis.

To understand how magnetic resonance works, it is instructive to consider the classical problem
first. A classical magnetic moment aligned with an angular momentum precesses around the direc-
tion of an applied magnetic field. Now imagine going to a reference frame that rotates about the field
(assumed to be in the z-direction) with the same frequency as the precession. An observer in the rotat-
ing frame would see the magnetic moment stationary and so would conclude that there is no magnetic
field in that frame. If that rotating observer were asked to flip the magnetic moment from up to down
along the z-axis, she would answer, “Simple, just impose a small magnetic field perpendicular to the
z-axis, which will cause the spin to precess around that direction.” Because that field is the only field
acting in the rotating frame, it can be as small as one likes. The magnitude simply determines the time
for the spin to flip.

In this situation, the transverse applied field is stationary in the rotating frame, so it will appear to
be rotating at the precessional frequency in the original frame. Thus, we could write it as

B = B, cos(wt)X + B;sin(wt)y, (3.82)

where we allow the frequency w to differ from the precessional frequency wy in order to solve the
problem more generally. In that case, there would be some residual precession in the rotating frame,
and so the rotating observer would conclude that there is some residual field in the z-direction. Hence,
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we expect that the added transverse field would not cause a complete flipping of the magnetic moment
from up to down in this general case.
Let’s now apply this reasoning to the quantum mechanical case. Assume a magnetic field of the form

B = Byz + Bj[cos(wt)X + sin(wt)y], (3.83)

where the role of B is to split the energies of the spin-up and spin-down states and the role of B; is to
flip the spin between the the up and down states. The Hamiltonian is

H =—-pB

3.84
= woS. + w[cos(wr)S, + sin(wr)S, ], B89

where we again define the Larmor frequencies corresponding to the two magnetic field components,
(O =, (O] = —. (385)

The matrix representation of the Hamiltonian is

—iwt
H = h( @o D€ > (3.86)

iwt
2 we —w

This Hamiltonian is time dependent, so we can no longer use our simple recipe for Schrodinger
time evolution. Rather, we must return to the Schrodinger equation and solve it with these new time-
dependent terms. Because we are not using our recipe for Schrodinger time evolution, we are not
bound to use the energy basis as the preferred basis. The obvious choice would be to use the basis we
have used for representing the Hamiltonian as a matrix, which becomes the basis of energy states if the
transverse part B, of the magnetic field vanishes. Using this basis, we write the state vector as

o) = .01+ + e 1) = (410) 387
Schrodinger’s equation

o
i (1)) = H(1)[¢(7)) (3.88)

A ) e

and leads to the differential equations

in matrix form is

h h
i, (1) = 0 eilr) + 7ot (1)
5 5 (3.90)
w . w
mugzijmyufqm

where ¢(t) denotes a time derivative. To solve these time-dependent coupled differential equations,
it is useful to follow the lead of the classical discussion and consider the problem from the rotating
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frame. Though we don’t yet have the complete tools to know how to effect this transformation, we take
it on faith that after a frame transformation the state vector is

¢ eiwt/z
5(0) = e |+) + ()| -) = ( 1) ) (391)

C_([) e*iwt/2

where |/(1)) is the state vector as viewed from the rotating frame. If we call the coefficients of this
vector a+ (1), then we can write

50) = a0+ + 0 ()1) = (1), 39

where the relations between the sets of coefficients are

ci(t) = e Pau(r)

3.93
c (1) = e™Pa_(r). 399
The state vector in the nonrotating frame can thus be written as
» ) ) a.(t efiwt/z
W) = w2 ) + a2 = (070, (3.94)

Another way of viewing this transformation is to say that based upon earlier solutions of similar
problems [Eq. (3.35)], we expect the coefficients ¢+ (t) to have time dependence of the form e T2
and so we have extracted that part of the solution and now need to solve for the remaining time depen-
dence in the coefficients a+ (¢). In this view, we have simply performed a mathematical trick to make
the solution easier.

If we now substitute the expressions for c+(¢) in terms of a+(¢) into the differential
equations (3.90), then we obtain

i (1) = =220 (1) + 20 (1)
: : (3.95)
i (1) = %m(z) ; MT“’a,(t),
where we have defined a new term
Aw = v — wy, (3.96)

which is the difference between the angular frequencies of the rotating field and the Larmor preces-
sion due to the z-component of the magnetic field. Because a+ () are the coefficients of the trans-
formed state vector | (1)), these differential equations can be considered as comprising a transformed
Schrodinger equation

in—| (1)) = H| (1)), (3.97)

where the new Hamiltonian A has the matrix representation

"= E(_A“’ “’1) (3.98)
2\ w Aw)’ '
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Thus, we have transformed (by rotation or mathematical sleight of hand) the original problem
into a new problem that has a time-independent Hamiltonian. Once we solve the new problem, we can
use the transformation equations to find the solution to the original problem. However, because the
new Hamiltonian H is time independent, we already know the solution. That is, this new problem has
the same form of the Hamiltonian as the spin precession problem in Section 3.2.2. Comparing the spin
precession Hamiltonian in Eq. (3.51) with the transformed Hamiltonian in Eq. (3.98), we note that the
term wy is replaced by the new term —Aw. We are interested in finding the same probability ?, _, _ that
an initial |+) state is later found to have evolved to the |—) state. The rotational transformation does
not alter the | +) basis states so if

[(0)) = [+). (3.99)
then
[(0)) = |+). (3.100)
The probability for a spin flip is given by

P = [(=lw()’

, (3.101)
= le-(n)I".
From Eq. (3.93) relating the coefficients, we have
e (0" = | (1)
- ? (3.102)

which means that the probability we desire is

~ 2
Pose = [(=[g()]". (3.103)
We obtain this spin-flip probability using Rabi’s formula in Eq. (3.63), with the change wy— —Aw,

resulting in
2 NSA2 2
o) ] 2< Aw”™ + oy >
sin t

P_=
’ Aw® + w% 2
(3.104)
wf .2<\/(w—w0)2+w%>
= sin t).
(w - w0)2 + wf 2

This spin-flip probability is a generalization of Rabi’s formula. Note that Eq. (3.104) reduces to
Eq. (3.63) for the case @ = 0, which is expected because the applied field in Eq. (3.83) is static and
aligned the same as the static field in Eq. (3.48) for the case w = 0. The static magnetic field case is
generally referred to as spin precession, while the rotating field case is referred to as Rabi flopping.
Though we have used their similarities to help us derive Eq. (3.104), it is important to clarify their dif-
ferences. In the static applied magnetic field case, the resulting spin precession is a manifestation of
the natural Bohr oscillation of a quantum system that starts in a superposition of energy eigenstates.
The initial superposition remains intact and there is no exchange of energy between the system and
the applied field. In the rotating applied magnetic field case, the Rabi flopping represents transitions
between energy eigenstates, and there is exchange of energy between the system and the applied field.
The energy exchange occurs because the Hamiltonian is time dependent.
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The probability of a Rabi spin flip oscillates with an angular frequency given by

Q= (0 - o)’ + o, (3.105)

that is typically referred to as the generalized Rabi frequency. The term Rabi frequency generally
refers to the frequency w;, which is the value of the generalized Rabi frequency when the frequency w
of the rotating field is on resonance (i.e., w is set equal to the Larmor precession frequency w, of the
system in the presence of the magnetic field B, alone). For this choice of @ = wy, the probability of a
spin flip becomes

P, = sin® (%r) (3.106)

which implies that the spin is flipped with 100% probability at an angular frequency ;. For other off-
resonance choices of the frequency w, the probability of a spin flip oscillates with an amplitude smaller
than one. The amplitude of the spin-flip oscillation, as a function of the frequency w of the rotating
field, is plotted in Fig. 3.11. This curve has the form of a Lorentzian curve and clearly exhibits the
important resonant behavior of the spin-flip probability. The full width at half maximum (FWHM) of
the resonance curve is 2w .

For the resonance condition = ), the probability of a spin flip as a function of time is plotted
in Fig. 3.12. Because the frequency w, is proportional to the applied field B, the rate of spin flipping
increases with increasing rotating magnetic field strength. However, it is important to note that there
is still 100% probability of a spin flip for very small fields. This is the property we were looking for at
the beginning of the problem—a way to flip the spin without perturbing the system appreciably. After
a time ¢ given by wt = r, the probability for a spin flip is 100%. We have assumed that the applied
field is on continuously, but this spin flip can also be produced by a pulsed field with a magnitude and
duration that satisfy w;# = 7. Such a pulse is often called a 7r-pulse and is used to flip a spin, or more
generally to make a transition from one energy state to another with 100% certainty. The diagram on
the right of Fig. 3.12 illustrates the energy levels of the spin in the magnetic field and how the spin-flip
oscillations are associated with transitions between the two energy levels. A transition from the upper
level to the lower level takes energy from the atom and gives it to the magnetic field and is known as
emission, while the opposite process takes energy from the field and is known as absorption.

7)+—>—,max
4

1.01

0.5 2&)1

0 w
Wo

FIGURE 3.11 Magnetic resonance curve showing the probability
of a spin flip as a function of the applied frequency.
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FIGURE 3.12 Rabi oscillations of the spin-flip probability for the resonance condition.

3.4.2 W Light-Matter Interactions

This same model of the interaction between a two-level system and an applied time-dependent field is
used to explain how atoms absorb and emit light. In the magnetic resonance example above, the oscil-
lating magnetic field interacts with the magnetic dipole and energy is exchanged between the field and
the dipole. In the interaction of atoms with light, the oscillating electric field of the light wave interacts
with the electric dipole of the atom, and energy exchange between the field and the atom corresponds to
absorption and emission of photons. We can use the Rabi flopping formula of Eq. (3.104) to model the
atom-light interaction as long as we express the Hamiltonian of the system in the form of Eq. (3.86).
Though atoms have more than two energy levels, we can reduce the problem to a two-level system if
the frequency w of the applied light field is close to just one of the Bohr frequencies of the atom.

Consider two levels of an atom, as shown in Fig. 3.13. Following the convention used in this com-
mon problem, we label the lower state |g) (for ground state) and the upper state |e) (for excited state).
The energy difference between the two levels is defined to be

E, — E, = fiw, (3.107)

to connect to the spin notation. The applied light field (e.g., laser beam) has a frequency w that is close
to, but not necessarily equal to, the atomic Bohr frequency w,. Using the same notation as the spin
problem [Eq. (3.86)], we express the Hamiltonian for this atom-light system in two parts

" ﬁ( @ wle_i“”) _ ﬁ(wo 0 )+ ﬁ( 0 “’le_im) (3.108)
2\ w1 —awy 2\ 0 —wy 2 \w e 0
le) E.
hewo hw
(o) Eq

FIGURE 3.13 Energy level diagram of a two-level atom interacting with
an applied light field of frequency w.
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and identify the first term as the atomic Hamiltonian and the second term as the interaction Hamilto-
nian. In this way, we see that the parameter w is really an off-diagonal matrix element of the interac-
tion Hamiltonian that connects the two states:

2
w, = %<6|Him|g>~ (3.109)

The Rabi formula in Eq. (3.104) then gives the probability for the light field to cause transitions
between the two atomic energy states. Transitions between the atomic states correspond to absorption
(|g) — |e)) and emission (|e) — |g)) of photons in the light field. Total energy is conserved as it is
exchanged between the atom and the light field.

Studying these induced transitions is the most powerful tool we have for discovering what the
energy levels of a system are and ultimately for determining the Hamiltonian of the system. This
tool is known as spectroscopy and has played a pivotal role in relating experiments and theory in
quantum mechanics. As we encounter new quantum mechanical systems in this text, we will point
out the spectroscopic aspects of these systems. For now, we can make a few general comments. If the
matrix element of the interaction Hamiltonian in Eq. (3.109) happens to be zero, then the transition
probability between the two levels is zero and we say that this is a forbidden transition. By studying
the general properties of the matrix elements {e|H,,|g) for a system and an interaction, we can dis-
cover a set of basic rules governing whether transitions are allowed or forbidden. These are known as
selection rules and are often representative of some underlying symmetry in the system. We will discuss
selection rules briefly as we encounter new systems and then will study them more fully in Chapter 14.

SUMMARY

In this chapter we have learned the key aspect of quantum mechanics—how to predict the future.
Schrédinger’s equation

| (0)) = H(O) () G.110)

tells us how quantum state vectors evolve with time. In the common case where the Hamiltonian
is time independent, the solution to Schrodinger’s equation has the same form no matter the problem. The
time-evolved state includes energy-dependent phase factors for each component of the superposition
that the system starts in:

(1)) = D c.eBME,). (.111)

The general recipe for solving time-dependent problems is

Given a Hamiltonian H and an initial state |14(0)), what is the probability that
the eigenvalue g, of the observable A is measured at time #?

1. Diagonalize H (find the eigenvalues E, and eigenvectors |E,,)).

2. Write |(0)) in terms of the energy eigenstates |E,, ).

3. Multiply each eigenstate coefficient by e &/ to get [i(r)).

4. Calculate the probability , = [{a;[w(1))|”.

We will use this recipe throughout the rest of the book to study the time evolution of quantum mechan-
ical systems where the Hamiltonian is time independent.
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PROBLEMS

3.1 Write out the Schrodinger equation as expressed in Eq. (3.5) in matrix form for the two-state
system and verify the result in Eq. (3.8).

3.2 Show that the probability of a measurement of the energy is time independent for a general state
l(1)) = Dlc,(t)|E,) that evolves due to a time-independent Hamiltonian. Show that the

n
probability of measurements of other observables are also time independent if those observables
commute with the Hamiltonian.

3.3 Show that the Hamiltonian in Eq. (3.51) can be written in the simple form of Eq. (3.56).
Diagonalize the Hamiltonian in Eq. (3.55) and confirm the results in Eq. (3.57).

3.4 Consider a spin-1/2 particle with a magnetic moment placed in a uniform magnetic field
aligned with the z-axis. Verify by explicit matrix calculations that the Hamiltonian commutes
with the spin component operator in the z-direction but not with spin component operators in
the x- and y-directions. Comment on the relevance of these results to spin precession.

3.5 Consider a spin-1/2 particle with a magnetic moment. At time ¢t = 0, the state of the particle is
[p(r=0)) = [+).
a) If the observable S, is measured at time t = 0, what are the possible results and the
probabilities of those results?

b) Instead of performing the above measurement, the system is allowed to evolve in a uniform
magnetic field B = B,y. Calculate the state of the system (in the S, basis) after a time 7.

¢) Attime ¢, the observable S, is measured. What is the probability that a value 7/2 will be
found?

d) Draw a schematic diagram of the experiment in parts (b) and (c), similar to Fig. 3.2.
3.6 Consider a spin-1/2 particle with a magnetic moment.

a) Attime 7 = 0, the observable S, is measured, with the result 7/2. What is the state vector
l(+ = 0)) immediately after the measurement?

b) Immediately after the measurement, a magnetic field B = Bz is applied and the particle is
allowed to evolve for a time 7. What is the state of the system at time t = 7'?

¢) Att = T, the magnetic field is very rapidly changed to B = B,y. After another time inter-
val T, a measurement of S, is carried out once more. What is the probability that a value £ /2
is found?

3.7 A beam of identical neutral particles with spin 1/2 travels along the y-axis. The beam passes
through a series of two Stern-Gerlach spin-analyzing magnets, each of which is designed to
analyze the spin component along the z-axis. The first Stern-Gerlach analyzer allows only
particles with spin up (along the z-axis) to pass through. The second Stern-Gerlach analyzer
allows only particles with spin down (along the z-axis) to pass through. The particles travel at
speed v between the two analyzers, which are separated by a region of length d in which there
is a uniform magnetic field B, pointing in the x-direction. Determine the smallest value of d
such that 25% of the particles transmitted by the first analyzer are transmitted by the second
analyzer.

3.8 A beam of identical neutral particles with spin 1/2 is prepared in the |+) state. The beam enters
a uniform magnetic field B, which is in the xz-plane and makes an angle 6 with the z-axis.
After a time 7 in the field, the beam enters a Stern-Gerlach analyzer oriented along the y-axis.
What is the probability that particles will be measured to have spin up in the y-direction? Check
your result by evaluating the special cases # = O and § = /2.
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3.9 Consider a spin-1/2 particle with a magnetic moment. At time ¢t = 0, the state of the particle is

ly(t = 0)) = |+), with the direction i = (%X + §)/V/2. The system is allowed to evolve in
a uniform magnetic field B = Byz. What is the probability that the particle will be measured to
have spin up in the y-direction after a time #?

3.10 Consider a spin-1/2 particle with a magnetic moment. At time ¢ = 0, the state of the
particle is |#(r = 0)) = |+). The system is allowed to evolve in a uniform magnetic field
B = By(X + Z) /2. What is the probability that the particle will be measured to have spin
down in the z-direction after a time #?

3.11 Consider a spin-1/2 particle with a magnetic moment. At time ¢ = 0, the state of the particle is
ly(t = 0)) = |+), with the direction i = (X + §)/V/2. The system is allowed to evolve in
a uniform magnetic field B = By(X + 7)/V/2. What is the probability that the particle will be
measured to have spin up in the y-direction after a time #?

3.12 Consider a two-state quantum system with a Hamiltonian

(E, 0
H = .
0 E

Another physical observable A is described by the operator

. <0 a)
A= ,
a 0
where a is real and positive. Let the initial state of the system be [(0)) = |a,), where |a; ) is

the eigenstate corresponding to the larger of the two possible eigenvalues of A. What is the
frequency of oscillation (i.e., the Bohr frequency) of the expectation value of A?

3.13 Let the matrix representation of the Hamiltonian of a three-state system be

E, 0 A
H=|0 E 0
A 0 E

using the basis states |1}, |2), and |3).
a) If the state of the system at time r = 01is |4(0)) = |2), what is the probability that the
system is in state |2) at time ¢?
b) If, instead, the state of the system at time ¢ = 01is |/(0)) = |3), what is the probability that
the system is in state |3) at time ¢?
3.14 A quantum mechanical system starts out in the state

$(0)) = C(3lay) + 4lar)).

where |g;) are the normalized eigenstates of the operator A corresponding to the eigenvalues a;.
In this |a;) basis, the Hamiltonian of this system is represented by the matrix

. 2 1

a) If you measure the energy of this system, what values are possible, and what are the
probabilities of measuring those values?
b) Calculate the expectation value (A) of the observable A as a function of time.
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3.15 Show that the general energy state superposition |¢(¢)) = Ecne*"E“’/ "E,) satisfies the

Schrodinger equation, but not the energy eigenvalue equation.

3.16 For a spin-1/2 system undergoing Rabi oscillations, assume that the resonance condition
w = wqholds.

a) Solve the differential equations for the coefficients a4 (). Use your results to find the
transformed state vector |4 (¢)) and the state vector |i(z)), assuming the most general
initial state of the system.

b) Verify that a 7r-pulse (w;t = ) produces a complete spin flip. Calculate both the
transformed state vector | (¢)) and the state vector |i(r)).

¢) Assume that the interaction time is such that w,# = 7 /2. Find the effect on the system
if the initial state is | +).

d) Discuss the differences between the original reference frame and the rotating reference
frame in light of your results.

3.17 Consider an electron neutrino with an energy of 8 MeV. How far must this neutrino travel
before it oscillates to a muon neutrino? Assume the neutrino mixing parameters given in the
text. How many complete oscillations (v, — v, — v,) will take place if this neutrino travels
from the sun to the earth? Through the earth?

3.18 Many weak decay processes produce neutrinos with a spectrum of energies. Assume electron
neutrinos are produced with a uniform distribution from 4 MeV to 8 MeV. By averaging the

w

probability over the energy spectrum, calculate and plot, as a function of the travel distance L,
the probability that electron neutrinos are measured at the detector. Compare the result with the
probability for monoenergetic neutrinos at 8 MeV. The integral required for the averaging does

not yield an elementary expression, so a computer is advisable. Assume the neutrino mixing
parameters given in the text.

RESOURCES

Activities

This activity is available at
www.physics.oregonstate.edu/qmactivities

Spins Lab 4: Students design experiments to study spin precession in a magnetic field.

Further Reading

Pedagogical articles on neutrino oscillations:
W. C. Haxton and B. R. Holstein, “Neutrino physics,” Am. J. Phys. 68, 15-32 (2000).
W. C. Haxton and B. R. Holstein, “Neutrino physics: An update,” Am. J. Phys. 72, 18-24 (2004).
E. Sassaroli, “Neutrino oscillations: A relativistic example of a two-level system,” Am. J. Phys.
67, 869-875 (1999).
C. Waltham, “Teaching neutrino oscillations,” Am. J. Phys. 72, 742—752 (2004).

The application of Rabi oscillations to atomic physics is the main focus of this book:
L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, New York: Dover
Publications, Inc., 1987.


www.physics.oregonstate.edu/qmactivities

CHAPTER

Quantum Spookiness

As we have seen in the previous chapters, many aspects of quantum mechanics run counter to our
physical intuition, which is formed from our experience living in the classical world. The probabilistic
nature of quantum mechanics does not agree with the certainty of the classical world—we have no
doubt that the sun will rise tomorrow. Moreover, the disturbance of a quantum mechanical system
through the action of measurement makes us part of the system, rather than an independent observer.
These issues and others make us wonder what is really going on in the quantum world. As quantum
mechanics was being developed in the early twentieth century, many of the world’s greatest physicists
debated the “true meaning” of quantum mechanics. They often developed gedanken experiments or
thought experiments to illustrate their ideas. Some of these gedanken experiments have now actually
been performed and some are still being pursued.

In this chapter, we present a few of the gedanken and real experiments that demonstrate the
spookiness of quantum mechanics. We present enough details to give a flavor of the spookiness and
provide references for further readings on these topics at the end of the chapter.

4.1 W EINSTEIN-PODOLSKY-ROSEN PARADOX

Albert Einstein was never comfortable with quantum mechanics. He is famously quoted as saying
“Gott wiirfelt nicht” or “God does not play dice,” to express his displeasure with the probabilistic
nature of quantum mechanics. But his opposition to quantum mechanics ran deeper than that. He felt
that properties of physical objects have an objective reality independent of their measurement, much
as Erwin felt that his socks were black or white, or long or short, independent of his pulling them out
of the drawer. In quantum mechanics, we cannot say that a particle whose spin is measured to be up
had that property before the measurement. It may well have been in a superposition state. Moreover,
we can only know one spin component of a particle, because measurement of one component disturbs
our knowledge of the other components. Because of these apparent deficiencies, Einstein believed that
quantum mechanics was an incomplete description of reality.

In 1935, Einstein, Boris Podolsky, and Nathan Rosen published a paper presenting a gedan-
ken experiment designed to expose the shortcomings of quantum mechanics. The EPR Paradox
(Einstein-Podolsky-Rosen) tries to paint quantum mechanics into a corner and expose the “absurd”
behavior of the theory. The essence of the argument is that if you believe that measurements on two
widely separated particles cannot influence each other, then the quantum mechanics of an ingeniously
prepared two-particle system leads you to conclude that the physical properties of each particle are
really there—they are elements of reality in the authors’ words.

97
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The experimental situation is depicted in Fig. 4.1 (this version of the EPR experiment is due to
David Bohm and has been updated by N. David Mermin). An unstable particle with spin 0 decays into
two spin-1/2 particles, which by conservation of angular momentum must have opposite spin compo-
nents and by conservation of linear momentum must travel in opposite directions. For example, a neu-
tral pi meson decays into an electron and a positron: 7’ — ¢~ + ¢". Observers A and B are on opposite
sides of the decaying particle and each has a Stern-Gerlach apparatus to measure the spin component
of the particle headed in its direction. Whenever one observer measures spin up along a given direc-
tion, then the other observer measures spin down along that same direction. The quantum state of this
two-particle system is

) =+ =) = =) [+)2), (4.1)

where the subscripts label the particles and the relative minus sign ensures that this is a spin-0 state
(as we'll discover in Chapter 11). The use of a product of kets (e.g., |[+); |—)») is required here to
describe the two-particle system (Problem 4.1). The kets and operators for the two particles are inde-
pendent, so, for example, operators act only on their own kets

f
Sl )i 1=)2 = (Sil+h)[=) = +5 [+ =), 4.2)
and inner products behave as

(L DU =)2) = G D GE=)) = 1 4.3)

As shown in Fig. 4.1, observer A measures the spin component of particle 1 and observer B mea-
sures the spin component of particle 2. The probability that observer A measures particle 1 to be spin
up is 50% and the probability for spin down is 50%. The 50-50 split is the same for observer B. For a
large ensemble of decays, each observer records a random sequence of spin up and spin down results,
with a 50/50 ratio. But, because of the correlation between the spin components of the two particles,
if observer A measures spin up (i.e., S;, = +%/2), then we can predict with 100% certainty that the
result of observer B’s measurement will be spin down (S,, = —#/2). The result is that even though
each observer records a random sequence of ups and downs, the two sets of results are perfectly anticor-
related. The state | ) in Eq. (4.1) that produces this strange mixture of random and correlated measure-
ment results is known as an entangled state. The spins of the two particles are entangled with each
other and produce this perfect correlation between the measurements of observer A and observer B.

Imagine that the two observers are separated by a large distance, with observer B slightly farther
from the decay source than observer A. Once observer A has made the measurement S;. = +#/2, we
know that the measurement by observer B in the next instant will be spin down (S,. = —#/2). We con-
clude that the state |¢) in Eq. (4.1) instantaneously collapses onto the state |+); |—),, and the measure-
ment by observer A has somehow determined the measurement result of observer B. Einstein referred
to this as “spooky action at a distance” (spukhafte Fernwirkungen). The result that observer B records is
still random, it is just that its randomness is perfectly anticorrelated with observer A’s random result.

Spin 0

B Source A

i O 24

Particle 2 Particle 1

FIGURE 4.1 Einstein-Podolsky-Rosen gedanken experiment.
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Hence, there is no problem with faster-than-light communication here because there is no information
transmitted between the two observers.

The EPR argument contends that because we can predict a measurement result with 100% cer-
tainty (e.g., S», = —#/2), then that result must be a “real” property of the particle—it must be an ele-
ment of reality. Because the particles are widely separated, this element of reality must be independent
of what observer A does, and hence, must have existed all along. The independence of the elements of
reality of the two particles is called Einstein’s locality principle, and is a fundamental assumption of
the EPR argument.

The correlation of spin measurements of the two observers is independent of the choice of mea-
surement direction, assuming the same direction for both observers. That is, if observer A measures
the x-component of spin and records S;, = +7/2, then we know with 100% certainty that observer B
will measure S,, = —7/2. Observer A is free to choose to measure Sy, Sy,, or Sy, so EPR argue that
S2 Sy, and §,, must all be elements of reality for particle 2. However, quzintum mechanics maintains
that we can know only one spin component at a time for a single particle. EPR conclude that quantum
mechanics is an incomplete description of physical reality because it does not describe all the elements
of reality of the particle.

If the EPR argument is correct, then the elements of reality, which are also called hidden vari-
ables or instruction sets, are really there, but for some reason we cannot know all of them at once.
Thus, one can imagine constructing a local hidden variable theory wherein there are different types of
particles with different instruction sets that determine the results of measurements. The theory is local
because the instruction sets are local to each particle so that measurements by the two observers are
independent. The populations or probabilities of the different instruction sets can be properly adjusted
in a local hidden variable theory to produce results consistent with quantum mechanics. Because quan-
tum mechanics and a local hidden variable theory cannot be distinguished by experiment, the question
of which is correct is then left to the realm of metaphysics. For many years, this was what many physi-
cists believed. After all, it doesn’t seem unreasonable to believe that there are things we cannot know!

However, in 1964, John Bell showed that the hidden variables that we cannot know cannot even
be there! Bell showed that there are specific measurements that can be made to distinguish between a
local hidden variable theory and quantum mechanics. The results of these quantum mechanics experi-
ments are not compatible with any local hidden variable theory. Bell derived a very general relation,
but we present a specific one here for simplicity.

Bell’s argument relies on observers A and B making measurements along a set of different direc-
tions. Consider three directions a, f), ¢ in a plane as shown in Fig. 4.2, each 120° from any of the other
two. Each observer makes measurements of the spin projection along one of these three directions,
chosen randomly. Any single observer’s result can be only spin up or spin down along that direction,
but we record the results independent of the direction of the Stern-Gerlach analyzers, so we denote
one observer’s result simply as + or —, without noting the axis of measurement. The results of the pair

A AN
a a
Spin 0
Source A
N .
_/ ,
Particle 2 Particle 1 ’B

A
Cc

FIGURE 4.2 Measurement of spin components along three directions as proposed by Bell.
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of measurements from one correlated pair of particles (i.e., one decay from the source) are denoted
+ —, for example, which means observer A recorded a + and observer B recorded a —. There are only
four possible system results: + +, + —, — +, or — —. Even more simply, we classify the results as
either the same, + + or — —, or opposite, + — or — +.

A local hidden variable theory needs a set of instructions for each particle that specifies ahead
of time what the results of measurements along the three directions a, f) ¢ will be. For example, the
instruction set (ﬁ+, f)-i-, é+) means that a measurement along any one of the three directions will
produce a spin up result. For the entangled state of the system given by Eq. (4.1), measurements by the
two observers along the same direction can yield only the results + — or — +. To reproduce this aspect
of the data, a local hidden variable theory would need the eight instruction sets shown in Table 4.1. For
example, the instruction set (a+, b—, &+) for particle 1 must be paired with the set (4—, b+, ¢—) for
particle 2 in order to produce the proper correlations of the entangled state. Beyond that requirement,
we allow the proponent of the local hidden variable theory freedom to adjust the populations N; (or
probabilities) of the different instruction sets as needed to make sure that the hidden variable theory
agrees with the quantum mechanical results.

Now use the instruction sets (i.e., the local hidden variable theory) to calculate the prob-
ability that the results of the spin component measurements are the same (P = P41 + P__)
and the probability that the results are opposite (?opp =9, + P,_), considering all possible
orientations of the spin measurement devices. There are nine different combinations of measure-
ment directions for the pair of observers: aa, ab, A¢, ba, bb, bé, ¢4, éb, ¢é¢. If we consider particles
of type 1 (i.e., instruction set 1), then for each of these nine possibilities, the results are opposite
(+ —). The results are never the same for particles of type 1. The same argument holds for type
8 particles. For type 2 particles, the instruction sets (a+, b+, ¢—) and (a-, b—, ¢+) yield the
nine possible results +—, +—, ++, +—, +—, ++, ——, ——, —+ with four possibilities of
recording the same results and five possibilities for recording opposite results. Thus, we arrive at the
following probabilities for the different particle types:

Popp = 1
types 1 & 8
?vame = O
2, = S 4.4)
9
4 types 2 — 7.
?s'ame = 5

Table 4.1 Instruction Sets (Hidden Variables)

Population Particle 1 Particle 2
N, (a+, b+, &+) (4—,b—, &)
N, (a+, b+, &) (a—,b—, &+)
N, (a+,b—, &+) (A—, b+, &)
N, (a+,b—, &) (4—, b+, &+)
Ns (a—, b+, &+) (a+,b—, &)
Ng (a—, b+, &) (a+,b—, &+)
N, (a—,b—, &+) (a+, b+, &)
Ng (4—,b—, &) (a+, b+, é+)
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To find the probabilities of recording the same or opposite results in all the measurements, we
perform a weighted average over all the possible particle types. The weight of any particular particle
type, for example type 1, is simply N; / EN,- (recall we will adjust the actual values later as needed).
Thus, the averaged probabilities are:

1 4 4
?mme = 7(N2+N3 +N4+N5 +N6 +N7) = —
2]\49 9
’1 S S (4.5)
Py = N+ Ny + 2(Ny + Ny + Ny + Ns + Ng + N;) | = 2,
opp ENi(l 8 9( 2 3 4 5 6 7)) 9

1
where the inequalities follow because the sum of all the weights for the different particle types must
be unity. In summary, we can adjust the populations all we want, but that will always produce prob-
abilities of the same or opposite measurements that are bound by the above inequalities. That is what
is meant by a Bell inequality.

What does quantum mechanics predict for these probabilities? For this system of two spin-1/2
particles, we can calculate the probabilities using the concepts from the previous chapters. Assume
that observer A records a “+” along some direction (of the three). Define that direction as the z-axis
(no law against that). Observer B measures along a direction n at some angle 6 with respect to the
z-axis. The probability that observer A records a “+” along the z-axis and observer B records a “+”
along the n direction is

P = (i {+] n(+D9)] (4.6)

Substituting the entangled state | ) and the direction eigenstate |+); gives
2

Py =

({082 o]+ e in o= (1 1) = ()41
2 4.7

\}5<Cosz S+ + e ’¢s1n* o= |>(|—>2)

1 0
= Esinz E

__

The same result is obtained for the probability that observer A records a along the z-axis and
observer B records a “—"" along the n direction. Hence, the result for the same measurements is

0
Pome = Piy + P__ = sinzg. 4.8)

__

The probability that observer B records a along the direction i, when A records a “+” is

e = |G+ (=Dl
(2 a1 = e eos o1 (14 1) = )i 412

¢Gm§<|—e”ws60<ﬂ>2 )

1
- COS2 Q,
2 2
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and the probability for opposite results is

P

0
oy = Pi— TPy = 00525. (4.10)

The angle 6 between the measurement directions of observers A and B is 0° in 1/3 of the mea-
surements and 120° in 2/3 of the measurements, so the average probabilities are

P 1 .20°+2 5 120° 10+23 1
= —egIN° — —egINT —— = — —_—— = —
ame = 3 TR T T3N3 T
o o (4.11)
P Il'coszof-F%'cosz@:l'l+g-l:l
o3 2 3 2 3 3 4 2

These predictions of quantum mechanics are inconsistent with the range of possibilities that we
derived for local hidden variable theories in Eq. (4.5). Because these probabilities can be measured,
we can do experiments to test whether local hidden variable theories are possible. The results of exper-
iments performed on systems that produce entangled quantum states have consistently agreed with
quantum mechanics and hence, exclude the possibility of local hidden variable theories. We are forced
to conclude that quantum mechanics is an inherently nonlocal theory.

The EPR paradox also raises issues regarding the collapse of the quantum state and how a mea-
surement by A can instantaneously alter the quantum state at B. However, there is no information
transmitted instantaneously and so there is no violation of relativity. What observer B measures is not
affected by any measurements that A makes. The two observers notice only when they get together
and compare results that some of the measurements (along the same axes) are correlated.

The entangled states of the EPR paradox have truly nonclassical behavior and so appear spooky
to our classically trained minds. But when you are given lemons, make lemonade. Modern quantum
researchers are now using the spookiness of the entangled states to enable new technologies that take
advantage of the way that quantum mechanics stores information in these correlated systems. Quan-
tum computers, quantum communication, and quantum information processing in general are active
areas of research and promise to enable a new revolution in information technology.

4.2 @ SCHRODINGER CAT PARADOX

The Schrodinger cat paradox is a gedanken experiment designed by Schrodinger to illustrate some of
the problems of quantum measurement, particularly in the extension of quantum mechanics to classi-
cal systems. The apparatus of Schrodinger’s gedanken experiment consists of a radioactive nucleus, a
Geiger counter, a hammer, a bottle of cyanide gas, a cat, and a box, as shown in Fig. 4.3. The nucleus
has a 50% probability of decaying in one hour. The components are assembled such that when the
nucleus decays, it triggers the Geiger counter, which causes the hammer to break the bottle and release
the poisonous gas, killing the cat. Thus, after one hour there is a 50% probability that the cat is dead.
After the one hour, the nucleus is in an equal superposition of undecayed and decayed states:

|‘1[/nucleus> = %2 ( ‘ d’undecayed) + ‘ l»[fdecayed>) . (4 12)

The apparatus is designed such that there is a one-to-one correspondence between the undecayed
nuclear state and the live-cat state and a one-to-one correspondence between the decayed nuclear state
and the dead-cat state. Though the cat is macroscopic, it is made up of microscopic particles and so
should be describable by a quantum state, albeit a complicated one. Thus, we expect that the quantum
state of the cat after one hour is

‘lpcat> = %(hﬁalive) + ‘l/jdead>)' (413)
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Nucleus Geiger Counter Cyanide Cat

FIGURE 4.3 Schrodinger cat gedanken experiment.

Both quantum calculations and classical reasoning would predict 50/50 probabilities of observ-
ing an alive or a dead cat when we open the box. However, quantum mechanics would lead us to
believe that the cat was neither dead nor alive before we opened the box, but rather was in a super-
position of states, and the quantum state collapses to the alive state ¢, ) or dead state |,qq) Only
when we open the box and make the measurement by observing the cat. But our classical experiences
clearly run counter to this. We would say that the cat really was dead or alive, we just did not know
it yet. (Imagine that the cat is wearing a cyanide sensitive watch—the time will tell us when the cat
was killed, if it is dead!)

Why are we so troubled by a cat in a superposition state? After all, we have just finished three
chapters of electrons in superposition states! What is so inherently different about cats and electrons?
Experiment 4 that we studied in Chapters 1 and 2 provides a clue. The superposition state in that
experiment exhibits a clear interference effect that relies on the coherent phase relationship between
the two parts of the superposition state vector for the spin-1/2 particle. No one has ever observed such
an interference effect with cats, so our gut feeling that cats and electrons are different appears justified.

The main issues raised by the Schrodinger cat gedanken experiment are (1) Can we describe mac-
roscopic states quantum mechanically? and (2) What causes the collapse of the wave function?

The Copenhagen interpretation of quantum mechanics championed by Bohr and Heisenberg
maintains that there is a boundary between the classical and quantum worlds. We describe micro-
scopic systems (the nucleus) with quantum states and macroscopic systems (the cat, or even the Gei-
ger counter) with classical rules. The measurement apparatus causes the quantum state to collapse and
to produce the single classical or meter result. The actual mechanism for the collapse of the wave func-
tion is not specified in the Copenhagen interpretation, and where to draw the line between the classical
and the quantum world is not clear. Others have argued that the human consciousness is responsible
for collapsing the wave function, while some have argued that there is no collapse, just bifurcation into
alternate, independent universes. Many of these different points of view are untestable experimentally
and thus raise more metaphysical than physical questions.

These debates about the interpretation of quantum mechanics arise when we use words, which
are based on our classical experiences, to describe the quantum world. The mathematics of quantum
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mechanics is clear and allows us to calculate precisely. No one is disagreeing about the probability
that the cat will live or die. The disagreement is all about “what it really means!” To steer us toward
the clear mathematics, Richard Feynman admonished us to “Shut up and calculate!” Two physicists
who disagree on the words they use to describe a quantum mechanical experiment generally agree on
the mathematical description of the results.

Recent advances in experimental techniques have allowed experiments to probe the boundary
between the classical and quantum worlds and address the quantum measurement issues raised by
the Schrodinger cat paradox. The coupling between the microscopic nucleus and the macroscopic
cat is representative of a quantum measurement whereby a classical meter (the cat) provides a clear
and unambiguous measurement of the state of the quantum system (the nucleus). In this case, the two
possible states of the nucleus (undecayed or decayed) are measured by the two possible positions on
the meter (cat alive or cat dead). The quantum mechanical description of this complete system is the
entangled state

| ‘psystem) = \%i ( | ‘!Mndecayed) | lpalive) + | ‘lldeca_\'ea'> | l/jdead >) . (4 1 4)

The main issue to be addressed by experiment is whether Eq. (4.14) is the proper quantum mechanical
description of the system. That is, is the system in a coherent quantum mechanical superposition, as
described by Eq. (4.14), or is the system in a 50/50 statistical mixed state of the two possibilities? As
discussed above, we can distinguish these two cases by looking for interference between the two states
of the system.

To build a Schrédinger cat experiment, researchers use a two-state atom as the quantum system
and an electromagnetic field in a cavity as the classical meter (or cat). The atom can either be in the
ground |g) or excited |e) state. The cavity is engineered to be in a coherent state |a) described
by the complex number «, whose magnitude is equal to the square root of the average number of
photons in the cavity. For large «, the coherent state is equivalent to a classical electromagnetic
field, but for small «, the field appears more quantum mechanical. The beauty of this experiment is
that the experimenters can tune the value of o between these limits to study the region between the
microscopic and macroscopic descriptions of the meter (cat). In this intermediate range, the meter is
a mesoscopic system.

Atoms travel through the cavity and disturb the electromagnetic field in the cavity. Each atom is
modeled as having an index of refraction that alters the phase of the electromagnetic field. The sys-
tem is engineered such that the ground and excited atomic states produce opposite phase shifts * ¢.
Before the atom enters the cavity, it undergoes a 7r-pulse that places it in an equal superposition of
ground and excited states

Vatom) = 75 (l€) + 12)), (4.15)

as shown in Fig. 4.4. Each component of this superposition produces a different phase shift in the
cavity field such that after the atom passes through the cavity, the atom-cavity system is in the entan-
gled state

‘ll’atom+cavity> = %(|e>|aei¢> + |g>|ae_i¢>) (416)

that mirrors the Schrodinger cat state in Eq. (4.14). The state of the cavity field is probed by sending
a second atom into the cavity and looking for interference effects in the atom that are produced by the
two components of the field. In this experiment, the two field states are classically distinguishable,
akin to the alive and dead cat states. For small values of the phase difference 2¢ between the two field
components, the interference effect is evident. However, for large values of the phase difference 2¢
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FIGURE 4.4 Schrédinger cat experiment with atoms in a cavity.

between the two field components, the interference effect vanishes, indicating that the superposition
state in Eq. (4.16) has lost the fixed phase relationship between the two parts of the entangled state and
can no longer produce interference effects. The system has undergone decoherence due to its interac-
tion with the random aspects of the environment. The decoherence effect also increases as the number
of photons in the cavity field increases, which makes the cavity field more like a classical state. Hence,
the experiment demonstrates that the quantum coherence of a superposition state is rapidly lost when
the state becomes complex enough to be considered classical. Further details on this recent experiment
are available in the references below (Brune et al.).

PROBLEMS

4.1 Show that the quantum state vector of a two-particle system must be a product |4),|¢), of
two single-particle state vectors rather than a sum |¢s), + |¢),. Hint: consider the action of a
single-particle state operator on the two-particle state vector.

4.2 Consider the two-particle entangled state
W) =)= = [ [+)2).

a) Show that |) is not an eigenstate of the spin component operator S, for particle 1.
b) Show that |¢) is properly normalized.
4.3 Consider the two-particle entangled state

) = U+) =) = [=)[+)2).

Show that the probability of observer A measuring particle 1 to have spin up is 50% for any
orientation of the Stern-Gerlach detector used by observer A. To find this probability, sum over
all the joint probabilities for observer A to measure spin up and observer B to measure anything.

4.4 Show that the state
a) = U+ =)= =) [+)2)
is equivalent to the state
W) = 55 (1) 1= )aw = [ =) 1 [4)22)-

That is, the two observers record perfect anticorrelations independent of the orientation of their
detectors, as long as both are aligned along the same direction.
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4.5 Calculate the quantum mechanical probabilities in Egs. (4.7) and (4.9) without assuming that
observer A’s Stern-Gerlach device is aligned with the z-axis. Let the direction of observer A’s
measurements be described by the angle 6, and the direction of observer B’s measurements be
described by the angle 6,. Show that the averaged results in Eq. (4.11) are still obtained.
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CHAPTER

Quantized Energies:
Particle in a Box

In the first part of this book we used the spin system to illustrate the basic concepts and tools of quan-
tum mechanics. With a firm foundation in how quantum mechanics works, we are ready to address the
central question that quantum mechanics was designed to answer: How do we explain the structure of
the microscopic world? All around us are nuclei, atoms, molecules, and solids with unique properties
that cannot be explained with classical physics but require quantum mechanics. For example, quantum
mechanics can tell us why sodium lamps are yellow, why laser diodes have a unique color, and why
uranium is radioactive.

The key to understanding the structure of microscopic systems lies in the energy states that the
systems are allowed to have. Each microscopic system has a unique set of energy levels that gives that
system a “fingerprint” that sets it apart from other systems. With the tools of quantum mechanics, we
can build a theoretical model for the system, predict that fingerprint, and compare it to the experimen-
tal measurement. Our goal in this chapter and the ones that follow is to learn how to predict this energy
fingerprint. In this chapter we will study a particularly simple model system that exhibits most of the
important features that are shared by all microscopic systems.

5.1 B SPECTROSCOPY

The energy fingerprint of a system not only identifies that system uniquely, but the allowed energies
determine the time evolution of the system through the Schrodinger equation, as we learned in Chapter 3.
One of the primary experimental techniques for measuring the energy fingerprint of a system is spectros-
copy. We saw a hint of this in the magnetic resonance example of Section 3.4: absorption and emission of
photons causes transitions between quantized energy levels of the system only when the photon energy
matches the spacing between the energy eigenstates. Historically, the spectrum of hydrogen was a key
ingredient in the development of quantum mechanics, and spectroscopy continues to play an important
role in characterizing new quantum systems and in verifying the rules of quantum mechanics.

In the magnetic resonance example of Section 3.4, the two quantized energy levels arose from the
two possible spin components (up or down) and their different interactions with an applied magnetic
field. The more common situation that gives rise to quantized energy levels is where two or more
particles interact in a way that limits their spatial motion and binds them together into a compos-
ite system. Bound systems such as nuclei, atoms, molecules, and solids are everyday examples that
are characterized by distinct spectral lines associated with quantized energy states, (i.e., eigenstates
of the Hamiltonian with discrete energy eigenvalues). For example, the hydrogen atom energy levels
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and the corresponding optical spectrum are shown in Fig. 5.1. The spectral lines appear when elec-
trons make transitions between energy levels. Downward transitions emit photons and give rise to an
emission spectrum, while upward transitions absorb photons and yield an absorption spectrum. For
every pair of energy eigenvalues E; and Ej, there is a possible spectral line with photon energy E; — Ej,
and photon frequency f;; and wavelength A;; given by

he (5.1)
A =

Y fy Ei—E

s

assuming that E; > E;. The set of spectral lines of atomic hydrogen that share a common lower level
forms a series that is named after its discoverer. The first three series in hydrogen are shown in Fig. 5.1
and listed in Table 5.1. The lowest energy state (n = 1 for hydrogen) is called the ground state, and
the levels above that are called excited states. Though the word spectrum often refers to the observed
optical lines, the set of quantized energy states is also commonly referred to as the energy spectrum
of the system.

4
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FIGURE 5.1 Hydrogen energy levels and the corresponding optical spectrum as a function
of energy, frequency, and wavelength (the wavelength scale is not a linear scale).
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Table 5.1 Hydrogen Transition Wavelengths

. Initial state Series
Final state
2 3 4 5
1 122 nm | 103 nm 97 nm 95 nm | Lyman
2 656 nm | 486 nm | 434 nm | Balmer
3 1875 nm | 1282 nm | Paschen

A spectroscopy experiment can be considered to be a measurement of the energy of a quantum
state. A spectroscopic energy measurement is depicted in Fig. 5.2(a) in a simplified schematic that is
analogous to the Stern-Gerlach spin measurement we discussed earlier. A system is prepared in an
initial state |¢/), and we measure the probability that the state is measured to have a particular energy
E;. If we write the energy eigenstates as | E;), then the probability of a particular energy measurement is

g = [(Elp)[. (5.2)

As we did in the spins problem, we represent the collection of measurements on an ensemble of iden-
tical states as a histogram, as shown in Fig. 5.2(b). In a real spectroscopy experiment, the measured
energies are really energy differences between levels, so it can be a bit of a puzzle to decode the energy
levels from the observed spectrum. We assume that this decoding process can be done and we assume
that the histogram in Fig. 5.2(b) faithfully represents the energy levels of the system. The energy levels
E; and the eigenstates | E;) are solutions to the energy eigenvalue equation

H|E;) = E|E;), (5.3)
so the spectroscopic measurement is how the theoretical Hamiltonian is compared with experiment.

Our task in this chapter is to learn how to predict the allowed energy eigenstates of a particular system
given the Hamiltonian of the system.

(a) (b)

P
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B . KEr ol
E4 {‘pEz = |<E2|¢l>|
v @ 2 Pe. = KESI
E‘S‘ S KEoI2
5 Pe, = KEaI® KEQI®|(E a2 (Eo2
Pe, = KEs)I I | ..
E,E, E; E, Es

FIGURE 5.2 (a) Energy measurement and (b) histogram of results.
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5.2 B ENERGY EIGENVALUE EQUATION

In classical mechanics, we often solve problems by using Newton’s second law F = ma to predict the
position r(¢) of a particle subject to some known forces. Another common method is the energy method,
whereby we use conservation of energy and the relation £ = T + V between the total energy (E)
and the kinetic (7') and potential (V) energies to predict the motion. Of course, the two methods are
related because the force is related to the potential energy by

_av

F:
* dx

54
in one dimension. Hence the potential energy function V(x) is what determines the classical motion of
a particle.

The potential energy is also the key element in quantum mechanics, because of the important role
it plays in the Hamiltonian of the system in question. The Hamiltonian determines the energy states
through the energy eigenvalue equation

H|E;) = E|E;). (5.5)

Note that many other textbooks refer to Eq. (5.5) as the time-independent Schrodinger equation
because it can be derived from the Schrodinger equation by separating the time and space parts; how-
ever, we refer to it always as the energy eigenvalue equation. The prescription for finding a quantum
mechanical Hamiltonian operator is to find the classical form of the energy and replace the physical
observables with their quantum mechanical operators. For a moving particle, the classical mechanical
energy is the sum of the kinetic energy and the potential energy, which in one dimension is
2
px

E:
2m

+ V(). (5.6)

We use the position x and momentum p as the primary physical observables in quantum mechanics,
following the Hamiltonian approach to classical mechanics. Hence the quantum mechanical Hamilto-
nian operator for a particle moving in one dimension is

p="loy V(%). (5.7)

We use carets or hats on operators on occasion to distinguish them from the same symbol used as a
variable. If the distinction is clear from the context, then that notation may be dropped.

So now what? What are these new operators x and p for position and momentum? And how do
we use them to solve the energy eigenvalue equation? In the spins chapters, we learned much of the
machinery of quantum mechanics and would rightly expect to be able to use it in this new problem
on particle motion. However, position and momentum are different enough from spin that we need to
redevelop some of the mathematical machinery we have already learned.

When we discussed spin quantum states, we either used abstract kets, such as |+) or | —),, or we
used column vectors to represent the abstract kets in a particular basis of eigenstates. For example, we
often used the eigenstates of the S, operator as the preferred basis, in which case the abstract kets | +)

and | —), are expressed as
[+) = (1) (5.8)
0 .
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and

|-) ;i<1> (5.9)
X_\/E—] .

In fact, there are very few quantum mechanical problems that can be solved using abstract kets. It is
generally necessary to use a representation of the kets that is convenient for solving the problem. In
the problems that we wish to address now, it is most convenient to represent abstract quantum states as
spatial functions, so we need to explain what that means.

The spatial functions we use to represent quantum states are called wave functions and are gener-
ally written using the Greek letter i as

¥(x). (5.10)

The wave function is a representation of the abstract quantum state, so we can use our representation
notation to write

ly) = ¢(x). (5.11)

We call this representation the position representation, which means that we are using the position
eigenstates as the preferred basis (more on these eigenstates later). For clarity, we will use the Greek
letter ¢y when referring to generic quantum states and other Greek letters to denote specific eigenstates.
For example, in the case of the energy eigenstates, we write the wave functions representing them as

|E;) = ¢p(x) (5.12)

to distinguish them as specific eigenstates.
Using this new wave function notation, the energy eigenvalue equation Eq. (5.5) becomes

Hep(x) = Eipp(x). (5.13)

To solve this equation, we must know how to represent the operators in the Hamiltonian of Eq. (5.7)
using the position representation. It turns out that in the position representation, the action of the posi-
tion operator X is represented by multiplication by the position variable x, while the action of the
momentum operator p is represented by application of a derivative with respect to position (see an
advanced text for justification or take these as postulates). Using our representation notation, these two
statements are

X=x
(5.14)

_ad

dx

p

The momentum operator has a factor of —i# to get the dimensions correct and to ensure that the mea-
surable results are real (not imaginary).

With these representations of the position and momentum operators, we now begin to solve the
energy eigenvalue equation. Inserting Eq. (5.14) into the energy eigenvalue equation gives

ﬁ@E,(x) = Ei‘PE,(x)
~)
(24 V(@) n) = Eien(o) 515
m

1

(7 <_,-ﬁd)2 + V(x))cpEi(x) = Eipp ().

2m dx
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The result is that the energy eigenvalue equation becomes a differential equation

(2L s v eule) = Bout)| (5.16)

2m dx?

This differential equation is a big change from the matrix eigenvalue equations we encountered in the
spin problems. This result is a common occurrence when using the wave function approach: operator
equations turn into differential equations. Hence, when we use the wave function approach to find
the allowed energy eigenstates of a system, we typically solve differential equations. We will solve
this differential equation for several different potential energy functions V(x) in the remainder of this
book, but first we pause to examine the wave function idea more carefully.

5.3 B THE WAVE FUNCTION

To better understand the new concept of a wave function i(x), let’s see how it relates to the quantum
state vector |) we used in spins. In the spin case, we found that a useful way to represent a state vec-
tor was as a column vector of numbers, with each number being the probability amplitude for the state
|if) to be measured in a particular spin eigenstate. For example, we could write the state |/) using the
S. representation as

() es=
"”‘<<—w>> 5. = —1/2. G4

The numbers (*[) in the column vector are the projections of the state vector |i) onto the S,
eigenstates |1 ), corresponding to the two possible eigenvalues. If we measure the spin projection, as
depicted in Fig. 5.3(a), then the amplitudes (& |¢s) are used to calculate the probabilities

P = |(£]y) (5.18)

shown in the histogram in Fig. 5.3(b).
If we now consider an energy measurement, such as depicted in Fig. 5.2(a), then the basis of
energy eigenstates is the appropriate basis for representing the state vector:

(Ely)\ < E=E
(By) | <E=E

ly) = ) | - (5.19)
(a) (b) P
|+) 2, = [(+IP)? 1
K=l I?
) @ 1 K+
-) P = K-pl° s,

FIGURE 5.3 (a) Spin measurement and (b) probability histogram.
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In such an energy measurement, the probabilities shown in Fig. 5.2(b) are calculated using the pro-
jections (E;|) of the state |¢/) onto the energy eigenstates | E;). The probabilities of measuring the
quantized energies are

?p = [(E|y)|. (5.20)

In analogy to these two examples, the wave function is a representation of a quantum state using
the eigenstates of the position operator X as the basis states. If we call the position eigenstates |x;),
then the analog to Eqs. (5.17) and (5.19) would be

<X1‘¢’> <X
ly) = lel) | (5.21)
<X3‘l/f> (_X3,

where the projection (x,|i) is the probability amplitude for the state |¢/) to be measured in the posi-
tion eigenstate |x;). However, experiment tells us that the physical observable x is not quantized.
Rather, all values of position x are allowed. This is in stark contrast to the case of the spin component
S, where only two results were possible. We say that the spectrum of eigenvalues of position is con-
tinuous and the spectrum of eigenvalues of spin is discrete. Future experiments may shed new light on
this, but to date, space appears to be continuous. “Discrete vs. continuous” is an important distinction
that affects how we use and interpret the quantum state vector, the probability amplitudes, and the
probabilities when position is the relevant quantum mechanical observable.

For a continuous variable like position, the column vector representation of Eq. (5.21) is not con-
venient because we cannot write down the infinite number of components. Even if the number were
finite but large, say 100, then we would find a column vector cumbersome. Instead, we might choose to
represent the 100 discrete numbers (x;|f) as points in a graph, such as shown in Fig. 5.4(a). However,
because the position spectrum is continuous, there is an infinite continuum of the probability ampli-
tudes (x|¢), and the natural way to represent such a continuous set of numbers is as a continuous func-
tion, as shown in Fig. 5.4(b). This function is what we call the quantum mechanical wave function (x).
The wave function is the collection of numbers that represents the quantum state vector in terms of the
position eigenstates, in the same way that the column vector used to represent a general spin state is a
collection of numbers that represents the quantum state vector in terms of the spin eigenstates. Whether
you write the wave function as ¢s(x) or as (x| is ultimately a matter of taste. It is more common to

(Xlyr) b) ¥(x
(@) X9y xa) (b) b
ol « " . (Xsly)
. . Xsl)
<X1.|¢> . <X7|¢> Lp(x)
. (Xgl)
. (Xol¥)
« (Xq0lY)
1 1 1 1 1 1 1 1 1 1 X
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FIGURE 5.4 (a) Discrete basis representation and (b) continuous basis representation.
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see the form s(x) used as the wave function, and we will follow that convention mostly, using the
Dirac notation when convenient. But it is important to remember both forms, so we repeat them here:

P(x) = (x[y)]. (5.22)

In words, we say that the wave function (x) is the probability amplitude for the quantum state /) to be
measured in the position eigenstate |x). We will say more about the position eigenstates in Chapter 6 and
then also make more connections between the wave function language and the Dirac bra-ket notation.

Continuing with the analogy to the spin and energy examples above, we expect that the prob-
ability of measuring a particular value of position is obtained by taking the absolute square of the
projection (x|i), as was done in Egs. (5.18) and (5.20) for spin and energy representations. However,
because the projection (x|¢) is the continuous wave function s(x), the absolute square yields a con-
tinuous probability function (actually a probability density, as we’ll find in a moment), which we write
as P(x) so as to distinguish it from the discrete case (e. g Ps—yp /2) by making x an argument rather than
a subscript. In wave function notation, this new probability function is

P(x) = [y(x)]|. (5.23)

Thus, given a wave function ¢(x), such as shown in Fig. 5.5(a), we use Eq. (5.23) to calculate the prob-
ability function ?(x), which is shown in Fig. 5.5(b). The probability function in Fig. 5.5(b) is analogous
to the histograms of discrete probabilities in Figs. 5.2(b) and 5.3(b). We must stress that measuring the
probability function ?(x) does not allow us to infer the wave function (x). We saw in the spin measure-
ments of Chapters 1 and 2 that measurements of three different observables, S, S Vs and S, were required
to deduce the state vector |¢/) because the probability amplitudes are complex numbers. The relative
phases between the probability amplitudes are not accessible from measurement of a single observable.

Having a continuous function for the probability rather than a set of discrete values raises some
important issues. In quantum mechanics we require that the sum of all possible probabilities be equal
to unity (i.e., the state vector must be normalized). In the discrete spins case this meant that:

2P = S = 1. (5.24)

+

If position were discrete instead of continuous, then the normalization condition would be:

S, = Sy’ = 1. (5.25)

n

FIGURE 5.5 (a) Wave function and (b) corresponding probability density.
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However, because the spectrum of position eigenvalues is continuous rather than discrete, the sum
over discrete probabilities must be changed to an integral over the continuous probability function
?(x), with the requisite differential term dx added. For now, we restrict the discussion to one spatial
dimension. Thus the normalization condition is

/ (x)dx =/ (x| dx = 1. (5.26)

The differential dx has dimensions of length and the total integrated probability must be dimension-
less, so the probability function P(x) must have dimensions of inverse length. This means that ?(x) is
a probability density (in one dimension a probability per unit length) rather than a probability. Hence
we interpret the quantity

P(x)dx (5.27)

as the infinitesimal probability of detecting a particle at position x within an infinitesimal region of
width dx [i.e., between x and x + dx, as shown in Fig. 5.6(a)]. To calculate the probability that a par-
ticle is measured to be in a finite interval a < x < b, we add all the infinitesimal probabilities in that
interval, which is the integral

b
Py = / lp(x)[ dx (5.28)

as depicted in Fig. 5.6(b). Equation (5.28) is an incredibly important formula. We use it, for example,
to find the probability that an electron is in a certain region of an atom (extended to three dimensions,
of course).

To calculate other experimental quantities, such as expectation values, we must learn how to trans-
late bra-ket rules for discrete basis systems to wave function rules for continuous basis systems. We can
learn some rules for this translation by comparing the new wave function form of the normalization
condition in Eq. (5.26) to the bra-ket normalization condition. In Dirac notation, the requirement of
probability normalization is expressed in terms of the inner product of the state vector with itself:

(Wly) = 1. (5.29)

Rewrite the wave function normalization condition Eq. (5.26) to make it look more like the bra-ket form:

/ o (x)(x)dx = 1. (5.30)

(a) 2x) (b) P()

T X T T 'X
X X+ dx a b

FIGURE 5.6 Probability for measuring a particle to be in the position range (a) x to x + dx, and (b) a to b.
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Comparing Eq. (5.29) and Eq. (5.30), we postulate the following rules for translating bra-ket formulae
to wave function formulae:

1) Replace ket with wave function ) = (x)
2) Replace bra with wave function conjugate (¢| =y (x)
3) Replace bracket with integral over all space — / dx
4) Replace operator with position representation A— A(x

where we have added a rule about operators that will become obvious in a moment.

Example 5.1 Normalize the wave function
Y(x) = Ce A, (5.31)

Use Eq. (5.26) for the normalization condition and integrate over all space

L= [ ol

_ / |Ceda (5.32)

oo
=/ \C\Ze_Q“‘x_z‘dx.
—

Break the integral into two pieces to remove the absolute value:

2 o]
1 :/ \C\zeza(kz)dx +/ |C\2672a(x72)dx
—o0 2
2 2 *
[C| ez“(xz):| " [|C| —2a(x 2):| (5.33)
2a — 20 2

le’
-~

Once again, we have freedom to choose the overall phase, so we let C be real and positive:
C=Va (5.39)
giving the normalized wave function

$(x) = Vae 2, (5.35)

Using the rules for translating bra-ket notation to wave function notation, a general state vector
projection or probability amplitude expressed in wave function language is

(¢ly) = [ :d>*(x)w(x)dx- (5.36)
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The square of this probability amplitude is the probability that the state ¢s(x) is measured to be in the

state ¢(x)

Technically, we should say that this is the probability that the system prepared in state y(x) is measured
to have the physical observable for which ¢(x) is the eigenstate, because we measure observables, not
states. But the looser language is common and does not create any ambiguity in the calculation. If we
measure the energy, for example, then the probability of obtaining the result E,, is

(pE E ‘ll’ ‘/ Qon

where ¢,(x) is the energy eigenstate with energy E,. Note that Eq. (5.28) and Eq. (5.37) look simi-
lar but have important differences. In Eq. (5.28) we integrate the probability density (wave function
complex squared) over a finite range of position in order to sum the probabilities of measuring many
different positions. In Eq. (5.37) we integrate the product of two wave functions over all space to deter-
mine their mutual overlap, and then we complex square that result to get the probability of measuring
a single result.

To transform an expectation value to wave function language, we must consider the operator. The
expectation value of an observable A is the matrix element of the operator

(5.37)

> (5.38)

(A) = (w|Alw). (5.39)
If we rewrite the expectation value as

(A) = (wl{Alp)}. (5.40)

we see that it is an inner product where one ket has been transformed by the operator A. To write this
in terms of wave functions, we must make sure to use the position representation form of the operator.
For example, the position operator X in the position representation is simply multiplication by the sca-
lar position x. Using the translation rules to write the expectation value of the position in wave function
notation yields

= [ ¢ (x)xp(x)dx (5.41)

where we have used the fact that scalar multiplication is commutative. For the expectation value of the
momentum, we find

(P) = (Wlplw)

/:w*(x)(_ihd)dl(x)dx, (5.42)
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which cannot be simplified more without knowing the wave function. In the next section, we will solve
the energy eigenvalue equation for a specific potential energy to allow us to calculate these expectation
values explicitly.

Example 5.2 Consider the wave function from Example 5.1:
Y(x) = Vae 2, (5.43)
Calculate the expectation value of the position and the probability that the particle is measured to

be in the interval 4 < x < 6.
The expectation value of position is given by Eq. (5.41)

() = [ o as
/°° —

xe*Zah 2| dx

—o0

2 o
_ / 202 gy 4+ 4 / e2a=2) gy (5.44)
2

2 )
-1 + 2 -1 -2
2a( e ax)} + a|:e_2"(x—2) ( - ax)}
o 4a )

a[”““tom_(‘l”ﬂ

4a? 4q

= 2.

This is what you expect based upon the plot of wave function shown in Fig. 5.7(a) and the probabil-
ity density in Fig. 5.7(b), which are symmetric about the point x = 2.
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FIGURE 5.7 (a) Wave function and (b) corresponding probability density. The hatched region
in (b) represents the probability for the particle to be measured in the region 4 <x <6.
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To calculate the probability of finding the particle in the interval, use Eq. (5.28)

6
Pyci<o :/
4
6
=/ ae 2072 gy
4
6

|:L€*2a(x72) :|
—2a 4

—4a

== [1 — e™¥].

2
dx

Vae -2

(5.45)

This probability is shown as the hatched region in Fig. 5.7(b). The actual value of the probability
depends on the value of the parameter a.

5.4 B INFINITE SQUARE WELL

Our task now is to solve the energy eigenvalue equation, which we found to be a differential equation

(2L s v)eule) = Fesle) (5.46)

2m dx?

As you might expect, the solutions to this differential equation depend critically on the functional
dependence of the potential energy V(x). A generic potential energy function is depicted in Fig. 5.8
in a potential energy diagram that illustrates some important aspects of the motion of the particle.
Most of the interesting systems to which we will apply Eq. (5.46) resemble the potential energy func-
tion depicted in Fig. 5.8 in that V(x) has a minimum, so we refer to the potential energy function as a

Energy

Classically
forbidden region

Classically allowed region Classically

forbidden region

Classical
turning points

FIGURE 5.8 A generic potential energy well.
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potential well. The particle energy is conserved, so the kinetic energy 7(x) = E — V(x) is illustrated
in the potential energy diagram by the vertical arrow between the fixed energy E, and the potential
energy V(x). For a classical particle, the kinetic energy cannot be negative, so a classical particle with
the energy E; chosen in Fig. 5.8 has its motion constrained to the region between x; and x,. These
extreme points of the classical motion are called classical turning points and the region within the
turning points is called the classically allowed region, while the regions beyond are called classically
forbidden regions. Particles that have their motion constrained by the potential well are said to be
in bound states. Particles with energies above the top of the potential well do not have their motion
constrained and so are in unbound states. Note that the extent of the classically forbidden and allowed
regions depends on the specific value of the energy, E;, for a particular bound state.

Solving Eq. (5.46) for various important potential energy functions is the subject of this and later
chapters. In this chapter, our goal is to study a simple potential energy system and learn the mathemat-
ics required for this new wave function approach.

We begin our journey to energy quantization with the simplest example of a particle that is con-
fined to a region of space. The classical picture is a super ball bouncing between two perfectly elastic
walls. We call this system a particle in a box. We observe three important characteristics of this
classical system: (1) the ball flies freely between the walls, (2) the ball is reflected perfectly at each
bounce, and (3) the ball remains in the box no matter how large its energy. These three observations
are consistent with (1) zero force on the ball when it is between the walls, (2) infinite force on the ball
at the walls, and (3) infinite potential energy outside the box.

The mathematical model that is consistent with these three observations of the motion of a par-
ticle in a box is given by the potential energy function shown in Fig. 5.9. The potential energy is zero
within the well (any constant would suffice, but we choose zero for simplicity), and it is infinite out-
side the well. The discontinuity at the sides of the well requires us to write the potential energy func-
tion in a piecewise fashion

o0, x <0
V(x) =< 0, 0<x<L (5.47)
o0, x> L.

Because of the shape of the potential energy in Fig. 5.9, this system is also referred to as an infinite
square well. Though this model is too simple to accurately represent any real quantum mechanical
system, it does illustrate most of the important features of a particle bound to a limited region of space.

V(x) 00
A A

y X
0 L2 L

FIGURE 5.9 Infinite square potential energy well.
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Our goal is to find the energy eigenstates and eigenvalues of the system by solving the energy
eigenvalue equation using the potential energy in Eq. (5.47). The potential energy is piecewise, so we
must solve the differential equation (5.46) separately inside and outside the box. Outside the box, the
potential energy is infinite and the energy eigenvalue equation is

n d?
( s + °0><PE(X) = Eqp(x), outside box. (5.48)
m

We are looking for solutions with finite energy E, so Eq. (5.48) is satisfied only if the energy eigenstate

wave function @g(x) is zero everywhere outside the box. This means that the quantum mechanical

particle is excluded from the classically forbidden regions in this example. This correspondence with

the classical situation holds only for the case of infinite potential energy walls on the potential well.
Inside the box, the potential energy is zero and the energy eigenvalue equation is

n* d?
<_7F T O)QDE(X) = Eog(x), inside box. (5.49)
m dx

Thus our task reduces to solving the differential equation inside the box:

# d?
_%E(PE(X) = Epg(x). (5.50)

It is worth reminding ourselves at this point what is known and what is not. The particle has a mass
m and is confined to a box of size L. These quantities are known, as is 7, a fundamental constant. The
unknowns that we need to find are the energy E and the wave function ¢g(x), which is what it means to
solve an eigenvalue problem (now posing as a differential equation).

It is convenient to rewrite the differential equation (5.50) as

2
%%(X) = —%E%(X) 551)
= —k*pp(x),
where we have defined a new parameter
, _ 2mE
k= 2 (5.52)

which is positive because the energy E is positive in this problem. The parameter & is called the wave
vector, and its physical interpretation will be evident in Eq. (5.67). Equation (5.51) says that the
energy eigenstate @z(x) is a function whose second derivative is equal to that function itself times a
negative constant. We can write the solution either in terms of complex exponential functions

op(x) = A'e™ + B¢ (5.53)
or in terms of sine and cosine functions
¢p(x) = Asinkx + B coskx. (5.54)

Either solution includes two as yet unknown constants, as you would expect for a second-order differ-
ential equation. It turns out that bound state energy eigenstates can always be written as real functions,
so we choose to work with the sine and cosine form of the general solution (if you choose the complex
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exponential form, you will arrive at the sine and cosine solutions at the end of the problem anyway:
Problem 5.3). Hence the energy eigenstate wave function throughout space is

0, x<0
op(x) = { Asinkx + B coskx, 0<x<L (5.55)
0, x> L.

We now need some more information to reach the final solution. There are three unknowns in
the problem: A, B, and k [which contains the energy E through Eq. (5.52)], so we expect to need three
pieces of information to solve for the three unknowns. We get two of these pieces of information from
imposing boundary conditions on the wave function. To make sure that the mathematical solutions
properly represent real physical systems, we require that the wave function be continuous across each
boundary between different regions of space where different solutions exist. Applying this require-
ment on the continuity of the wave function at the sides of the box x = 0 and L yields two boundary
condition equations:

¢£(0): Asin(0) + Bcos(0) = 0

(5.56)
op(L): AsinkL + BcoskL = 0.
The boundary condition at the left side of the box yields
B =0. (5.57)

This tells us that the cosine part of the general solution is not allowed because the cosine solution is not
zero at the edge of the box and so does not match the wave function outside the box. The exclusion of
the cosine part of the solution arises because we chose to locate our box with one side at x = 0; if the
box is located differently, then both sine and cosine solutions may be allowed. Given that the allowed
wave functions must be sine functions, the boundary condition at the right side of the box yields

AsinkL = 0. (5.58)

This equation is satisfied if A = 0, but that yields a wave function that is zero everywhere, so it is unin-
teresting. The more interesting possibility is that

sinkL = 0. (5.59)

This is a transcendental equation that places limitations on the allowed values of the wave vector k. We
will find other transcendental equations when we study other potentials. This transcendental equation
has solutions when the sinusoid function is zero. Hence the wave vectors that satisfy this equation are

kL = nw
@:n%, n=1,23, ... (5.60)

Only discrete wave vectors are allowed, so this is termed the quantization condition. The index 7 is
the quantum number, which we use to label the quantized states and energies. The value n = 0 is
excluded because that would yield a wave function equal to zero, which is uninteresting. The nega-
tive values of n are excluded because they yield the same states as the corresponding positive n values,
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recalling that an overall phase (—1 = ¢ in this case) does not change the physical state. Using the defi-
nition of the wave vector in Eq. (5.52), we relate the quantized wave vectors to the quantized energies

Pk,

E .
2m

(5.61)

n

Hence, the wave vector quantization condition in Eq. (5.60) results directly in the energy quantization
for this system:

n?mh?

oL’

n=1273.]. (5.62)

These allowed energies scale with the square of the quantum number n and produce the set of energy
levels shown in Fig. 5.10. The ground state is the n = 1 level.
The allowed energy eigenstate wave functions are:
nmwx
¢,(x) = Asin 7 n=1273, ... (5.63)
The constant A was not determined by the boundary conditions. To determine A, we need the third
piece of information, which is that the wave function is normalized to unity:

L= e E) - [ Gi()e)as = / e (5.64)

E/E;

A

r n=5
25— Es = 25 E;
20—

! L= E, = 16E
151 o
10— n=3

B E3=9E1
5r n=2

B E2=4E1

r n=1
ol E = 1E;

FIGURE 5.10 Energy spectrum of the infinite square potential energy well.
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Substitute the wave function from Eq. (5.63) and note that the wave function is zero for x < 0 and
x < L to limit the range of integration, resulting in

L L
1 :/ |A]? sin? k,xdx = |A\25. (5.65)
0

We are free to choose the normalization constant to be real and positive, because an overall phase is
not measurable. Thus the normalization constant is A = V2/L and the properly normalized energy
eigenstates are

2
eu(x) = Zsin%, n=1,23 ... (5.66)

The first few allowed energy states are shown in Fig. 5.11. From these plots, it is now clear why
we call /(x) the wave function. These energy eigenstates have a “wavy” spatial dependence, much
like the modes on a guitar string. For the infinite square well, the waves “fit” into the potential well
such that there are an integer number of half wavelengths within the well. If we relate the wave vector
k to a wavelength A through the relation

k=" (5.67)

L = T
n nz
27w
N L
B 2L (5.68)
A, = 7
— An
L n?

In words, the well must contain an integer number of half wavelengths. This is the sense in which the
waves must “fit” into the well. This is the same as the classical result for the allowed standing waves
on a vibrating string, such as a guitar string. The distinction between the classical wave and the quan-
tum wave is that the classical wave does not have a quantized energy. The energy of a vibrating guitar

(b) (c)
n=1 y(x) n=2 y(x) n=

3
m‘x V\ . )
L/2 L { L/\/_ L

FIGURE 5.11 Wave functions of the first three energy eigenstates of the infinite
square potential energy well.
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string depends on the amplitude of oscillation, not on the wavelength or wave vector, and so it can have
any energy value. The amplitude of the quantum wave function is determined by the normalization
condition and is independent of the energy for the infinite square well.

The wave properties of this quantum system are a new aspect that is not evident in the classical
description of a particle. In classical mechanics, waves and particles are clearly distinct, whereas in
quantum mechanics a system exhibits properties that remind us of classical particles but also exhibits
properties of classical waves. This is often referred to as wave-particle duality. We will see more of
this in the next chapter when we discuss free particles.

Example 5.3 It is useful to put some numbers into these expressions to get a sense of scale. For
example, if we confine an electron (m, = 511 keV/c?) in a box of size 0.2 nm (about the size of an
atom), the ground state (n = 1) energy is

E = Wzﬁzz
2m,L
_ 72(6.58 X 1076 eV ) (5.69)
2(0.511 X 10°eV/c?) (0.2 X 10 m)?
= 94eV.

This is comparable to typical atomic binding energies.
The spectrum of this system will include the transition between the ground state and the first excited
state. The first excited state has energy E, = 22E, = 4E,, so the wavelength of light for this transition is

Ny = e he
2 E,—E, 3E 570,
1240 eV nm )
=———— = 44nm.
3(9.4eV)

Note that A, is the wavelength of the photon emitted or absorbed in the transition, not the wave-
length of the bound particle that is associated with the wave vector of the wave function, which is
0.4 nm for the ground state and 0.2 nm for the excited state, in agreement with Eq. (5.68).

Now that we have found the energy eigenstates, we have what we need to calculate probabilities
and expectation values to compare with experiments. The square of the wave function gives us the
probability density

2,(x) = |, (x)|* (5.71)

which is shown in Fig. 5.12 for the first three states. Note that the probability density is zero outside
the well, so the probability of finding the particle anywhere outside the well is zero, just as in the clas-
sical case. However, in the quantum system there are positions within the well where the probability
of finding the particle is zero, which does not happen in the classical case. These positions are at the
nodes of the wave function and hence are characteristic of the wave nature of the particle.
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FIGURE 5.12 Probability densities of the first three energy eigenstates of the
infinite square potential energy well.

Example 5.4 Find the expectation value of the position for a particle in the ground state of an
infinite square potential energy well.
The expectation value of position is given by Eq. (5.41)

© ©

(8) = (E[5]E)) = / o1(¥)xer(x)dx = / xler()Pdx

— —
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This is what we would expect to get given the symmetry of the problem. There is no preference for
the left or right side of the well, so the average value of a set of position measurements must be the
midpoint of the well. We get the same result for any energy eigenstate of the system.

To summarize, we have solved the problem of a particle bound in an infinitely deep square poten-
tial energy well, which means we have found the energy eigenvalues and eigenstates. The well is
depicted in Fig. 5.13(a), the spectrum of allowed energies is depicted in Fig. 5.13(b), and the wave
functions of the energy eigenstates are depicted in Fig. 5.13(c). It is common practice to unify the three
diagrams of Fig. 5.13 in a single diagram, shown in Fig. 5.14, that represents the quantum mechani-
cal potential energy well problem and its solution. The well, the energies, and the wave functions are
superimposed on each other, such that different aspects of the diagram have different vertical axes.
The wave function for each energy eigenstate has its vertical coordinate origin located at the energy of
that state.
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FIGURE 5.13 (a) Infinite square potential energy well, (b) spectrum of allowed energies, and
(c) energy eigenstate wave functions.
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FIGURE 5.14 Unified schematic diagram of infinite square well problem and solution.
Note that two vertical scales are implied. For the potential energy well and the energy
spectrum, the vertical scale is energy with the origin at the bottom of the well. For the
wave functions, the vertical scale is probability amplitude (1/ lengthl/ 2) with the

¢y = 0 origin for each state centered on the energy of that state.
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The take home message of this problem is that the imposition of boundary conditions on the
wave function limits the possible states that can “fit” into the well and directly leads to the quantiza-
tion of energy. This is a general result that we will return to time and again as we study other potential
well landscapes.

5.5 B FINITE SQUARE WELL

Now let’s make the problem a little more realistic by having the potential energy outside the well be finite

instead of infinite. We still assume that the well is square, which still results in an infinite force at the

walls. However, this new problem illustrates several important features of bound energy states that were

not evident in the infinite well. A finite well can be used to model many real systems, such as an electron

in a thin semiconductor. In Section 5.8, we use this model to discuss quantum well semiconductor lasers.
The finite square well potential energy is shown in Fig. 5.15 and is written as

V(), x < —a
V(x) =4 0, —a<x<a (5.73)
VO’ x> a,

where we have deliberately chosen a different position origin from the infinite well case in order to
give you practice and also for convenience. For now, we look for bound state solutions, that is, for
energies below the potential V|,. Energies above V|, correspond to unbound states that we will discuss
in the next chapter.

With this new potential energy function, the energy eigenvalue equation is

# d?

(_%E + 0>‘PE(X) = EQDE(X)’ inside box
> (5.74)

fu

(_%E + V0)¢E(x) = Egg(x), outside box.
V(x)
Yo
X
—a 0 a

FIGURE 5.15 Finite square potential energy well.
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In the infinite well problem, we found it useful to use the wave vector k
k= \|—. (5.75)

In this case, it is also useful to define a similar constant outside the well

2m
q= ?(Vo — E). (5.76)
For bound states, 0 < E < V,, and therefore both k and ¢ are real. We use these two constants to
rewrite the energy eigenvalue equation:

d*op(x

Li) = —kpg(x), inside box

dzdx( | (5.77)
X

% = q%pp(x), outside box.

The energy eigenvalue equation inside the box is identical to the one we solved for the infinite well poten-
tial. The differential equation outside the box is similar except the constant is positive instead of negative,
giving real exponential solutions rather than complex exponentials. Thus the solution outside the box is

op(x) = Ae®™ + Be . (5.78)

This solution in the classically forbidden region is exponentially decaying, or growing, with a decay
length, or growth length, of 1 / q.

The energy eigenstate must be constructed by connecting solutions in the three regions shown in
Fig. 5.15. We write the general solution as

Ae? + Be ¥, x < —a
¢p(x) = § Csinkx + D cos kx, —a<x<a (5.79)
Fe?™ + Ge ¥, x> a.

As we discussed in the infinite well problem, the solutions in the three regions must satisfy bound-
ary conditions where the regions connect. In constructing the infinite well solutions, we used the
condition that the wave function must be continuous across a boundary. We now introduce a second
requirement that the slope of the wave function be continuous across a boundary. If the slope were
discontinuous, that would imply an infinite kinetic energy. However, this requirement has one excep-
tion: it does not apply if the potential is infinite (Problem 5.24), which is why we did not use it in the
infinite well problem. You can see in Fig. 5.14 that the infinite well solutions have a change in slope
at the edges of the box where the potential energy becomes infinite. We now summarize these two
boundary conditions:

1) ¢g(x) is continuous

deog(x)

is continuous unless V = o,

Before we impose the boundary conditions, we make two immediate simplifications to the gen-
eral solutions in Eq. (5.79). In the regions outside the well, the wave function must be a decaying
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exponential because a growing exponential term all the way out to infinity would not permit the wave
function to be normalized. This normalization condition, which can also be termed a boundary condi-
tion at infinity, requires that B = F = 0 in Eq. (5.79). The second simplification comes from recog-
nizing that the potential energy is symmetric with respect to the origin [ V(x) = V(—x)]. This means
that the energy eigenstates will either be symmetric or antisymmetric (even or odd). This symmetry
is evident in the infinite well solutions shown in Fig. 5.14. (This can also be discussed in terms of the
commutation of the Hamiltonian and the parity operator, which we discuss in Section 7.6.4) We can
thus solve for the two sets of solutions independently. If you don’t impose this symmetry condition
now, it will come out naturally after some algebra on the general solutions anyway (Problem 5.14).
With these two simplifications, the even solutions reduce to

Ae®, x < —a
@even(x) = 4 D cos(kx), —a=x=a (5.80)
Ae ™, x> a.
The odd solutions are
Ae?, x < —a
©oaa(x) = { Csin(kx), —a=x=a (5.81)
—Ae x> a.

Let’s first do the even solutions. The boundary conditions at the right side of the well (x = a) give

Cevenl@): D cos(ka) = Ae™

d X (5.82)
ern() :—kD sin(ka) = —qAe .
dx x=a
The boundary conditions at the left side of the well (x = —a) yield the same equations, which must be

true because of the symmetry. The two equations above have three unknowns: the amplitudes A and D
and the energy E, which is contained in the parameters k and ¢g. The normalization condition provides
the third equation required to solve for all three unknowns. We find the energy condition rather simply
by dividing the two equations, which eliminates the amplitudes and yields

ktan(ka) = q. (5.83)

Because both k and ¢ are functions of the energy, this equation gives us a formula to find the allowed
energies. It is independent of the constants A and D, which are found by applying the normalization
condition and using Eq. (5.82) again. As usual with these types of problems, the eigenvalue condi-
tion is obtained first, and then the eigenfunctions are obtained later. To make the energy dependence
explicit, we use Eqgs. (5.75) and (5.76) to write Eq. (5.83) as

2m 2m 2m
JﬁEtan( ?Ea) = ?(VO - E). (5.84)

The next step is to solve this transcendental equation for the energy E.
For the odd solutions, a similar argument leads to the transcendental equation (Problem 5.15)

—kcot(ka) = q. (5.85)
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A graphical solution for the allowed energies using these two transcendental equations is most useful
here. There are many ways of doing this. One way involves defining some new dimensionless parameters:

2mEa’
= ha = |20
.- [2mVya® (5.86)
0 ﬁ2
2m(Vy, — E)a®
qa = T,

where the variable z parameterizes the energy of the state and the constant z, characterizes the strength
of the potential energy well. These definitions lead to the convenient expressions

(ka)2 + (qa)2 = Zg

(5.87)
(ga)" = 25 = (ka)" =25 = 2%,
This allows us to write the transcendental equations in this form:
katan(ka) = gqa  — ztan(z) = \/zp — 2°
(5.88)
—kacot(ka) = ga — —zcot(z) =\/ z(z) -2

In each of these new transcendental equations, the left side is a modified trig function, while the right
side is a circle with radius z,. These functions are plotted in Fig. 5.16 as a function of the parameter
z. The intersection points of these curves determine the allowed values of z and hence the allowed
energies E, through Eq. (5.86). Because the constant z is the radius of the circle, there are a limited
number of allowed energies, and that number grows as z, gets larger. Wells that are deeper and wider
have more allowed bound energy states.

That’s it for the energies. There is no simple formula—the transcendental equations must be
solved graphically or numerically for each different well. For example, the curves in Fig. 5.16 corre-
spond to a well with z, = 6, which results in four intersection points and hence four bound states. The
intersection points and four allowed energies are

ﬁZ
= — =
7 = 1.34 Er= 181 —
ﬁZ
Q=268 — Ey=TI8— (559
ﬁ2
3 =39 — Ej=1580——
2ma
ﬁ2
4 =52 — E; =2131—j.
2ma

The energy eigenstate wave functions are characterized by the allowed values of the parameters
k and ¢ from Eq. (5.86). All that remains to do is normalize the wave function, which is straightfor-
ward but tedious (Problem 5.16). Once again, we use a unified diagram to show the potential energy
well, the allowed energies, and the allowed eigenstate wave functions superimposed in Fig. 5.17.
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FIGURE 5.16 Graphical solution of the transcendental equations for the allowed energies of a finite
square well (zy = 6).

FIGURE 5.17 Unified schematic diagram of the finite potential energy well and the bound state
solutions, showing the well, the allowed energies, and the energy eigenstate wave functions.
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Note that the finite well eigenstates share many features with the infinite well states, with one major
exception—they extend into the classically forbidden region. Quantum mechanical particles have a
finite probability of being found where classical particles may not exist! This is a purely quantum
mechanical effect and is commonly referred to as barrier penetration. The ability of the particle
to penetrate the potential energy barrier leads to the phenomenon of tunneling, an example of which
is radioactive decay. We’ll say more about these wave functions in a bit, but let’s first check that our
solution is consistent with the solution we derived earlier for the infinite energy well case.

The limit of an infinitely deep well corresponds to the radius z, in Fig. 5.16 going to infinity, in
which case the allowed values of z become the asymptotes of the modified trig functions, shown by the
dashed lines in Fig. 5.16. These limits are the same as for the simple trig functions and yield

_m _m
Zy = n5=k,,a = nE

s (5.90)
" 2a’
from which we recover the infinite well energy eigenvalues:
— ﬁ (5.91)
! 2m(2a) . '

Note that the width of the well is 2a here, whereas we called the width L in the infinite well case. The
infinite well eigenstate wave functions for this symmetric well position are

2 nwx
on(x) = \[=—cos—, n=123,3,..
2a 2a
(5.92)
( ) 2 . nmx 5 4.6
(X)) = \[—sin—-, n=24,6,...
P 2a 2a

There are two sets of solutions because we chose a different coordinate system to solve the problem.
In the limit zy — <, the decay length ¢ becomes zero and the energy eigenstates are zero outside the
well, as expected. The infinite well eigenstates are shown in Fig. 5.18(a) for this new choice of coor-
dinates. Comparing the wave functions in Fig. 5.18(a) with those from Fig. 5.14, though, we see that
these are the same eigenstate wave functions that we found before. In Fig. 5.18(b) we show the finite
well states for comparison.

5.6 M COMPARE AND CONTRAST

Now that we have solved two similar problems, the infinite and finite square wells, let’s discuss some
of the important features of these solutions and see which features are common to both problems and
others, and which are distinct.

5.6.1 @ Wave Function Curvature

The first common feature is that the wave function is oscillatory (sinkx or coskx) inside the well and
exponentially decaying (¢~ %" or e?") outside the well. This aspect is explained by examining the curvature
(i.e., second derivative) of the wave function. To see this, we rewrite the energy eigenvalue equation

d2<pE(x ) 2m

T2 e BT V)les(x), (5.93)
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FIGURE 5.18 (a) Infinite and (b) finite well energy eigenstates.

which then directly relates the wave function curvature to the difference between the energy E and
the potential energy V(x). Thus, inside the well, in the classically allowed region, we have E > V(x)
and the differential equation admits only sinusoidal solutions characterized by the wave vector k or
wavelength A = 277 /k. Outside the well, in the classically forbidden region, we have E < V(x) and
the differential equation admits only real exponential solutions with a decay length of 1/¢, which is
zero for the infinite square well. The growing exponential terms in these problems are excluded by the
normalization requirement (i.e., the boundary condition at infinity).

These comments can be generalized as shown in Fig. 5.19. Equation (5.93) tells us that in a clas-
sically allowed region where E > V, the curvature has the opposite sign to the wavefunction, and in
the classically forbidden region where E < V, the curvature has the same sign as the wavefunction.
This means that in the classically allowed region the wave function is concave toward the axis, while
in the classically forbidden region the wave function is convex toward the axis, as shown in Fig. 5.19.

We can also make some general observations regarding the length scales of the wave functions. In
a general potential well, the wave vector is given by

2m(E — V)
h=— (5.94)

Hence, the oscillatory part of the wave function (inside the well) has a characteristic wavelength

2w h
AN=—=—7—"—"—"-—

1
k' Nm(E - V) T

So the larger the energy difference between the eigenvalue and the potential energy (i.e., the larger
the kinetic energy), the smaller the wavelength. That relationship is evident in the eigenstates shown
in Fig. 5.18; the higher the energy, the more “wiggly” the wave function. In the forbidden region, the
decay constant

(5.95)

V2m(V — E)
9= (5.96)
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FIGURE 5.19 Curvature of the energy eigenstate wave functions in the allowed and forbidden regions.

decreases as the energy increases toward V, which means that the decay length becomes larger. Hence,
for higher energy states the wave function penetrates further into the classically forbidden region
(Problem 5.17). This increasing penetration with increasing energy is evident in the finite well states
of Fig. 5.17.

In comparing the finite and infinite well energies in Fig. 5.18, we also note that a given finite well
energy eigenvalue E, lies below the corresponding infinite well energy eigenvalue. This is consistent
with the longer wavelength of the finite well eigenstate compared to the corresponding infinite well
state. For the finite well eigenstate to “fit” in the well, the wavelength can be longer because part of the
wave function is outside the well. The increasing penetration of the wave function into the classically
forbidden region with increasing energy implies that the difference in energies between the finite and
infinite wells is larger for higher energies, as is also evident in Fig. 5.18 (Problem 5.19).

5.6.2 @ Nodes

The ground state has a single antinode in the wave function, with each subsequent higher state acquiring
an extra antinode. Thus the 1™ energy level has n antinodes and (n — 1) nodes. This is a general char-
acteristic of the energy eigenstates of any potential energy well. In the infinite well we found an infinite
number of states. In the finite well we found a finite number of states, but we looked only for bound
states. We will see later that there are an infinite number of unbound states with £ > V},, which means
that there are an infinite number of total allowed energy states. The infinite number of states is a common
feature of potential energy wells. In the finite well, if the well is small enough (small V;, and/or small a),
then there might be only one bound state, but there is always at least one bound state. This is generally
true for any well shape. The delta-function potential is an extreme case (Problem 5.25).

5.6.3 W Barrier Penetration

In the finite potential well, the wave function is nonzero in the classically forbidden region. This
implies a finite probability that the quantum mechanical particle can be found where the classical
particle cannot. As mentioned above, this penetration of the wave function into the potential energy
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barrier leads to the phenomenon of tunneling, which we explore in the next chapter. The wave function
plots in Fig. 5.18 indicate that the barrier penetration is more pronounced for higher energy levels and
can become quite large for energies close to the top of the well. This aspect is clear quantitatively if we
note that the decay constant ¢ in the forbidden region decreases as the energy increases, which means
that the decay length becomes larger, so more of the wave function is outside the well.

5.6.4 B Inversion Symmetry and Parity

In both square well problems, the allowed wave functions are either symmetric (even) or antisym-
metric (odd) with respect to the center of the well. In both cases, the potential energy well, and hence
the Hamiltonian, is symmetric with respect to the well center. We say that the Hamiltonian is invariant
under the parity operation x — —x. Because the Hamiltonian is invariant under the parity operation,
it must commute with the parity operator, and hence the energy eigenstates are also eigenstates of
the parity operator. The symmetric states satisfy ¢,(x) = +¢,(—x), have a parity eigenvalue +1,
and are called even parity states. The antisymmetric states satisfy ¢,(x) = —¢,(—x), have a parity
eigenvalue —1, and are called odd parity states. Identifying the parity of an energy eigenstate is useful
because the parity of the state often indicates whether a particular matrix element involving that state
is zero or not. For example, the probability of a transition between two energy eigenstates caused by
incident laser light is proportional to the matrix element of the electric dipole operator (—ex in one
dimension) between the two states:

)

(on|—ex|@,) = — / @n(x)ex @, (x)d’r. (5.97)

This integral is zero if the integrand has odd parity. The electric dipole operator has odd parity, so the
energy eigenstates must have different parity for the transition to be allowed. If the integral is zero, then
the transition is a forbidden transition. Many of the selection rules that determine which transitions
are allowed and which are forbidden come from these types of parity arguments. More complete dis-
cussion of electric dipole transitions must wait until we discuss time-dependent perturbation theory in
Chapter 14.

5.6.5 H Orthonormality

The energy eigenstates form an orthonormal set, as we have found for other sets of eigenstates, such
as spin states. The normalization is not an intrinsic property of the solutions but rather something that
we impose so that the total probability of finding the particle somewhere is unity. The orthogonality is
a fundamental trait of eigenstates of Hermitian operators. The orthonormality condition is expressed
in Dirac notation as

(EW|En) = 8um (5.98)
and in wave function language as

/ @, (x)@,(x)dx = 8,,. (5.99)

This condition is straightforward to show for the infinite well states (Problem 5.12) but is a little tedious
for the finite well states because of the lack of a general expression for the allowed wave vectors.
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5.6.6 H Completeness

The energy eigenstates form a complete basis, as we have found for other sets of basis states. Com-
pleteness is also a fundamental trait of eigenstates of Hermitian operators. Completeness means
that we can use these basis functions to construct all possible solutions to the Schrodinger equation
H|i) = ifid|y) /dt for this problem. The wave function of a general superposition state is

P(x) = De,pa(x). (5.100)

Note that the energy eigenvalue equation He,(x) = E,@,(x) is satisfied by each particular energy
eigenstate in turn but is not satisfied by general superposition states. For the infinite well, Eq. (5.100)
is exact, while for the finite well we must also include unbound energy states above the well in the sum
over basis states. Obviously, for a well that is so small that there is only one bound state, we would
expect to need more states to form a complete basis. The completeness relation is also called the clo-
sure relation and, as we saw in the spins problem, is expressed as a sum of all the projection operators

SIENE,| =1, (5.101)

where the right-hand side is understood to be the identity operator

5.7 B SUPERPOSITION STATES AND TIME DEPENDENCE

Solving for the energy eigenvalues and eigenstates is an important aspect of any problem, but it is not
the only goal. As physicists, our aim is to predict the future of a physical system. In quantum mechan-
ics, we do this through the Schrodinger equation

H|y) = 'h£| ) 5.102
l//—ldtl,[/ (5.102)

that governs the time evolution of any quantum system. Though different systems clearly have differ-
ent Hamiltonians, we need not solve the Schrodinger equation for the time evolution separately for
each system. We have already solved it in Chapter 3 for a time-independent Hamiltonian, where we
found that the most general time-dependent solution to the Schrodinger equation is

(1) = Do E,). (5.103)

That is, the energy eigenstates form the preferred basis in which to expand a general quantum state
vector, with the time evolution determined by phase factors dependent on the energy of each compo-
nent state. In a general superposition, each energy eigenstate acquires a different phase. It is critical
to remember that one must use the energy basis in order to use this simple recipe for time evolu-
tion. This is why we spend much of our time finding energy eigenstates.

To use Eq. (5.103) we need to know the expansion coefficients ¢, for the particular state in ques-
tion. The quantum state at time ¢ = 0 is

[$(0)) = DcilE,). (5.104)
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so the expansion coefficients ¢, are determined by the initial state of the system. The coefficients ¢, are
the probability amplitudes for the state |(0)) to be in the energy eigenstates |E,,)

¢, = (E,|(0)). (5.105)

To show this again, we perform a manipulation with the closure relation in Eq. (5.101). The identity
operator does not change the state vector, so we act on the state vector to obtain

[(0)) = 1]w(0))
_ {;|En><E,,I}¢(0)>
- ;|E,,><En|¢(0)>
DUEw(0)) |E,)

n

(5.106)

and hence identify the coefficients ¢, as given in Eq. (5.105).
Of course, once we know the probability amplitudes, we can calculate the probabilities for mea-
suring the system to have one of the energy eigenvalues:

Pp = [(E,¢(0))] = |c,|* (5.107)

We showed in Chapter 3 that the probabilities of energy measurements are time independent, but let’s
do it again here, using the time-dependent state vector in Eq. (5.103)

Py, = (E)o(0))

\<En| S ey B

2
= |e e Bl

2 2

DenlE|E,)e
m (5.108)

2
|

—iE,t/h
E Cmsmne i
m

2
leal™

The Kronecker delta from the energy eigenstate orthonormality condition collapses the sum to a single
term. Time independence of the energy probabilities implies that the expectation value of the energy is
also time independent:

(H) = S2:E, = D|c,/’E,. (5.109)
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We can also show this by explicit calculation with the time-dependent states:

(H)

(w() |H]w (o))
2c,Z(Em|eiEn,t/ﬁHEcn|En>e—iEnx/h

m n

= Scne,et e N E, H|E,)

= Senee = EIE (8, |E,) G-HO
m,n

= 2 C;;Cne i(EmiEn)t/ﬁEnamn

Seick,

n

S e, ’E,.
n

Note that we had no need to use wave function notation in these calculations. Wave function calcula-
tions of Egs. (5.108) and (5.110) would require spatial integrals that would also yield the Kronecker
delta from the energy eigenstate orthonormality condition that collapses the sums. The results would
clearly be the same, so the message is: if you can avoid integrals by using Dirac notation instead of
wave function notation, do so.

We need to use wave function language to answer questions about the spatial distribution of the
particle, so let’s use the rules we developed in Section 5.3 to translate the Dirac notation equations
to wave function notation. The time evolution of the state vector [Eq. (5.103)], in wave function
language, is

P(x,t) = D c,@,(x)e B/, (5.111)

To find the expansion coefficients ¢, (i.e., the probability amplitudes), we translate Eq. (5.105) to wave
function language:

Cn =/ on(x)(x,0)dx. (5.112)

So, given the initial wave function of the system i(x,0), the expansion coefficients are overlap inte-
grals between each energy eigenstate and the initial wave function. These overlap integrals are analo-
gous to the integrals used to find Fourier expansion coefficients. Let’s briefly illustrate the Fourier
approach for calculating the coefficients c,,. Set the time equal to zero in Eq. (5.111) to find the initial
wave function superposition:

P(x,0) = D c,e(x). (5.113)
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Project both sides of Eq. (5.113) onto the energy eigenstates by multiplying each side by qo;,(x) and
integrating over all space:

[ atonteoa = [ ) Seeo

= D¢, / @n(x) @, (x)dx (5.114)
Ecnanm

= C

ms

yielding

Cm =/ () (x,0)dx (5.115)

as we expected from Eq. (5.112). Once we have the wave function expansion coefficients in the energy
basis, we can predict the future time evolution of the system. Then we can calculate any physical quan-
tities we need to, such as probabilities and expectation values.

Example 5.4 Consider a particle in an infinite square well with the initial wave function

¥ (x,0) = A[(if - 171@)2 + ‘;(i)} (5.116)

in the interval 0 < x < L and zero elsewhere, as shown in Fig. 5.20. Find (i) the wave function at a
later time, (ii) the probabilities of energy measurements, and (iii) the expectation value of the energy.
(i) First we must normalize the state to find the constant A:

- / (0) s
W [T -2 4@ -k

We choose the constant to be real and positive and the normalized wave function is

¥(x,0) = \/?sz - 171(92 + j(iﬂ (5.118)

Now perform the overlap integral to find the expansion coefficients:

(lyr)
(5.117)

— (EJ) / ()0 (0)dx

/ Vi (ENELG) -5 6) 56 e

(5.119)
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Do the integral

— 7\/370{[3L(n77x/L)2 - ZSin<m-rx> B L(ma-x/L)3 — 6(nmx/L) i <me>T

“TL (nm)’* L (nm)’ L
—171[2L(’E7;/)f)5m<”7:‘) - LWCOS<”Z")I (5.120)

een(E) - o= (B}

Evaluate the limits and simplify:

[22 + 20(-1)"] V30

c, =

! (nm)’
2V/30
(\/t, if n is odd (5.121)
ni

42V/30

3 if nis even.

(nm

The first few coefficients are
¢; = 0.3533
¢ = 0.9274 5122
¢z = 0.0131 (5.122)
¢y = 0.1159,

so the state is composed mostly of the first excited state, which is evident from the shape of the
wave function in Fig. 5.20.

¥(x)

L/2 L

FIGURE 5.20 An initial state wave function [Eq. (5.116)] in the infinite square well.
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The wave function at later times is the superposition with each energy state evolved at its pre-
scribed frequency

S - 2 _ ,
p(x,1) = Z Cau(x) e Bt = : \/: sin @eﬂ nlmit/2mL
n=1 n=1 L L

. (5.123)
60522 +20(-1)"]  pmx

el n’m’ht/ 2mL2.

= — —3811’1
L n=1 (n']T)

(ii) The probabilities of measuring the energy eigenvalues are the squares of the expansion
coefficients:

30 n

W)ﬁ[zz +20(—1)"] (5.124)
= 1206[221 +220(—1)"]

nr)

The energy probabilities are shown in the histogram in Fig. 5.21, reflecting the predominance of the
second state.

(iii) The expectation value of the energy is

(H) = SP:E, = lal’E,
S 2232
= 3120 (4 220(—1)”)(” sl )

n=1 (mT)6

120 [ nimh? 2 120(441) [ n2m?H?
= 3 o)+ 2 e ()

2mlL? 2mlL?

n=1,3,5 (n?T) n=24,... (n7T)6 (5.125)
604 [ 51 z 1}
= — + 441 —
mmL? n=%5... n n=;4,6“.n4
60h2 4 4
== 2{1 + 4412
7 *mL” | 96 1440
= 19}%72 = ﬁE = 3.85E
ml> @t o

which is slightly smaller than the energy (E, = 4E)) of the first excited state, as expected from the
histogram in Fig. 5.21.
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FIGURE 5.21 Histogram of the probabilities of energy measurements.

Notice that the energy expectation value, such as we calculated in Eq. (5.125), is time inde-
pendent regardless of whether the system is in an energy eigenstate or a general superposition of
energy eigenstates. On the other hand, the expectation values of position or momentum are time
independent when the system is in an energy eigenstate, but they are time dependent for a general
superposition state. Let’s demonstrate this in the infinite square well where the time dependence of
a general state is

2 .
¥(x1) = Ecn\/:sin@e_’ weh/amL? (5.126)
m L L
Consider a simple superposition of two states in an infinite well. If the initial state is
6(0)) = G 1E1) + 5 E2), (5.127)
V2 V2
then the time-evolved state is
(1) = G |ENe ™ + 5 |Ey) e, (5.128)

The wave function representation is

P(x,t) = \/i?pl(x)e*ifi.t/ﬁ + \/%(Pz(x)e—mzz/h

(5.129)
- \/T[sinm oEh 4 gin 27x e—iEzt/i’z,:|-
L L L

Now find the expectation value of the position:
(x) = (@ (1) xlw (1))
{#(E |/t 4 7<E2|61E21/h} { L|E,)e B L|E >efiEzt/h} (5.130)

SUEXE) + (Eslx|E) + (E, x| Ey) e BB 1 (B |x|E)e (B Ezwﬁ]
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Again notice that we are using Dirac notation to simplify the calculation. However, at this point we
need to use integrals to calculate the matrix elements. Let’s define them in general:

L

(¥)y = {EJ2[E,) = / o) x gulx)dx = / wlen()
0 0 (5.131)

() = (E|ES) = / 01(x)x @u(x)d.

We calculated the first matrix element, which is the expectation value of position in an energy eigen-
state, in Example 5.3. We saw that the answer is the midpoint of the well L/2. The second integral
comes from the cross term in the superposition:

(<)t = / o) @u(x) dx

2 [* nmrx karx
= f/ sin (7) X sin (7) dx (5.132)
LJ, L L

2(L)2/07Tysin(ny) sin(ky) dy.

L\

Simplify with a trig identity and integrate

() = 2(L)2 / "yl eos(n = )y — cos(n + K)y]dy

L\

_ 1<L>2{cos(n —k)y ysin(n — k)y - cos(n + k)y 3 ysin(n + k)y]" (5.133)
L\7/) | (n—k)? (n — k) (n + k) (n+4k) ],
_ 1L : cos(n — k) B cos(n + k) 3 1 1
_L<w){ (n — k) 48 =k (et 0]
yielding
(1), = —— 2k [1— (=1, (5.134)

w2 (n® — k2)2

This result is zero for states where n + k is even (i.e., if the states have the same parity). The results for
the two-state example are

(5.135)
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giving the final result

I
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—

~
~—
Rall
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—

~
~—
Nt

(x)
>t om2® T on¢ ' (5.136)
L{ 32 (3772ﬁ )}

1 — ——cos St |-
2 97?2 2mlL

The position of this two-state superposition oscillates at the Bohr frequency (E, — E;) /4.
The time-dependent position is also evident in the spatial probability density:

Plx.1) = 0N = (o)’

‘\/7 Sln 1E|t/ﬁ + sm iEzt/h:|

2mx 2 E, — E)t
smzl + szi + 2s1nﬂsmﬂcosM .
L L L L h

2

(5.137)

The oscillation of the probability density is depicted in the animation frames shown in Fig. 5.22,
where the constant 7 is the oscillation period T = 27 /wpg,,, (see activity on time evolution of infinite
well solutions). The superposition probability distribution “sloshes back and forth” in the well at the
Bohr frequency. This motion of the superposition state provides a model for how atoms and other
bound systems radiate light. An electron undergoing this oscillatory motion accelerates and hence
radiates electromagnetic energy. So far, our model does not account for the energy loss from this
radiation, but we will address that in Chapter 14.

/\:;00
/\__i

t/r=0.2

/\’_\

t/r=0.3

_ﬂ
ﬂ

0 L2 L
FIGURE 5.22 Time dependence of the probability distribution of a superposition state.
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A calculation of the momentum expectation value (Problem 5.27) also yields a time-dependent result:

(p) = ((1)plw(r))
/OLIII*(X’ " @ a;ix)w(x’t)dx (5.138)
-3 (o)

If we compare Eqs. (5.136) and (5.138), we notice that the quantum mechanical position and momen-
tum obey the classical relation p = mv, provided we restrict the relation to expectation values:

(p(1)) = m - (5.139)

This is another example of Ehrenfest’s theorem, which says that quantum mechanical expectation
values obey classical laws.

5.8 H MODERN APPLICATION: QUANTUM WELLS AND DOTS

The square well potential problem has been a staple of quantum mechanics textbooks since the early
days. However, for many years it was only a textbook problem because no systems in nature could be
modeled accurately as a square well. The progress of semiconductor fabrication technology has changed
that, as we are now able to make artificial systems of square potential energy wells. Semiconductor
quantum wells are now routinely used to fabricate diode lasers and other semiconductor devices.

The key advance that allowed fabrication of quantum well devices was the ability to grow pure
crystals of semiconductors using techniques such as molecular beam epitaxy (MBE) and metal-
organic chemical vapor deposition (MOCVD). With these techniques, layers of semiconductors can be
grown with atomic scale precision, yielding structures with layers thin enough (several nm or less) for
quantum effects to be important.

A typical quantum well structure is shown in Fig. 5.23(a). Alternate layers of GaAs and AlGaAs
are grown epitaxially on a GaAs substrate. GaAs and AlGaAs have similar crystal unit cell sizes that
permit dislocation-free crystals to be grown. This lattice-matched growth is crucial to obtaining reli-

a b o
(a) o[ e 2 [ 2
< = © < ©
s 38 ) S| o
0] 3 =z U] =
AlGaAs
GaAs conduction band 7 Velx)
AlGaAs Y AlGaAs
EgGaAs Eg
GaAs substrate valence band
v, ™

FIGURE 5.23 (a) Structure and (b) potential energy diagram of a GaAs quantum well.



5.9 Asymmetric Square Well: Sneak Peek at Perturbations 147

Energy (meV)
100

13)

80
2)
60

40

T
—_
~

20

5. - .1b. — '1'5' — '2'0Wellwidth(nm)

FIGURE 5.24 Energy levels in a GaAs quantum well as the thickness of the GaAs layer is changed.

able devices. The band gap of GaAs (1.42 eV) is smaller than the band gap of AlGaAs (2.67 eV), so the
electrons in the conduction band and the holes in the valence band experience the different potentials
shown in Fig. 5.23(b). Because the layers change on the atomic scale, this is as close to a square well
as nature allows.

We can calculate the energy levels in the well using the same analysis we used for the finite square
well. Figure 5.24 shows the energy levels and how they vary with changes in the GaAs layer thickness.
Note that there are only two or three bound states in the well for the range of thickness shown.

For making practical devices with quantum wells, there are two important features. First, the
energy levels can be adjusted, or “tuned,” by changing the thickness of the quantum well layer, as
shown in Fig. 5.24, or by changing the stoichiometry of the surrounding Al,Ga;_,As layers to adjust
the band gap and hence the potential energy depth of the well. Second, the quantization of the electron
energy in the confined well increases the number of electrons with specific energies (compared to the
continuum of energies of unconfined electrons), which in turn increases the probability of creating
photons with the corresponding wavelengths. Hence, a semiconductor diode laser made with quantum
wells is more efficient than one made with bulk material, so quantum well diode lasers are now the
most common type of diode lasers in use.

The quantum well structure shown in Fig. 5.23 confines the electron in one dimension, but the
electrons are not confined in the plane of the thin well. Further confinement leads to quantum wires
(2D confinement) and quantum dots (3D confinement). Quantum dots are semiconductor nanocrys-
tals with a typical size range of 2-20 nm. The size of the dot determines the confinement size and
hence the wavelength of light emitted by the dot. A simple Web search reveals beautiful pictures of
quantum dots glowing in a rainbow of colors.

5.9 B ASYMMETRIC SQUARE WELL: SNEAK PEEK AT PERTURBATIONS

While the square potential wells we have studied in this chapter illustrate many of the ideas of bound
state wave functions, there is one important aspect that we have not encountered. All the square well
solutions have a constant wave vector and a constant wave function amplitude throughout the well,
because the potential is constant throughout the well. To see how the wave vector and amplitude of
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an eigenstate can vary within the well, let’s make a slight modification to the infinite square well.
Consider the well shown in Fig. 5.25, which is commonly referred to as the asymmetric square
well. By adding a “shelf” within the well, we now have two regions of constant but different poten-
tial energy.

The potential energy for this asymmetric square well is

o, x <0
0, 0<x<L/2
V(x) = ¥ <L (5.140)
Vo, L/2<x<L
o, x> L.

We know that the infinite potential outside the well demands that the energy eigenstates are zero outside
the well. Inside the well, we now have different energy eigenvalue equations in the left and right halves:

# d?
(_ﬂﬁ + O)SDE(X) = Epg(x), left half

o (5.141)
(—ﬂﬁ + VO)‘PE(X) = E¢g(x), right half.

For this discussion, let’s assume that the energy E is greater than the potential V, so that the
solutions in each half of the well are sinusoidal. We then have different wave vectors in each half,
defined by

ki=A+l—5, left half
(5.142)
2m(E = V) .
k, = T’ right half,
which yields a smaller wave vector (k, < k;) and hence larger wavelength of the wave in the right
half. We know that the left-half solution must be a sine function in order to match the zero wave func-
tion outside the well, so the general solution is

() = { Asink,x, 0<x<L/2 (5.143)
PEX Bsink,x + Ccoskox, L/2 <x<L. '
V(x) o
A
Yo
: X
0 L/2 L

FIGURE 5.25 Asymmetric square well.
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Now we apply the boundary condition on the wave function continuity at the middle and right side of
the well and the boundary condition on the continuity of the first derivative of the wave function at the
middle of the well (recall that the infinite potential on the right means that the derivative condition is
not applicable). The three boundary conditions are
ep(L/2): Asin(k,L/2) = Bsin(k,L/2) + Ccos(k,L/2)
depg(x)
dx x=L/2

¢p(L): Bsink,L + Ccosk,L = 0.

tkiAcos(k\L/2) = koBcos(k,L/2) — k,Csin(k,L/2) (5.144)

These three equations contain four unknowns: the amplitudes A, B, and C, and the energy E through
the wave vectors k; and k,. The normalization condition supplies the fourth equation required to solve
for all unknowns. By eliminating the amplitude coefficients from the three boundary condition equa-
tions, we arrive at a transcendental equation for the energy eigenvalues (Problem 5.28):

kycos(kyL/2)sin(k,L/2) + kycos(kyL/2)sin(k,L/2) = 0. (5.145)

This looks a bit intimidating, so how do we know it’s correct? Well, we know what the solutions are
for the infinite (symmetric) square well, which is the case where V,; = 0; so we can check to see if our
solution agrees with the infinite square well solutions. This won’t tell us whether our solution is cor-
rect, but we can at least make sure that it is not obviously wrong. If V,; = 0, then the two wave vectors
are equal and the transcendental equation becomes:

kycos(k,L/2)sin(kyL/2) + kycos(kL/2)sin(k,L/2) = 0
kysin[ (k,L/2) + (k,L/2)] =0 (5.146)
kl Sinle = 0.

If we divide this result by k;, then we have the same equation sink;L = 0 that we had for the infinite
square well. So our intimidating result may well be correct.

In order to compare the asymmetric square well with the infinite square well, it is useful to divide
each transcendental equation by the factor k; and plot the energy eigenvalue equations for the asym-
metric square well

k
cos(kyL/2)sin(k,L/2) + k—zcos(kzL/z)sin(le/z) =0 (5.147)
1
and for the infinite square well:
sin(k,L) = 0. (5.148)

A plot of the two equations as a function of kL is shown in Fig. 5.26 for the case where the potential
step height is 0.75 times the energy of the ground state in the infinite well case. The infinite square well
eigenstates occur at the values k;L = nm marked on the axis. The eigenstates for the asymmetric well
are each slightly larger, with the difference decreasing as the energy increases. This is a sneak preview
of perturbation theory that we will study in Chapter 10.

Let’s now use these solutions to draw the energy eigenstates. A plot of a typical energy eigen-
state is shown in Fig. 5.27. The wavelength and the amplitude of the wave in the right half are larger,
meaning that the probability to find the particle in the right half is larger than in the left half. This is
consistent with our classical expectation, because a classical particle moves more slowly in the right
half where its kinetic energy is lower, and so it spends more time in the right half with an increased
probability to find it there.
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FIGURE 5.26 Transcendental equations for the energy eigenvalues of
the asymmetric square well (solid) and the infinite square well (dashed).
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FIGURE 5.27 An energy eigenstate of the asymmetric square well.

5.10 B FITTING ENERGY EIGENSTATES BY EYE OR BY COMPUTER

5.10.1 M Qualitative (Eyeball) Solutions

The problems we have solved in this chapter illustrate most of the important features of bound states in
potential wells. Using these common traits allows us to make qualititative estimates of energy eigen-
state solutions to other potential well problems. The important features are

1(a). Oscillatory wave solution inside well

1(b). Wavelength proportional to 1/ VE — V(x)

2(a). Exponentially decaying solution outside well

2(b). Decay length proportional to 1/VV(x) — E

3. Amplitude inside well related to wavelength

4. Match ¢g(x) and deg(x) /dx at boundaries.

Using these rules of thumb, we can get a very good idea of the wave function before we tackle the dif-

ferential equation that gives us the exact solution.
Consider the potential shown in Fig. 5.28. It has an infinite wall, a flat potential region, a sloped
potential region, and a finite wall. Given our rules, we draw the approximate wave function. From left
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FIGURE 5.28 Drawing approximate energy eigenstate solutions.

to right, starting at zero at the infinite wall, the wave function oscillates with a constant wavelength and
has a constant amplitude over the flat potential region; it oscillates with an increasing wavelength and
has an increasing amplitude over the sloped potential region; and then it exponentially decays in the
classically forbidden region. The wave function is drawn qualitatively and the main features are indi-
cated. This wave function represents the 17" energy state because there are 17 antinodes in the wave
function. Remember that the wave function oscillates about the value zero in the well and decays to
zero outside the well. The figure shows the wave function ¢(x) drawn superimposed on the potential
well, so you have to imagine a “i axis” with its zero as indicated by the dashed line.

5.10.2 @ Numerical Solutions

We can be more quantitative by using a computer to help us “draw” the wave functions. Rather than
follow the rules listed above, we directly solve the energy eigenvalue equation by numerical integra-
tion, which is a common technique for solving differential equations and is easily accomplished in
common mathematical packages like Matlab, Mathematica, and Maple, and even in a spreadsheet. The
energy eigenvalue equation is

d*pp(x) 2m
——— = ——7F1E — Vlx X). 5.149
T = R E V) () (5.149)
You may not yet know how to solve such a differential equation, but you do know how to solve a very
similar one—Newton’s second law, F' = ma, which yields the differential equation

ﬁ _r (5.150)
arr  m’ '
In the case where the acceleration @ = F/m is constant, one integral of Eq. (5.150) gives
d.
o+ oar, (5.151)

v:
dt
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and a second integration gives
X = X9+ vot + %atz, (5.152)

which are the equations of motion you learned in introductory physics. With these equations, one can
predict the future if one knows the initial position x, the initial velocity v, and the acceleration a.

In the Newtonian case, the motion function x(¢) is determined by its curvature d*x / dr?, which is
the acceleration a. In the quantum case, the wave function is determined by its curvature d* / dx?, which
depends on the energy, the potential, and the wave function itself. The potential and the wave function
both depend on position, so the wave function curvature is not constant and the simple integrations in
Egs. (5.151) and (5.152) cannot be used. However, if the acceleration in the Newtonian example is not
constant, then we can modify Egs. (5.151) and (5.152) for use on a computer by using them to predict
motion only in the very near future, say fromztot + At:

x(t + A1) = x(r) + v(£) At + La() (A1)’

(5.153)
v(t + At) = v(t) + a(t) At

As long as we choose the time steps A7 small enough that the acceleration does not vary appreciably from
one time step to the next, then these equations can be used to reliably update the position and velocity at
each time step. These update equations produce estimates of the full motion by iterating from step to step.
This method works well but suffers from one failing: the update equations use “old” information
about the velocity and the acceleration. We can improve this slightly by using the new acceleration in

the velocity update equation:

x(t + A1) = x(e) + v()Ar + La(s)(Ar)®

(5.154)
v(t + Ar) = v(r) + 3[a(r) + a(t + Ar)]Ar
We can’t use the new acceleration in the position update equation because the acceleration typically
depends on position (through the potential), so we do the position update first and then the modified
velocity update. This method is known as the velocity Verlet algorithm and yields more reliable
results than Eq. (5.153).
To solve the energy eigenvalue equation, we use the wave function and its spatial derivatives
rather than the position and its time derivatives used in the Newtonian case. Thus, we generalize the
position and velocity update equations (5.154) to

oplx + Ax) = gp(x) + (""ﬂ Ax + 1(‘12“’ZE>X(AX)2

dx 2\ dx
d d 1[ [ d> d?
(ae).o = () =3l (22) + (G2 L)
dx /iax dx J, 2L\ dx* / dx” /x+Ax
So, given the wave function (analogous to “position”), the slope of the wave function (“velocity”), and
the curvature of the wave function (“‘acceleration”) at any position x (“time”), we can predict the wave

function and its slope at the next position x + Ax. At each step we calculate the wave function curva-
ture using the energy eigenvalue equation

(5.155)

d? 2
Z)ECEX) = —ﬁ*’?[E = V(x)Jop(x). (5.156)
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We don’t have to impose the continuity conditions on ¢g(x) and deg(x) /dx at boundaries; the
update equations guarantee that they are met. What we do need are initial values of the wave function
and the first derivative to get the update equations started. In principle, we should start at x = —
and integrate (i.e., update) all the way to x = +o0. In practice, it suffices to start a reasonable way
into the left-hand forbidden region, integrate into and through the potential well, and then integrate
a reasonable way into the right-hand forbidden region. The wave function in the forbidden region
should be decaying toward zero as it approaches x = % oo, which indicates how we should choose
the initial values of the wave function and the first derivative. Recall, however, that the energy eigen-
value equation is linear in the wave function @z(x), so we can scale the wave function by any factor
and it will still solve the differential equation. This means that we can choose the initial wave function
arbitrarily, but the resultant wave function will not be normalized. In principle, the initial wave func-
tion slope should be chosen to have the appropriate decay length. In practice, the method is insensitive
to this choice.

Notice that the calculation of the wave function curvature from the energy eigenvalue equation
(5.156) requires us to know the energy. But we don’t know the energy—we are trying to find it! So we
guess a value of the energy and then we solve for the resultant wave function and see if it “fits” into the
potential well. From the problems above we have plenty of practice recognizing wave functions that
fit, so it should be clear. And it is, as you will see.

As an example of how this numerical technique works, let’s try it out on the finite square well
and compare to the results in Eq. (5.89). We choose an energy and start integrating with Eq. (5.155).
This is well suited to a spreadsheet, and the results shown in Fig. 5.29 are from an Excel worksheet.
The trademark results of this technique are illustrated in Fig. 5.29(a). If the chosen energy does not
match an energy eigenstate solution, then as we integrate toward x = + % the wave function solution
that should decay starts to grow exponentially, because as the integration crossed the boundary into
the classically forbidden region (at x = a) there was a small component of the growing exponential
solution contained in the numerical wave function. Only by choosing the energy exactly equal to one
of the allowed energies can this “bad” component be eliminated from the integration. Because of the
severity of exponential growth, combined with the discreteness of computer calculations, it is impos-
sible to find the energy solution exactly. However, as Fig. 5.29 illustrates, you can find nearby energies
that cause the wave function to grow either negatively [Fig. 5.29(a)] or positively [Fig. 5.29(c)]. These
solutions then bracket the approximate solution [Fig. 5.29(b)]. The finite square well used for the cal-
culation in Fig. 5.29 is the same as the well used for Fig. 5.16, and the resultant energy eigenvalue of
this fourth energy level matches well with the result in Eq. (5.89). To obtain a more accurate value, one
has to be more careful about the initial conditions.

E =27.30454 E =27.30455 E =27.30456

FIGURE 5.29 Numerical integration for solution of the finite square well eigenvalue equation.
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5.10.3 W General Potential Wells

Given our approximate and numerical techniques, we can solve for the bound states in any potential
well, in principle. A typical bound state solution is shown in Fig. 5.30. It exhibits the key features that
we have mentioned above for bound state solutions:

e Oscillatory in allowed region
» Exponential decay in forbidden region

* Oscillatory wave becomes less wiggly near classical turning point as kinetic energy
decreases

* Amplitude becomes larger near classical turning points

Thus, though potential energy wells may appear quite different at first glance, they all can be
called “particle-in-a-box” systems, albeit with differently shaped boxes. Some common boxes are
shown in Fig. 5.31: (a) infinite square well, (b) finite square well, (c) harmonic oscillator (mass on a
spring), and (d) linear potential (bouncing ball potential).

SUMMARY

In this chapter we learned the language of the wave function, which is the representation of the quan-
tum state vector in position space. We express this as

W) = w(x)

w(x) = (x|w). (5.157)

The complex square of the wave function yields the spatial probability density
2
P(x) = [w(x)|". (5.158)

The normalization condition is
1= (yly) =/ \w(x>\2dx =1 (5.159)

The rules for translating bra-ket formulae to wave function formulae are:

1) Replace ket with wave function li) — (x)
2) Replace bra with wave function conjugate (¢| =y (x)

3) Replace bracket with integral over all space <‘ > — / dx

4) Replace operator with position representation A—A(x).

The probability of measuring the position of a particle to be in a finite spatial region is

b
Pt = / lp(x) | dx. (5.160)
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FIGURE 5.30 Bound state in a generic potential energy well.
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FIGURE 5.31 Different versions of the particle-in-a-box: (a) infinite square well,
(b) finite square well, (¢) harmonic oscillator (quadratic potential), and (d) linear potential.
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The probability of measuring the energy to be E,, is
, o 2
P, = [(Efy)| = ‘/ @u(x)P(x)dx]| (5.161)
where ¢,(x) = (x|E,) is the wave function representation of the energy eigenstate.
Position and momentum operators in the position representation are
X=x
5= _in d (5.162)
= —jh—
P dx
and lead to the energy eigenvalue equation becoming a differential equation:
n* d*
<727 — * V(x)) op(x) = Epg(x). (5.163)
m dx
In solving the energy eigenvalue equation, two boundary conditions are imposed upon the wave function:
1) ¢g(x) is continuous
dog(x
2) ¢E( ) is continuous unless V = oo,
In an infinite square potential energy well, the allowed energies are
i 1,2,3 (5.164)
= > n=1=12>25 .., .
" 2mlL?
and the allowed energy eigenstates are
(x) = [ Zsin 2T n=123 (5.165)
(Pil L L b b tl 9 e e N
The energy eigenstates obey the following properties:
Property Dirac notation Wave function notation
Normalization (E,|E,) =1 / |cp,,(x)\2dx =1
Orthogonality <E)1|Eﬂl > = 8"}7‘1 / (P:;('x) gom(x) dx = 6nm
Completeness ly) = ECVJEn) P(x) = Ecn‘Pn(x)
PROBLEMS

5.1 Show that the operators x and p do not commute.

5.2 A particle in an infinite square well potential has an initial state vector
lp(t = 0)) = A(le1)—|@,) + i|@s)) where |@,) are the energy eigenstates.
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a) Normalize the state vector.

b) What are the possible outcomes of a measurement of the energy, and with what probabilities
would they occur?

¢) What is the average value of the energy?

d) Find the state vector at some later time, 7.

e) Attime r = #/E;, what are the possible outcomes of a measurement of the energy, and with
what probabilities would they occur?

5.3 Solve the infinite square well problem using the complex exponential form of the general solu-
tion in Eq. (5.53) as the assumed form of the wave function inside the well. Assume that the
potential well boundaries are at x = 0 and x = L.

5.4 Solve the infinite square well problem with the well boundaries at x = % a. Comment on the
differences and similarities with the solution in the text.

5.5 Calculate the expectation values and the uncertainties of position and momentum for the infi-
nite square well energy eigenstates.

5.6 For a particle in an infinite square well, calculate the probability of finding the particle in the
range 3L/4 < x < L for each of the first three energy eigenstates.

5.7 A particle in an infinite square well potential has an initial state vector
lw(t=0)) = (|¢1) — 2i|@,))/ V5 where the |, ) are the eigenfunctions of the Hamiltonian
operator. Find the time evolution of the state vector.

5.8 A particle in an infinite square well potential has an initial wave function
(x,t = 0) = Ax(L — x). Find the time evolution of the state vector. Find the expectation
value of the position as a function of time.

5.9 A particle in an infinite square well has the initial wave function

e a((5) -3 +3C)

in the interval 0 < x < L and zero elsewhere. Find (a) the wave function at a later time, (b) the
probabilities of energy measurements, and (c) the expectation value of the energy.

5.10 A particle at # = 0 is known to be in the right half of an infinite square well with a probability
density that is uniform in the right half of the well. What is the initial wave function of the par-
ticle? Calculate the expectation value of the energy. Find the probabilities that the particle is
measured to have energy E;, E,, or E;.

5.11 A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly
moves to x = 3L such that the well is now three times its original size. Find the probabilities
that the particle is measured to have the ground state energy or the first excited state energy of
the new well.

5.12 Show that the energy eigenstates of the infinite square well are orthogonal.

5.13 Use the closure relation in Eq. (5.101) to show that the normalization condition is

L= {uly) = e[

5.14 Solve the energy eigenvalue problem for the finite square well without using the symmetry
assumption and show that the energy eigenstates must be either even or odd.
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5.15 Derive the transcendental equation (5.85) for the energy eigenvalues of the odd states in the
finite square well.

5.16 Normalize the energy eigenstates of the finite square well.

5.17 Find the probability that a particle in the ground state of a finite square well is measured to
have a position outside of the well. Derive a general relation involving only the parameters z
and z; defined in Egs. (5.86). Show that the probability increases as the energy increases.

5.18 An electron is bound in a finite square well of depth V;; = 5 eV and width 2a = 1.5 nm. Find
the allowed energies of the bound states in the well using the transcendental equations (5.88).

5.19 Give a qualitative, graphical argument that the difference in energy eigenvalues between the
finite and infinite square wells is larger for higher energy states.

5.20 Find the bound energy eigenstates and eigenvalues of a “half-infinite” square well (i.e., a
square well with infinite potential for x < 0 and finite potential with value V,, for x > L).

5.21 Consider a quantum system with a set of energy eigenstates |E;). The system is in the state

W) = 5lE) + Gl + FolEs) + JlEs),

where the energies are given by E, = nE,. Find the probabilities for measuring the energy
eigenvalues and make a histogram similar to Fig. 5.2(b). Find the expectation value of the
energy. Find the uncertainty of the energy.

5.22 Consider a quantum system with a set of energy eigenstates |E,) where the energies are given
by E, = (n + Hhwforn = 0,1,2, ... The system is in the state

where « is a positive real number. Find the probabilities for measuring the energy eigenvalues
and make a histogram similar to Fig. 5.2(b). Find the expectation value of the energy. Find the
uncertainty of the energy.

5.23 Consider the following wave functions

vlx) = AeF
L
¥ +2

¥(x) = cSech@).

In each case, normalize the wave function, plot the wave function, and find the probability that
the particle is measured to be in the range 0 < x < 1.

y(x) =B

5.24 Demonstrate the requirement that the first derivative of the wave function be continuous,
unless the potential is infinite. To do this, integrate the energy eigenvalue equation from —g&
to +& and take the limit as € — 0 to derive a condition on the difference of the wave function
derivatives between two adjacent points.

5.25 Find the energy eigenstates and eigenvalues of a particle confined to a delta function potential
V(x) = —B8(x), where B is a positive real constant. Note that you will need to follow the
approach in the previous problem to properly address how the infinite potential at the origin affects
the wave function derivative. How many bound energy states exist in this potential energy well?
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FIGURE 5.32 Potential wells for Problem 5.33.

5.26 Find the energy eigenstates and eigenvalues of a particle confined to a double delta function
potential V(x) = —B(8(x — a) + 8(x + a)), where 8 is a positive real constant. How many
bound energy states exist in this potential energy well?

5.27 Calculate the expectation value of the momentum for the two-state superposition in Eq. (5.128)
and verify Eq. (5.138).

5.28 Solve the boundary condition equations (5.144) for the asymmetric square well and verify
Eq. (5.145).

5.29 Find the transcendental equation that determines the energy eigenvalues in an asymmetric
square well for the case E < V. Compare with Eq. (5.145) for the E > V|, case and comment.

5.30 Implement the update equations (5.155) using a spreadsheet or other computer program and
find the numerical solutions for the energy eigenvalues of a finite square well with a well
parameter z, = 6. Compare your results with Eq. (5.89).

5.31 Use a spreadsheet or other computer program to find the numerical solution of the ground
state and first excited state energy eigenvalues and wave functions for a finite square well with
parameters V, = 5 eV, 2a = 1.5 nm, and m = m,. Compare your results with the transcen-
dental equations (5.88).

5.32 Reproduce the results for the GaAs quantum well states shown in Fig. 5.24 using the transcen-
dental equations (5.88). The relevant GaAs parameters are V; = 0.1 €V and m = 0.067 m,.

5.33 For each of the potential wells shown in Fig. 5.32, make a qualitative sketch of the two energy
eigenstate wave functions whose energies are indicated. For each energy state, identify the clas-
sically allowed and forbidden regions. Discuss the important qualitative features of each state.

5.34 Sketch a copy of Fig. 5.30 and identify the classically allowed and forbidden regions. Which
energy eigenstate is drawn in Fig. 5.30? Make a similar plot for the next lower energy eigenstate.

RESOURCES

Activities

The bulleted activities are available at
www.physics.oregonstate.edu/qmactivities

e Operators and Functions: Students investigate the differential forms of quantum mechanical

operators and identify eigenfunctions and eigenvalues of quantum mechanical operators.

* Solving the Energy Eigenvalue Equation for the Finite Well: Students solve the energy eigenvalue

equation for different regions of the finite well and make their solutions match at the boundaries.


www.physics.oregonstate.edu/qmactivities
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» Time Evolution of Infinite Well Solutions: Students animate wave functions consisting of linear
combinations of eigenstates.

Quantum Bound States: This simulation experiment from the PHET group at the
University of Colorado animates wave function superpositions in bound states:
http://phet.colorado.edu/en/simulation/bound-states

Shooting Method Model: This program from the Open Source Physics group implements
the shooting method to numerically solve the energy eigenvalue equation:
http://www.compadre.org/osp/items/detail.cfm?ID=6987

Further Reading

Quantum wells are discussed in these Physics Today articles:
D. Chemla, “Quantum wells for photonics,” Phys. Today 38(5), 57-64 (1985):
http://dx.doi.org/10.1063/1.880974
D. Gammon, D. Steel, “Optical studies of single quantum dots,” Phys. Today 55(10), 3641 (2002):
http://dx.doi.org/10.1063/1.1522165

Further details on numerical solutions of the energy eigenvalue equation are available in these
references:
R. H. Landau, M. J. Pdez and C. C. Bordeianu, A Survey of Computational Physics: Introductory
Computational Science, Princeton, NJ: Princeton University Press, 2008.
H. Gould, J. Tobochnik, and W. Christian, An Introduction to Computer Simulation Methods:
Applications to Physical Systems (3" edition), San Francisco, CA: Addison-Wesley, 2007.


http://phet.colorado.edu/en/simulation/bound-states
http://www.compadre.org/osp/items/detail.cfm?ID=6987
http://dx.doi.org/10.1063/1.880974
http://dx.doi.org/10.1063/1.1522165

CHAPTER

Unbound States

In the last chapter we learned how to use the new concept of wave functions to describe the motion of
a particle in a potential well. We found that states corresponding to particles confined within the poten-
tial well had quantized energies. We now turn our attention to unbound states, and we will find that the
energies are no longer quantized. The simplest case is that of the free particle with no potential affect-
ing the particle motion at all. The free particle states help us better understand the wave-particle dual-
ity of quantum mechanics. We then consider the case of particles that are affected by potentials but are
not bound. This includes potential wells where the energy is larger than the well depth and cases where
the potential has no localized minimum. Studying these unbound states is important in understanding
scanning tunneling microscopy, nuclear alpha decay, and the scattering of particles.
In all cases, we are still charged with solving the energy eigenvalue equation

H|E) = E|E) (6.1)
with the Hamiltonian operator
. PP
H=— 4+ V(3). 6.2)
2m

As we did in the last chapter, we work in wave function language (i.e., in the position representation),
and so the energy eigenvalue equation becomes a differential equation:

Hop(x) = Egg(x)

(_Z[ZZZ + V(x))goE(X) = Epg(x) (6.3)
_55—;995()5) + V(x)pp(x) = Epg(x).

6.1 l FREE PARTICLE EIGENSTATES

6.1.1 M Energy Eigenstates

For a free particle, the potential energy function V(x) is zero everywhere and the energy eigenvalue
differential equation is

d? 2mE
E@g(ﬂ = _?QDE(X)' (6.4)
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This is the same differential equation we solved in Chapter 5 inside the square potential energy well.
Again, it is convenient to define a wave vector

k2 = ? (65)
and write the differential equation as
d2
Joerlx) = —Lep(x). (6.6)

The solutions to this differential equation are the familiar sinusoidal functions, which we can
express either as the trigonometric functions sin kx and cos kx or the complex exponential functions
e and ¢, Note that the energy E must be positive, so the wave vector is real for this problem. It
is more convenient in this problem to use the complex exponential functions, so we write the general
solution to the energy eigenvalue equation as

op(x) = Ae™™ + Be ik, (6.7)

where we need to account for both possible signs of the wave vector and A and B are normalization
constants.

The critical physical difference between a free particle (with V(x) = 0) and a bound particle is
the lack of a confining potential. Because the wave function of the free particle is not required to “fit”
into the potential energy well, there are no limitations on the wave functions and hence no quantization
of the energy. Mathematically, there are not enough constraints on the two normalization constants A
and B and the energy E (through the wave vector k). There are three unknowns in Eq. (6.7), but the
normalization condition is the only constraining equation. The result is that the energy is a continuous
variable, not quantized, in contrast to the bound-state solutions in Chapter 5. The continuous nature of
the energy has important ramifications, which we will explore. But first, let’s look more closely at the
physics of quantum wave motion.

To understand free particle wave motion, let’s look at the time evolution of the energy eigenstates
of Eq. (6.7). The time dependence of this state is obtained by applying the recipe for Schrodinger time
evolution that we learned in Chapter 3. Because the state is already written in the energy basis, the
Schrodinger time-evolution recipe says to multiply by a phase factor dependent on the energy of the
state, giving

i) = @elx)e ™/

(6.8)
— (Aeikx + Be*ikx)e*iEt/ﬁ.
If we use the Einstein energy relation £ = #w, we can rewrite Eq. (6.8) in a suggestive way:
Ye(x,1) = (Ae™ + Be )it
— Aei(kx—wt) + Be—i(kx+wt) (6.9)

— Aeik(x—wt/k) + Be—ik(x-*—wr/k).

This quantum wave function has the same form we know from classical waves—a function f(x + vr)
with the argument (x =+ vz). This functional form represents a wave that retains its shape as it moves,
and any given point on that shape moves with a speed determined by the parameter v, which in this
case yields |v| = w/k. For the sinusoidal waves of this free particle state, such points of constant
phase move at the phase velocity. The energy eigenstate has two parts—the ellkr=or) part moving in
the positive x-direction and the e ikt wn) part moving in the negative x-direction. So now we know
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that whenever we see a wave function with spatial dependence e ~**, the sign of the wave vector in the
exponent indicates the direction of motion. It is convenient to work with the wave vector eigenstates
o(x) = Ae™ (6.10)

as long as we remember that we must use both positive and negative k values to make a general energy
eigenstate.

6.1.2 @ Momentum Eigenstates

To learn more about the phase velocity of the wave vector eigenstates, it is useful to study the momen-
tum of these wave functions. Let’s operate on one of the states with the momentum operator, which is
a differential operator in the position representation:

. Ld\
potd) = (- e
—ifi(ik)Ae™
= fikgy(x).

Thus the action of the momentum operator on a wave vector eigenstate yields the same state with
a constant multiplier. Well, that is an eigenvalue equation! So the wave vector eigenstates are also
momentum eigenstates. The momentum eigenvalue equation is

6.11)

pep(x) = peyl(x) (6.12)
(p|lp) = p|p) in bra-ket notation), so we have identified
p = hk (6.13)
as the momentum eigenvalue and
¢px) = Aelrh (6.14)

as the momentum eigenstate. The momentum eigenstate wave function gop(x) is a function of position
and not of momentum—x is a variable and p is the particular momentum eigenvalue. The wave
vector is related to the wavelength through k = 27 /A, so we can rewrite Eq. (6.13) as

p=>| (6.15)

This equation was introduced in the early days of quantum mechanics by Louis de Broglie and pro-
vides the connection between the particle properties (momentum) and the wave properties (wave-
length) of a system. The de Broglie relation between momentum and wavelength is at the heart of
the wave-particle duality of quantum mechanics. We can turn Eq. (6.15) around to write an equation
defining the de Broglie wavelength of a particle with momentum p:

h
)\deBmglie = ;} . (6.16)

The momentum eigenstates are also energy eigenstates for the free particle, with energy [Eq. (6.5)]

E=%2. (6.17)
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The fact that the momentum and energy operators share eigenstates is an important aspect of the free
particle problem and is a consequence of the general rule we discussed in Section 2.4 that commuting
operators have common eigenstates (like S, and S” sharing | +) states) (Problem 6.5). A given momen-
tum eigenstate has a definite energy given by Eq. (6.17), but a given energy state does not necessarily
have a definite momentum, because a general energy eigenstate is a superposition of the two momentum
states |p) = ¢,(x) and |—p) = ¢_,(x) with opposite momenta, as in Eq. (6.7). Because a given
energy state corresponds to multiple momentum states, we say that the energy state is degenerate with
respect to momentum. In the free particle case, the energy states are two-fold degenerate. This is our
first example of degeneracy, but it will be more common once we address two- and three-dimensional
systems in Chapter 7.

The wave nature of the quantum mechanical description of the free particle is evident in Fig. 6.1,
which shows the wave function of a momentum eigenstate. It is evident that a single wavelength char-
acterizes the wave function, consistent with the single momentum of the eigenstate and the de Broglie
relation between wavelength and momentum. The wave function is complex, so we must plot both the
real and imaginary parts to completely describe the state.

Let’s now return to the question of the phase velocity of the free particle eigenstates. A momentum
eigenstate has time dependence

—iEt/h

@p(x)e
— Aeipx/h e*ipzt/Zmﬁ (618)

d/p(xJ)

— Aeip/ﬁ(,rfpt/Zm)‘

This wave is moving at a speed of v = p/2m, which is half the speed of a classical particle
Velssicat = P/m. This apparent contradiction exists because we are using the phase velocity of the
wave. As we will see in Section 6.2, the proper way to use a wave to describe a particle leads us to the
concept of “group velocity of a wave packet” as the more appropriate velocity.

A more serious problem with the momentum eigenstates becomes evident if we examine the prob-
ability density of the state. Taking the complex square of the wave function yields the probability density

@)

= o (1) e,(x)
— A*efipx/ﬁAeipx/ﬁ

P(x)

(6.19)

Al

(a) Re ¢p(X) (b) Im @,(x)

FIGURE 6.1 Momentum eigenstate. Both the (a) real and (b) imaginary parts of the wave
function extend to £ oo. A single wavelength characterizes the momentum eigenstate.
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|‘Pp(x)|2

FIGURE 6.2 Position probability distribution for a momentum eigenstate.

As shown in Fig. 6.2, the probability density of a momentum eigenstate is a constant independent of
position, extending to infinity. This presents us with two problems. Conceptually, we expect a particle
to be localized to a small region of space, not spread out over an infinite region. Mathematically, we
cannot normalize the momentum eigenstates because the integral of the probability density over all
space is infinite. This is a new and quite serious problem. All previous basis states we have encoun-
tered have been normalizable. This lack of normalizability is a pathology of all continuous bases—
this one being our first example. Fortunately, there is a solution to this mathematical problem that
also solves our conceptual problem. By constructing superpositions of momentum eigenstates to make
wave packets, we get wave functions that are normalizable and are localized to finite regions of space.
Before we construct wave packets, it is useful to discuss some of the mathematical properties of the
momentum eigenstates.

We expect a set of basis states to exhibit three important properties. The states should be: (1) nor-
malized, (2) orthogonal, and (3) complete. All the discrete basis sets we have encountered have satisfied
these conditions, which we express in Dirac notation as

<ai|aj#[> =0 orthogonality
<Cl,"6l,-> =1 normalization 6.20)
2 la;)(a;] = 1 completeness,

assuming a set of discrete eigenstates |a;). The orthogonality and normalization conditions are com-
bined into one orthonormality equation by using the Kronecker delta:

To adapt this orthonormality equation to a continuous basis, we need to use the continuous analog
of the discrete Kronecker delta, which is the Dirac delta function. The Dirac delta function, writ-
ten 8(x — xp), is a function that is zero at every value of x, except at x = x,, where it is infinite (not
unity). This infinity means that the Dirac delta function does not strictly represent the normalization
condition, but it is consistent with the infinite norm we found for the momentum eigenstates above.
Thus, we expect that the “orthonormality” condition for a continuous basis set of momentum states is

(p"lp’)=28(p" —p') (6.22)
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in Dirac notation. Using the rules developed in Chapter 5 for translating bra-ket notation to wave
function notation, we express the inner product in Eq. (6.22) as an overlap integral

/ @(x) @y (x)dx = 8(p" — p’). (6.23)

The momentum eigenstates defined in Eq. (6.14) satisfy this new form of the orthonormality
equation, as long as we define the normalization constant A for the momentum eigenstates as
(Problem 6.7)

1
2k

Although continuous basis sets, such as the momentum basis, do not strictly satisfy the normalization
condition required by quantum mechanics, it is still practical to use Egs. (6.22) and (6.23) to “normalize”
a basis, and we refer to this process as Dirac normalization. We thus write the “normalized” momen-
tum eigenstates as

A=

(6.24)

1
@,(x) = ﬁe””‘/ﬁ . (6.25)

It is worth thinking about dimensions at this point. With the normalization of the momentum eigen-
states in Eq. (6.25), we see that the dimensions of the left hand side of Eq. (6.23) are [length]/[#],
which from Eq. (6.16) are equivalent to 1/[p] or inverse momentum. Thus, the Dirac delta function
has dimensions of the inverse of its argument. This is another difference from the Kronecker delta that
we have to live with.

The completeness of a basis implies that any function (relevant to the problem at hand) can
be written as a superposition of the basis states. Completeness is difficult to prove mathematically, so we
generally just assume that it is satisfied. In the discrete basis case, the completeness condition (closure
relation) in Eq. (6.20) is a sum of the projection operators over the discrete basis set. To change to a con-
tinuous basis, we change the sum over the discrete label to an integral over the continuous label. For the
momentum eigenstates, the completeness condition is

1 |p){pldp =1, (6.26)

where we understand that the right hand side is the identity operator. To demonstrate how complete-
ness allows us to express any general state as a superposition of the basis states, insert Eq. (6.26) into
the Dirac expression for a wave function

P(x) = (xy)
— <x|{/:|p><p|dp}|¢f> (6.27)

- [ i) ol

The first term (x|p) in the integrand is the projection of the momentum eigenstate | p) onto the posi-
tion basis, which is the wave function representation gop(x) of the momentum eigenstate. The second
term (p|i) in the integrand is the projection of the general state |i) onto the momentum basis | p)
(i.e., the probability amplitude for the general state |1} to have momentum p). Given the rules of Dirac
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notation, you might expect the probability amplitude {p|i) to be written as (p|¢y) = ¢(p). However,
there is risk of confusion here with the wave function ¢s(x) because #(p) and (x) are not the same
mathematical function with different arguments, but rather are different mathematical functions. To
avoid this possible confusion, it is common to use a different symbol for the momentum probability
amplitude, such as

d(p) = (plv), (6.28)

although such notation brings its own confusion between the different Greek symbols. The function
¢(p) is known as the momentum space wave function. As in the position case, the probability ampli-
tude ¢(p) = (p|i) is a continuous function that is the collection of numbers that represents the quan-
tum state vector in terms of the momentum eigenstates. The wave function #(x) and the momentum
space wave function ¢(p) are both representations of the state |if), but they are representing that
state in different bases. Which basis we should use is up to us and is generally a matter of convenience
decided by what we wish to calculate. Using this definition of the momentum space wave function, we
write Eq. (6.27) as

P(x) = 1 isop(x)¢(p)dp, (6.29)

which, in words, says that a general state |¢§) = i(x) can be decomposed into an integral (i.e., super-
position) over all momentum eigenstates | p) = ¢,(x) with a proportionality coefficient given by the
probability amplitude ¢(p) = (p|i) for the general state to be measured in that particular momentum
basis state.

If we put the explicit form of the momentum eigenstates qop(x) into Eq. (6.29), then the superposi-
tion becomes

1

o) = / S(p)e™ " dp|. (630)
ar —

This should look familiar! It is the Fourier transform of the function ¢(p). Thus, quantum mechani-
cal superpositions behave much like classical wave superpositions. In both cases, the Fourier trans-
form represents a superposition of sinusoidal waves that combine to make a wave packet. We thus
expect that the connection in the opposite direction (i.e., writing the momentum space wave function
in terms of the position space wave function) would be an inverse Fourier transform. We can show that
this is so by using our prescription for writing a probability amplitude in wave function language as an
overlap integral. The momentum space wave function ¢(p) is a probability amplitude ¢(p) = (p|i),
and the rule for converting a Dirac bra-ket projection to wave function overlap integral is to convert the
ket |) to a wave function ¢(x), the bra (p| to a wave function conjugate @,(x) = ¢ """ /\/27h, and
then integrate over all space. Thus, we get

1

\ 27h

which we recognize as an inverse Fourier transform. Thus, we see that the connection between the
momentum space wave function ¢(p) and the (position space) wave function ¢(x) is the Fourier
transform. As we saw in the spins case, we are free to use whichever representation of a quantum state
vector that we find most convenient. The position and momentum representations are similarly equally
valid representations. We focus on the position representation because it is generally the most useful.

¢(p) = (6.31)

[ weta
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6.2 B WAVE PACKETS

6.2.1

The key result from the previous section is that Fourier superpositions of momentum eigenstates are
required for proper representation of free particle states. Let’s first consider a discrete Fourier series
example that illustrates many of the important features of wave packets, and then we’ll make a real
wave packet using continuous Fourier transforms.

M Discrete Superposition

In this example, we add just three momentum eigenstates together. We choose one “central” state
with momentum p, to have twice the amplitude of two “side mode” states that are equally spaced at
p = po T Op about the central state, as shown in the momentum state distribution in Fig. 6.3. As the
dashed line hints, we are using this three-mode superposition as a model of a continuous momentum
distribution characterized by a center momentum p, and a momentum distribution width p that we
will discuss in Section 6.2.2.

A graphical representation of this three-state superposition of sinusoidal waves and the resultant
wave is shown in Fig. 6.4. The different wavelengths of the three components lead to constructive and
destructive interference, as indicated in the plots. The resultant wave is localized to a region of space
and hence is referred to as a wave packet. The wave packet shown in Fig. 6.4 has a characteristic
wavelength determined by the central momentum, so it resembles a wave, but it also has a limited spa-
tial extent, and so it also resembles a particle. In this case, we are using a discrete Fourier sum, so this
localization is repeated periodically. For the more realistic continuum distribution, only one localized
region exists and a true wave packet is realized. The coexisting particle and wave characteristics of a
wave packet are the essence of the wave-particle duality of quantum mechanics.

To understand the motion of the wave packet, we must study the time evolution. The wave func-
tion at time r = 0 is given by the weighted superposition of the three momentum eigenstates

W50 = Do)
t//(x,O) = E.Cj

1
27h

1
\/ 2mh

[%ei(po—ﬁp)X/h + elPox/h 4 %ei(m%}?)ﬁﬁ]

ei px/h

(6.32)
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FIGURE 6.3 Discrete momentum distribution used to model continuous distributions
and to build a discrete wave packet.
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FIGURE 6.4 Discrete wave packet with three components.

The time-dependent wave function representing this wave packet is obtained by following the Schrodinger
time-evolution recipe. Momentum eigenstates are also energy eigenstates of free particles, so the
superposition is already written in the energy basis and we multiply each energy eigenstate by its own
energy-dependent phase factor:

Ylxt) = g, (x)e 0. (6.33)
J
The energy of each momentum eigenstate is given by the free particle energy
2
g= D (6.34)
T om’ '
which for the three states yields
p2
0
EP() = E
5 s ) (6.35)
. (po = 8p)” Py T 2p0p + (3p)
PoEdp 2m 2m ’

We assume that the width of the momentum distribution is narrow enough that 6p << p, and so we
neglect the small (8p)? term in the energies. Hence, the time-evolved wave packet state is

lﬂ(x,t) — 1 [%ei(l)o—ép)x/ﬁe—i(pﬁ —2pedp)t/2mthi + eipox/fz e—ipét/mez + %ei(p0+§p)x/fz e—i(p?J +2p05p)t/2mﬁ}
27h
l/f(x,t) = ; - eipox/hefip(z)l/th[%efiSPX/heiputspl/mh +1+ %eiﬁpx/he*ipoﬁpt/mﬁ] (636)
T

1 : . 1) 0,
d,(x,t) = 5 ﬁetPOX/ﬁe—tp(z)t/th{l + COS(%X _ Po pt>:|,
V 27T
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which yields

P(x,t) = (6.37)

antmn] 1 s coo( 2] 22])]
f m

This wave packet contains the expected form f(x £ vt) of a wave, but it has two such parts with
different arguments. The first part of Eq. (6.37) (in curly brackets) is characterized by the momentum
po and hence wavelength Ay = h/p, of the single harmonic wave. This part is called the carrier wave,
and from its argument we find that it moves at the phase velocity v,;, = po/2m, as we discussed above.
The second part of the wave packet (in square brackets) is characterized by the momentum width dp
and hence a wavelength A,,, = h/8p that is much longer than A, (because §p << p,). This second
part is known as the envelope of the wave packet because it modulates the carrier wave, as shown in
Fig. 6.5. Because of the different arguments of the two parts, the envelope moves at a different velocity
Vep = Po/m from the carrier. This velocity is called the group velocity because it characterizes the
velocity of the group of waves together.

The different velocities are evident if the plot of the wave packet in Fig. 6.5 is animated
(Problem 6.8). Several frames from such an animation are shown in Fig. 6.6, where you can see that
the velocity of the envelope—the group velocity—is twice the velocity of the wiggles within the
envelope—the phase velocity. Notice that the group velocity is equal to the classical velocity of a par-
ticle with momentum p,. This is the sense in which this wave packet can properly represent the motion
of a particle. This discrete superposition is a good starting point, but it still suffers from the pathologies
of harmonic waves—it is not normalizable and it therefore cannot predict expectation values—so we
must use a continuous momentum distribution to model real experiments. Moreover, the “localiza-
tion” of the discrete Fourier series superposition is repeated periodically, and so cannot represent a
single particle.

27h
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FIGURE 6.5 Wave packet showing the carrier wave and the modulation envelope.
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FIGURE 6.6 Discrete wave packet animation with time increasing from top to bottom.
Open circles identify a point of constant phase, which moves at the phase velocity. Filled
circles identify the peak of the envelope, which moves at the group velocity.

6.2.2 H Continuous Superposition

To go from the discrete case to the continuous case, we change the superposition sum in Eq. (6.32) to
a superposition integral (i.e., we change the Fourier series to a Fourier integral or Fourier transform).
While this may seem like a trivial extension, there are important differences. As we did in the dis-
crete case, we perform the expansion using the momentum eigenstate basis gop(x) because these states
are also energy eigenstates in the free particle example, which then sets us up to use the Schrodinger
time-evolution recipe. In the integral superposition, we specify the amplitudes of the momentum
eigenstate as a continuous distribution ¢(p) rather than specifying discrete amplitudes. Thus, we
write the initial superposition state as

w&@)=/i¢@hﬂ@@

(6.38)

= [ ot A=errap,
IRy e

where ¢(p) is also called the momentum space wave function. The time-evolved state is found by fol-
lowing the recipe for Schrodinger time evolution and including the energy dependent phase factors:

¢@0=/:MM%@V%“@. 639)
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Putting in the explicit momentum eigenstate wave functions and the expression for the free particle
energy results in

1

/ ¢(p)eipx/fz, e—ipzt/th dp, (640)

which simplifies to

Y(xr) = \/;7 / d(p)err2mih gy, (6.41)
ar —o0

This is the time-dependent generalization of the Fourier transform in Eq. (6.30) for the case of a free
particle. The time-dependent generalization of the inverse Fourier transform in Eq. (6.31) is

1

o(p.t) = Vo / P(x,1)e” P/ gy, (6.42)
v —o0

To evaluate the Fourier integral in Eq. (6.41) and determine the wave function for any particular case,
we need to know the particular momentum distribution ¢(p), which may be specified as an initial
condition, or can be determined from the initial wave function ¢(x,0) via the Fourier transform in
Eq. (6.31) that relates the spatial and momentum space wave functions.

As an example, consider the case of a Gaussian momentum distribution. This is a very common
example because Gaussian functions are easy to integrate—you get another Gaussian in the Fourier
space. In addition, the Gaussian distribution is a very good representation of many real experimental
situations. The Gaussian function is one of the standard classical probability distributions and is com-
monly written as

) e—(z—M)Z/ZU2
flz) = ———F—, (6.43)
o'V 2T

where u is the mean value or average of the distribution and o is the standard deviation of the distribu-
tion. Relating these definitions to the quantum mechanical quantities, the mean value is the expectation
value (z) and the standard deviation is the uncertainty Az. The probability distribution in Eq. (6.43) is
normalized to unity:

/ f(z2)dz = 1. (6.44)

Notice that the function f(z) is not squared in the normalization integral in Eq. (6.44), contrary to
the normalization of quantum mechanical wave functions to which you have become accustomed. In
quantum mechanics, we have to square the wave function to get the probability density, which is then
normalized, analogous to Eq. (6.44). So, technically speaking, the phrase ‘“normalize the quantum
mechanical wave function” is not correct, because we actually normalize the probability distribution,
not the wave function. But that phrase is ingrained into all practicing physicists, so we are stuck with it.

Just as we did in the discrete case, let’s assume that the momentum distribution is peaked at p, and
has a width characterized by a parameter 8. The Gaussian momentum space wave function is

1/4
d)(p) = <27:B2) e*(l’ﬁl’o)z/4ﬁz’ (645)
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where the scale factor ensures proper normalization. This momentum space wave function is shown in
Fig. 6.7, with the previous discrete case for comparison. The momentum probability distribution (per
unit momentum) is the absolute square of the momentum space wave function:

(0) = o) = E2 6
P = = (6.46)
P b(p p Von

Comparison of this quantum mechanical momentum probability distribution with the standard
Gaussian probability function in Eq. (6.43) allows us to determine the momentum expectation value
(p) and momentum uncertainty Ap by inspection as

<P>:P0
Ap = B.

The time-evolved spatial wave function for this Gaussian wave packet is obtained by substituting
Eq. (6.45) into the Fourier transform in Eq. (6.41):

(6.47)

- 1/4
<2 1 > o~ (P=P0)Y/AB® pipx/h p=ip?t/2mh dp. (6.48)

1
wlet) = 2wt ) -\ 27B?

This integral can be performed using the standard Gaussian integral shown in Appendix F, Eq. (F.23):
(Problem 6.9). The result is

P(x,t) = ——— eirolx=pot/2m)/h e—(x—put/m)zﬁz/ﬁz*/’ (6.49)

V ﬁy\/277r

where the new parameters are

=
Il
+

\

(6.50)
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FIGURE 6.7 Gaussian momentum space wave function.
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If we define
f
= —, 6.51
“= 2 (6.51)
then we can express the wave function as
1/4
l//(x, t) = (2 1 2) % i Polx=pot/2m) /h e*(fpot/m)z/‘lazv’ 6.52)
T 07

where « is useful later as a measure of the width in position space.

Just as in Eq. (6.37) for the discrete momentum distribution, this wave packet has a carrier wave
part (in curly brackets) that is characterized by p, and propagates at the phase velocity p,/2m, and
an envelope part (in square brackets) that is characterized by the momentum width B (through the «
parameter) and propagates at the group velocity po/m. As we expected, the envelope is a Gaussian
function. To isolate the envelope propagation, calculate the spatial probability density by taking the
square modulus of the wave function:

1

2 —_
(1) Vooal

where we have defined a new parameter

t2
I=Vh=,1+5 (6.54)
T

The only velocity that appears in the probability density is the group velocity p,/m, which agrees
with our classical expectation that the particle propagates at this velocity. This Gaussian wave packet
is shown in Fig. 6.8(a) and the probability density is shown in Fig. 6.8(b). This wave packet is truly
localized; the probability density decays to zero away from the central peak in Fig. 6.8(b) with none
of the secondary peaks that were evident in the discrete superposition in Fig. 6.4. The continuum of
momentum states used in this superposition ensures that the destructive interference of the constituent
waves away from the central peak is effective in truly localizing the wave/particle. This localization
through interference means that this wave packet superposition is normalizable even though the indi-
vidual waves used are not themselves normalizable.

The experimental parameters that one would like to measure in order to fully characterize a wave
packet are the position and momentum. The expectation value of the position is, formally,

P(x,1) = o~lxptm)" /20T (6.53)

©

(x) = / Pl = / :x|¢f(x,t)|2dx, 6.55)
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FIGURE 6.8 Gaussian wave packet (a) wave function and (b) probability density.
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but it can also be obtained by inspection of the Gaussian probability density [compare Eq. (6.53) with
Eq. (6.43)]:

(x) = 2. (6.56)
m
This result again shows that the wave packet moves with the group velocity p,/m.
The expectation value of the momentum can be calculated either with a spatial integral

@>=/ 0 (xot) P ) 657)
or a momentum integral

)= [ oo = [ ploto) ap (6.58)

Either way, we get the result found by inspection previously in Eq. (6.47):
{p) = po. (6.59)

The uncertainties of position and momentum are (again by inspection)

) 2821\
semar = 2o (29

28 mh (6.60)

Ap = B.

The wave packet momentum width remains constant, which is consistent with the conservation of
momentum. The position width grows in time because the different momentum components used to
construct the wave packet all move with different phase velocities. The spatial spreading of the quan-
tum mechanical wave packet agrees with our classical ideas about waves. It could be considered analo-
gous to a short laser pulse propagating through glass with dispersion in the index of refraction such
that different colors in the pulse travel at different speeds. However, the wave packet spreading is not
what we expect for a classical particle, and we have uncovered one of the counterintuitive realities of
the quantum world—quantum particles do not stay intact.

As we did for the discrete wave packet, we visualize the motion of the continuous Gaussian wave
packet with frames of an animation in Fig. 6.9. Again, we note that the carrier wave moves at the phase
velocity, which in this case is half of the group velocity of the envelope motion. From previous study
of optics or waves, you may recall that the formal definitions of the phase and group velocities that
work for any wave packet are

w

Vphase = k

o (6.61)

Vv =
group >
dk |,

where the derivative in the group velocity is evaluated at the peak of the distribution of wave vector
states comprising the group. Applying these wave relations to the quantum mechanical free particle,
we find that the phase velocity of the wave is

o E _ p2/2m — L — Velassical (6 62)
p ' '

© hw
Vphase = 40 gk » 2m 2
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FIGURE 6.9 Gaussian wave packet animation with time increasing from top to bottom.
Open circles identify a point of constant phase, which moves at the phase velocity. Filled
circles identify the peak of the envelope, which moves at the group velocity.

which is half the classical particle velocity. The group velocity is

_d(p*/2m)
= T

_dw

B d(ho)
group ~ dk b -

d(7ik)

e
K dp

Po
=—= ; 6.63
m Velassical » ( )

v

Po Po

which is equal to the classical particle velocity. Both results agree with the results we obtained by
inspection of the Gaussian wave packet for a free particle.

6.3 l UNCERTAINTY PRINCIPLE

The Fourier connection between position space and momentum space is also important for under-
standing the Heisenberg uncertainty principle as it applies to position and momentum. We learned
in Chapter 2 that spin projection measurements along different axes are incompatible, meaning that
we cannot simultaneously measure both observables. We saw that, in general, two observables cannot
be measured simultaneously if they do not commute. We expressed this incompatibility in terms of the
product of the measurement uncertainties of the two observables

AAAB = 1{[A,B])], (6.64)

where the uncertainty is defined as the standard deviation
A =/ (4 - (4))°) =/ {4?) - {a)* 6.65)

We can now ask whether position and momentum measurements are compatible. Because we
know how to represent the position and momentum operators, we can calculate their commutator to
answer this question. The answer is that position and momentum do not commute (Problem 6.6). Their
commutator is

[X,p] = if. (6.66)
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Thus, the Heisenberg uncertainty principle as applied to position and momentum is

AxAp = (6.67)

n
2

This condition limits the product of the uncertainties of position and momentum to a minimum value.
The Heisenberg uncertainty principle represents a tradeoff between our knowledge of position and
our knowledge of momentum. The Fourier connection between position and momentum helps us to
understand this limitation.

Consider the Fourier wave packet constructed from discrete momentum components. The uncer-
tainty in momentum Ap is approximately the spacing dp of the side modes from the central mode, as
shown in the momentum distribution of Fig. 6.3. We estimate the uncertainty in position Ax as the
separation dx of the two destructive interference minima from the central maximum of the correspond-
ing spatial wave function in Fig. 6.4. The minima are located where the phases of the side mode waves
are 7 out of phase with the central sinusoid. These phases are determined by the arguments of the
¢'P*/" terms in Eq. (6.32). If we assume that the wave packet maximum, where the three waves are in
phase, is at x = 0, then the destructive interference minimum on the right is at x = 0x, as indicated in
Fig. 6.4. To calculate 3x, set the phase difference between the upper side mode (p = p, + 8p) and
the central mode (p = p,) equal to 77 and solve:

(po + 8p)dx  podx
h h

(6.68)
opdéx
P
The uncertainty product for this discrete wave packet is approximately
AxAp = wh. (6.69)

Hence, there is an inverse relationship between the width Ax of the position distribution and the
width Ap of the momentum distribution. A wave packet that is well localized in space (small Ax)
requires a broad distribution Ap of momentum states, while a broad spatial distribution requires a
narrow momentum distribution. While this wave packet of discrete momentum components (i.e., a
Fourier series) does not strictly obey Eq. (6.69) because the “localization” is repeated out to infinity,
the inverse relation between the position and momentum widths is a hallmark of Fourier transforms of
continuous distributions.

We learned in the last section that a Gaussian momentum distribution leads to a Gaussian posi-
tion distribution because the Fourier transform of a Gaussian function is itself a Gaussian function. In
Fig. 6.10 we plot these Fourier transform pairs for a range of widths; the inverse relation between the
position and momentum spaces is graphically evident. Using the position and momentum uncertain-
ties in Eq. (6.60), we calculate the uncertainty product of a Gaussian wave packet:

2
2%
AxAp = g 1+ <B> . (6.70)

m

At time t = 0 the Gaussian wave packet obeys the equality of the Heisenberg uncertainty relation
AxAp = % /2. For this reason, a Gaussian wave function (at = 0) is a minimum uncertainty state.
As the wave packet evolves in time, it broadens in position space and the uncertainty product increases
(Problem 6.12).
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FIGURE 6.10 Gaussian wave packets with decreasing spatial widths and the
corresponding momentum space wave functions obtained by Fourier transform.

The wave packet in Fig. 6.10(a) extends spatially over many wavelengths, so the “wave” nature
of the packet is evident. In contrast, the wave packet in Fig. 6.10(c) extends only over one wavelength
and so is more representative of a well-localized “particle.” If we take this wave-particle duality to its
logical extremes, we get the states shown in Fig. 6.11. A pure “wave” has an infinite spatial extent,
which corresponds to an infinitesimal momentum width, as shown in Fig. 6.11(a). The pure wave state
is the momentum eigenstate wave function |py) = <p1,0(x) = ¢'P/" /\/21rh, and the corresponding
momentum space wave function must be a Dirac delta function because there is only one momentum
value. This is consistent with the Fourier connection between position and momentum because the
Fourier transform of a pure sinusoid is a delta function:

1 ) —ipx/h
by, () = ﬁ[ @p(x)e P dx

— 1 / 1 ipox/h e*ipx/h dx

e
2wk ) N 2mh 6.71)
Y
- i(po—p)x/h
2t | € d

8(p — po)-
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FIGURE 6.11 (a) Momentum eigenstate wave function and its corresponding delta-function
momentum distribution, and (b) position eigenstate wave function and its corresponding infinite
extent momentum distribution.
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A pure “particle” state has an infinitesimally narrow spatial extent, which corresponds to an infi-
nite momentum width, as shown in Fig. 6.11(b). This state represents a particle that is measured to be
at a unique position, x, for example. A state with a unique value of the position observable is a position
eigenstate | x, ). In analogy with the momentum space representation of the momentum eigenstate above,
the position representation (i.e., spatial wave function) of a position eigenstate is the Dirac delta function

X0) = ¢(x) = 8(x — xp). (6.72)

This state satisfies the position eigenvalue equation

)AC|X0> = x0|x0>

(6.73)

28(x — xp) = x98(x — xp).

So we have finally found the wave function for the position eigenstate we introduced in the last chap-
ter. The infinite extent of the momentum space representation of this state is now clear, because the

Fourier transform of a delta function is a pure sinusoid:

1 N .
b0) =i | eul)e
1

= / 8(x — xp)e P/ dx (6.74)

\2mh

— # e*fPX()/ﬁ .
2mh

The position eigenstates have the same pathologies as the momentum eigenstates—they cannot be

normalized and so they cannot truly represent physical states.
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In summary, the eigenstates of position and momentum in the two representations

Position space Momentum space
1 .
Positi . tat =5 - - —ipox/h
osition eigenstate | x0) (x — x) | x0) Vo e
(6.75)

1 .
Momentum eigenstate ||p,) = 5 ﬁelp‘)x/ﬁ |po) = 8(p — po)

ar

demonstrate an appealing parallel between position and momentum. This parallel is also evident in the
position and momentum operators. In the position representation, the position operator is simple mul-
tiplication, while the momentum operator is a derivative with respect to position. Similar to the cor-
respondence of the wave functions in Eq. (6.75), it turns out that in the momentum representation, the
momentum operator is simple multiplication, while the position operator is a derivative with respect to
momentum:

Position space | Momentum space

A . n L d
X = X X lﬁdp (676)

A . d .
p =i p=r

The incompatibility of position and momentum measurements inherent in the Heisenberg uncer-
tainty principle is in stark contrast to the classical notion that position and momentum are independent
quantities that can each be measured with precision limited only by experimental technique. In quan-
tum mechanics, position and momentum are complementary rather than independent quantities. The
result is that we cannot know the trajectory of a particle in quantum mechanics. We can make predic-
tions of the probability that the particle is in a region of space, but we cannot know the trajectory as we
do in classical physics.

6.3.1 M Energy Estimation

We can also use the uncertainty principle to estimate the minimum energy of a particle. If we know
that a particle is localized to a finite region Ax of space, then the uncertainty principle tells us that the
momentum distribution required to produce that localization must satisfy

fi
Ap = —. 6.77
P 2Ax ( )
If the momentum distribution has this minimum width, then we can use this width as a rough estimate

of the minimum momentum

h
n = T 6.78
pmm ZAx ( )
Ignoring the potential energy for the moment, we can then estimate the minimum energy of the particle
2
Pmin
Epin = ﬂ
2 (6.79)
Epiw = ———.
" 8m(Ax) ’

This approach is a common “back-of-the-envelope” calculation used to get a rough estimate of bound-
state energies.
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Consider a particle bound in a square well potential. The potential energy well by its nature con-
fines the particle to a spatial region Ax approximately the size L of the box. We then use the uncertainty
principle to find the corresponding uncertainty in the particle momentum:

h
APAX = E

h
Ap = E (6.80)

Ap = —.
P= a0
If the particle momentum is uncertain to this degree, then the value of the particle momentum must be

at least this big, and possibly much larger:

h

n = . 6.81
Pmin 2L ( )

Now use this estimate of the minimum momentum to estimate the minimum energy that the bound
particle can have:

2

Pmin

2m (6.82)
ﬁZ

8mL?"

Emin =

Compare this with the ground-state energy in the infinite well:

i S

B 2mL? - mL?

) (6.83)
While not a great match, the energy estimate from the Heisenberg uncertainty principle does predict
the correct dependence of the energy on the well size. As the well gets smaller the energy levels go up,
which is a general feature of bound energy states. The proportionality depends on the well width and
is 1 /L?* for the square well.

The actual ground-state energy in the infinite square well [Eq. (6.83)] is about 40 times larger than
the uncertainty principle estimate in Eq. (6.82). There are two reasons for this poor agreement. (1) We
overestimated the position spread of the particle; a particle confined to a well of size L has a position
uncertainty less than L (Problem 6.20). (2) The minimum energy estimate comes from assuming that
the uncertainty product is a minimum AxAp = #/2, which is true only for Gaussian wave functions.
Both of these factors lead to an underestimate of the minimum momentum, which leads to an even big-
ger underestimate of the energy because it depends on the square of the momentum. This method of
estimating energies with the Heisenberg uncertainty principle must be taken with a grain of salt, as this
example shows.

6.4 B UNBOUND STATES AND SCATTERING

We have discussed bound states in potential wells and free particle states in flat potentials. To com-
plete our introduction to the quantum mechanics of particle motion, we now discuss unbound states
in potential energy wells. Unbound states have an energy that is greater than the potential energy at
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infinity, in contrast to bound states, which have an energy that is less than the potential energy at infin-
ity, as illustrated in Fig. 6.12. Bound states must “fit” into the potential well, which leads to energy
quantization, while unbound states “lie” above the well with sinusoidal wave functions that extend to
infinity, “and beyond!” Unbound states are similar to free particle states in that there are not enough
constraints to fully determine the wave function, with the result that there is no energy quantization
for unbound states. However, the unbound states are not simply free particle states with a well-defined
momentum. Unbound states are affected by the potential energy profile, which causes the states to
“scatter.” We often use the term scattering states in this context.

To begin our study of unbound states, we return to the finite square well potential. For the study of
scattering states, it is more convenient to choose the zero of potential energy to be the energy at infin-
ity, rather than the energy at the bottom of the well as we did for bound states. Hence, we define the
potential energy shown in Fig. 6.13 as

0, x < —a
V(x) =1 -V, —a<x<a (6.84)
0, x> a.

With this choice of potential energy origin, bound states have £ < 0 and scattering states have £ > 0.
It turns out that we are also able to use the solutions to this problem to study an inverted well (a barrier)
by changing the sign of V.

We follow the same approach we have used in all previous wave function problems—we first
solve the energy eigenvalue equation. As in the previous well problems, we get separate equations in
the different regions:

n
(- o) = Borte). el <a

. (6.85)
(EL s 0)ore) = Bol), > a
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FIGURE 6.12 Bound (E < E(%)) and unbound (E > E()) states in a generic potential energy well.
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_VO

FIGURE 6.13 Finite square potential energy well.

Scattering states have E > 0 and so we expect sinusoidal solutions in both regions. Hence, it is useful
to define two wave vectors

2mE
TN
(6.86)
2m(E + V)
k2 = T
These two parameters are used to rewrite the energy eigenvalue equations as
d2¢E(x)
= Kele). bl <a
(6.87)
d’¢r(x)
7dx2 = - ?QDE(X), |x| > a.

The solutions to these differential equations are sinusoids or complex exponentials. Which form
we choose to start with is a matter of convenience; the solution dictates the final form. It turns out
that bound-state wave functions are real, as we found in Chapter 5, and unbound state wave func-
tions are complex, so the complex exponentials are more convenient here. We write the general
solutions as

Ae** + Be kX, x < -—a
op(x) = § Ce** + De >, —a<x<a (6.88)
Fe** + Ge R, x> a.

In principle, we should now proceed as we did in the bound-state problems earlier. That is,
we should impose the boundary conditions and solve for the allowed energies and wave function
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amplitudes. However, that road quickly becomes a heavy slog. So it is instructive to focus on specific
physical problems of interest and consider what we can actually measure.

First, observe that there are seven unknowns (coefficients A, B, C, D, F, G, and energy E) in this
problem. To solve for all seven unknowns, we need seven equations, or seven pieces of information.
When we impose the boundary conditions of wave function amplitude and derivative continuity at
the two sides of the well, we get four pieces of information. For bound-state systems, the remaining
three pieces of information come from the normalization condition, resulting in energy quantization.
We saw this explicitly in the discussion of numerical solutions of energy eigenvalue equations; only by
choosing the energy perfectly could we achieve a wave function that decayed to zero as it approached
infinity. Unbound or scattering states need not decay to zero at infinity, so we cannot and do not need
to impose the normalization condition. However, the absence of the normalization condition implies
that the energy is not quantized and any energy is allowed for a scattering state. So our first conclusion
is that scattering states have a continuous energy spectrum; therefore, we treat the energy E as an ini-
tial condition rather than as an unknown.

In a typical scattering experiment, we shoot particles at each other and ask how their motion is
affected by their interactions. We usually consider one particle as fixed—the target—and the other
as moving—the projectile. The potential energy well represents the interaction between them. The
wave function we solve for then represents the motion of the projectile. In an experiment, projectile
particles originate from a source, which we assume is at negative infinity. In the general solution then,
the Ae’™™ term represents the incoming projectile particles, as illustrated in Fig. 6.14. These incoming
projectile particles can interact with the well (target) in two possible ways: they might reflect and head
back to the left, which would be the Be ™ * term, or they might continue to the right, which would be
the Fe™ term after passing the well region. In this scenario, there are no particles on the right side of
the barrier that are moving to the left—the Ge ™ term. That term could come about only if there were
a source of particles at positive infinity headed back toward the origin, or if another potential energy
change occurred to the right of the well that could reflect the original particles back to the left. Hence,
the typical scattering experiment is consistent with setting G = 0. Using this viewpoint and treating
the energy E as an initial condition rather than as an unknown, we have now reduced the number of
unknowns in the problem from seven to five.

Cek. x Feik,x

De*ik2 X

Aelk1 X
Be—ik1 X

_VO

FIGURE 6.14 Waves incident upon, reflected from, and transmitted through
a square potential energy well.
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Unfortunately, we still have one more unknown than we can solve for because we have only four
equations or pieces of information from the boundary conditions. We get that one extra piece of infor-
mation by using a new way to normalize the wave function. The coefficient A represents the amplitude
of the incoming wave, B the amplitude of the reflected wave, and F the amplitude of the transmitted
wave, all of which are things we can measure. But we only expect our theory to predict the amplitudes
of the reflected and transmitted waves. The amplitude of the incident wave is something we control
in the experiment. Moreover, we expect that more incoming wave amplitude (input particle flux) will
lead to more reflected and transmitted wave amplitude (output particle flux), so we really want to
predict the ratios B/A and F/A of the reflected and transmitted waves, respectively, to the incoming
wave. In this sense, we are normalizing our solutions to the amplitude of the incoming wave. In prac-
tice, we divide the boundary condition equations by A, which effectively gives us four equations with
four unknowns. C and D represent the amplitudes of the wave function inside the potential well and
are typically not amenable to measurement, so we try to eliminate those in favor of the measurables.

In light of this new way of approaching the problem, the general solution is

Ae** + Bk x < -—a
op(x) = § Ce™* + De k>, —a<x<a (6.89)
Fe**, x> a.

Now apply the boundary conditions of wave function amplitude and derivative continuity at the two
sides of the well:

op(—a): Ae ki@ + Betht = Cemtht 4 peitat
d‘osix) kA kBN = ke — kDo
¢E(a): Ce'*t 4 pe ikt = Fpikia (©50
dquiix) . iky,Ce™® — jk,De * = jk Fe'e.

Solve the last two equations for C and D in terms of F and then substitute into the first two equations
to eliminate C and D, which are not so interesting. Then solve the first two equations for the ratios B/A

and F/A (Problem 6.24):
F e*Zikla
A 2+ i
s 2 .
Cos(2k2a) - llezsm(Zkza) 6.91)

B .Fkg o k% . (2/( )

— =ji—————sin .

A A 2k, 2

The ratio F /A is the ratio of the amplitude of the transmitted wave to the amplitude of the incom-
ing wave. The absolute square of this ratio gives the relative probability 7 that an incident particle is
transmitted through the potential well, which we call the transmission coefficient. The transmission
coefficient for a finite square well is

2
F” 1

e K- 2) ' (6.92)
1+ Msmz(zkﬂ)

2,2
4k k5

T =
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Expressed in terms of the energy E and the potential well depth V), the transmission coefficient is

1

Ve ' _
* e (2/om(E + 1)) 059

J’_ -
4E(E + Vy)

T =

This is the probability that a particle with an incoming energy E is transmitted through the potential
region.

The reflection coefficient R is the probability that an incident particle is reflected from the poten-
tial well and is given by the absolute square of the ratio B/A of the amplitude of the reflected wave to
the amplitude of the incoming wave:

18] _ !
AP, 4k ' (6.94)
(K2 = Kk2)*sin*(2k,a)

R =

In this finite square well problem, there is no absorption of particles by the well, so the reflection and
transmission coefficients add up to unity:

T+R=1 (6.95)

and the reflection coefficient is simply R = 1 — T. In contrast to quantum mechanical particles,
classical particles do not reflect from potential wells. They merely speed up and then slow down as
they traverse the well. The reflection of quantum mechanical particles is thus further evidence of the
wave nature of particle motion. It is analogous to classical wave motion through different media. For
example, a light wave incident on a slab of glass is also partially reflected and partially transmitted.

The transmission and reflection coefficients for a finite square well are plotted in Fig. 6.15 as
a function of the incident energy E. For large energy, the transmission goes to unity, which is to be
expected because the potential well becomes insignificant. The transmission is also unity for particular
energies, commonly called resonances. These resonances occur whenever the sine term in the trans-
mission coefficient is zero, which occurs if

2k,a = nir. (6.96)

: : > E/V,
1 2

FIGURE 6.15 Reflection and transmission coefficients for scattering from a finite square well.
The vertical lines indicate resonances where the transmission is unity.
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FIGURE 6.16 Optics interference analogy.
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The reason for these resonances is evident if we rewrite this expression in terms of the wavelength

A, = 2w [k, inside the potential well:

()

2l — Ja = nw

A (6.97)
g = 2

a n 2 .

When the width of the potential well (2a) contains an integer number of half wavelengths, the trans-
mission is unity and the reflection is zero. This effect is well known in physical optics, where light
undergoes multiple reflections from the front and back surfaces of a glass slab, as shown in Fig. 6.16.
Forward-going waves all interfere constructively and backward-going waves all interfere destructively
when the thickness of the glass slab contains an integer number of half wavelengths. In the optics case,
the changes in transmission and reflectivity that come from changing the wavelength (or the slab thick-
ness) are known as interference fringes. One of the most common manifestations of this effect is the
appearance of colored bands in a thin film of oil on water, as in the street after a rainstorm. In the optics
case, the transmission and reflection are found by explicitly adding up all the interfering waves shown
in Fig. 6.16. In the quantum case, we solved the energy eigenvalue equation and imposed the boundary

conditions to achieve the same result. In both cases, the waves look like those shown in Fig. 6.17.

E.y

N LN N JaN /\ /
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Total

FIGURE 6.17 Waves incident upon, reflected from, and transmitted through a finite square well.

Note that there are two vertical axes, energy and wave function, with different zeroes.
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FIGURE 6.18 A finite square barrier with the incident particle energy above
the barrier height.

If we write the resonance condition in terms of the energy, we get

2q\
(;) 2m(E + V) = n’m?

n’m’h?

2m(2a)2.

(6.98)
E = _V() +

Thus, the energies of the transmission resonances (with respect to the bottom of the well) correspond
to the bound-state eigenenergies of the infinite well. A similar effect is seen in atomic physics, where it
is called the Ramsauer-Townsend effect.

We can use these same solutions to solve the problem of a barrier potential, as shown in Fig. 6.18,
as long as the energy is above the barrier height. We simply change the well depth from Vj, to —V; in
all the formulae above. The results are the same; there are still resonances at the same energy levels.
The only difference is that now the wavelength in the potential region is longer rather than shorter than
the wavelength outside. This corresponds to the classical optics case where light from glass is incident
on a slab of air.

6.5 B TUNNELING THROUGH BARRIERS

If the energy of the particle is below the barrier height, then the barrier region is classically forbid-
den and a classical particle reflects perfectly from the barrier. In the quantum mechanical treatment
there is a possibility that the particle can penetrate the barrier and come out on the other side! This is
because the quantum mechanical wave function penetrates into the classically forbidden region. This
phenomenon is called quantum mechanical tunneling, and it is responsible for radioactive decay and
the current in high frequency semiconductor diodes, for example. Quantum tunneling has an optical
analogue where a light wave penetrates into air while being totally internally reflected from inside a
glass prism. This penetrating wave is called an evanescent wave.
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A square potential energy barrier is shown in Fig. 6.19. The potential energy is described as

0, x < —a
V(x) =1V, —a<x<a (6.99)
0, x> a.

If the energy E of the incident particle beam is less than the well height V;, then the region
—a < x < ais classically forbidden. As in the previous well problems, there are separate eigenvalue
equations in the different regions:

w d
(Lt o) = Boule). el <a

2P (6.100)
(LTt 0)ou) = Berl). el >

The energy E is less than the potential barrier height V}y, so the interior solutions must be real expo-
nentials and the exterior solutions must be complex exponentials. It is useful to define a wave vector k
outside the well and a decay constant g inside the well:

2mE
k= 2
(6.101)
_ [2m(V, — E)
q = hz
Use these two constants to rewrite the energy eigenvalue equations as
dz(PE(x)
P = derl)., il <a
) (6.102)
d“pg(x
P = Rel), ki >a
E
3
Vo
E < VO
X
—-a a

FIGURE 6.19 A finite square barrier with the incident particle energy below the barrier height.



190 Unbound States

The general solutions to these equations are

Ae™ + Bef"kx, x < —a
ep(x) = 4 Ce?™ + De &, —a<x<a (6.103)
Fe'™, x> a,

where we have again assumed that there are particles incident from the left, but not from the right.
It is important that the wave function in the classically forbidden region contains both the exponen-
tially decreasing and the exponentially growing terms. The growing term cannot vanish as it did in the
case where the classically forbidden region extended to infinity (Section 5.5). The boundary condition
equations for continuity of the wave function and of the derivative of the wave function are

o(—a): Ae*@ + Belkt = Ce™19 + Det
do(x ) .
(Z( ) ikAe " — jkBe™* = qCe™1* — gDe®
X X=—a
(6.104)
o(a): Ce? + De 9 = Fe'*a
do(x )
il(x ) : gCe¥ — gDe ™% = jkFe'*,
As before, we solve for the ratios of the amplitudes to get the transmission probability
2
FI” 1
- A 2 k2 + 272
Al 1+ 7( ) sinh2(2qa)
4k*q?
. (6.105)
= 7 5 .
1+ 7osinh2(£ 2m(Vy — E))
4E(Vy — E) h

This transmission probability for quantum mechanical tunneling quantifies the probability for a par-
ticle incident upon the barrier to penetrate the barrier and come out the other side. Remember that the
classical result would be zero—a classical particle only reflects from such a barrier.

The reflection coefficient for the incident beam is

= B =1-T= 1
AP B 4K%4>
1+ 5
(k2 + qz) sinh?(2qa)
. (6.106)
4E(V, — E)

1+

vésinhz(%a 2m(V, — E))
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FIGURE 6.20 Reflection and transmission coefficients for scattering from a square barrier.

The reflection and transmission coefficients are plotted in Fig. 6.20 for the tunneling situation
(E/Vy < 1), along with the coefficients for the “over the barrier” situation (E/Vy > 1), using
Egs. (6.93) and (6.94) with V|, replaced by —V;. In the tunneling case, the transmission is nearly
zero except near the top of the barrier, where the tunneling probability increases exponentially. As the
energy of the incident particle exceeds the barrier height, the transmission becomes large and exhibits
the same resonances seen in the finite well problem. For large energy, the transmission goes to unity,
which is to be expected because the potential barrier becomes insignificant.

The wave function of a particle that tunnels through a barrier is shown in Fig. 6.21. On the left
side of the potential barrier are the incident and transmitted oscillatory waves. On the right side is
the transmitted oscillatory wave. Inside the barrier there is an exponentially damped wave function
(the evanescent wave of optics). The growing exponential term is part of the interior wave function
[see Eq. (6.103)], but the decaying term dominates (Problem 6.32).

E,y
A - - - - Incident
------- Reflected
Total

—a a

FIGURE 6.21 Wave function (real part) of a particle tunneling through a square barrier.
Note that there are two vertical axes, energy and wave function, with different zeroes.
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FIGURE 6.22 Schematic diagram of the scanning tunneling microscope, and the
representation in terms of a potential energy diagram.

A beautiful example of quantum mechanical tunneling is the scanning tunneling microscope,
which was invented by Gerd Binnig and Heinrich Rohrer in 1981 and earned them the Nobel Prize in
physics in 1986. This imaging device employs a small sharp conducting tip that is brought up close to
a sample, as shown in Fig. 6.22. The air (or vacuum) region between the tip and sample is a potential
energy barrier because the electrons inside the two materials have lower potential energy than they
would in the free space between them due to the work functions of the materials. The probability that
an electron can tunnel from the tip to the sample (or vice versa) is given by Eq. (6.105) and can be
approximated as (Problem 6.33)

T o ¢ 244 (6.107)

where d is the separation of the tip and sample. In the microscope, a small bias voltage is applied
between the tip and sample to create a preferential direction for current flow. The tip and sample do not
“touch” so the current is due only to tunneling and is proportional to the tunneling probability:

1= e, (6.108)

The exponential dependence makes the current extremely sensitive to the tip-sample separation, which
is typically in the nanometer range to produce measurable currents. As the tip is moved laterally above
and parallel to the sample surface, the current provides a measure of the surface topology. A scanning
tunneling microscope produces images with typical lateral resolution of 0.1 nm and depth resolution
of 0.01 nm, sufficient to image individual atoms on the surface. A Web image search of “scanning
tunneling microscope” reveals many beautiful pictures of natural and man-made atomic scale objects.

6.6 B ATOM INTERFEROMETRY

Many of the examples we have discussed in the last two chapters have clearly demonstrated the inher-
ent wave nature of particle motion in quantum mechanics. So can some of the classical light experi-
ments like diffraction and interference be translated to electrons, or even to bigger particles like atoms
and molecules? Yes! Electron diffraction experiments have been used for a long time and have played
an important role in studying the atomic level structure of solid state crystals and DNA molecules. In
recent years, the advent of laser cooling and trapping of atoms (see Chapter 16) has made it possible to
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perform interference experiments with atoms and molecules. This new field of atom interferometry
is leading to new ways to measure a variety of phenomena with unprecedented precision and to probe
the mysteries of quantum measurement theory.

Let’s discuss how an atom interferometer works by starting with the canonical double-slit inter-
ference experiment, as depicted in Fig. 6.23. You may have already seen this experiment when you
studied optics, where it is commonly referred to as Young’s double-slit experiment. The beauty is that
the experiment can be performed with light or with particles such as electrons, neutrons, or atoms.
Moreover, we can use it to discuss the wave-particle duality of quantum mechanics.

Let’s first explain how the double-slit experiment works with light and then extend that to other
particles. A source of light illuminates two narrow slits and the light passing through the slits lands on a
distant screen. Each slit by itself produces on the screen a diffraction pattern whose spatial extent depends
inversely on the width of the slit. We assume that the slits are narrow enough that these two diffraction pat-
terns overlap substantially. If both slits are open, the overlapping diffraction patterns exhibit an additional
interference pattern on the screen, within the overall single-slit diffraction pattern, as shown in Fig. 6.23.
These interference fringes are comfortably explained by using our notions about waves. The important
wave idea is that the measured pattern of light cannot be explained by adding intensities, but rather we
must add amplitudes and then square the result to find the total intensity, as discussed in Section 1.1.4. The

total field at the screen is thus the sum of the fields from each of the two slits:
E(x) = E\(x) + Ey(x)
. ) (6.109)
— Eoetkrl + Eoelkrz,

where the distances r| and r, depend on the transverse position x of the observation point, the wave
vector k = 27 /A, and A is the wavelength of light. The intensity at the screen is proportional to the
complex square of the electric field

|E()|’

| E, ok 4 E, ikrs 2

1(x)

g

(6.110)
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FIGURE 6.23 Double-slit interference experiment and resulting interference intensity pattern
on the screen.
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The interference comes from the cross term in the complex square in Eq. (6.110):

I(x) = 2Iy(1 + cosk(r, — ry))

— (6.111)
r,— 1
= 2[0<1 + cos27r(2)[l)>.

As you move the observation point up and down on the screen, the path length difference r, — r;
varies, resulting in the sinusoidal intensity pattern characteristic of two interfering waves. The maxima
in the interference pattern occur when the path length difference r, — ry is an integer multiple of the
wavelength A.

This same wave-optics analysis applies to the wave function analysis of a quantum mechanics
particle, using the de Broglie wavelength to characterize the wave nature of the particle. A beam of
particles directed toward the double slits of Young’s experiment results in interference fringes at the
distant screen. The wave function at the screen resulting from equal contributions from the two slits is
analogous to the electric field of the light above

= AP/t + irrlty (6.112)

The probability density for detecting a particle on the screen is

W7 = JAP et + e’

?(x)

, » (6.113)
= 2|A] (1 + COS%(I‘Z - rl)),
which we rewrite in terms of the de Broglie wavelength using p = h/Agp:
= r
P(x) = 2|A2<1 + cos2m (21)> (6.114)
Aap

This has the same form as Eq. (6.111) and gives rise to the same interference pattern.

Young performed the original double-slit experiment with sunlight in 1801. Soon after de
Broglie’s hypothesis in 1923 that matter can be described as a wave, diffraction experiments were
performed with particles such as electrons, atoms, molecules, and neutrons to demonstrate matter
waves. Since then, Young’s double-slit interference experiment has been performed with electrons
(1961), neutrons (1988), helium atoms (1991), and even with Cg, buckyballs (1999). How about
baseballs? Could we see interference fringes from something so large? Probably not. As we discussed
in Section 4.2, a macroscopic object interacts strongly with the environment and its wave function
suffers decoherence, which washes out the interference fringes.

The double-slit experiment is entirely consistent with the wave picture of light or matter, and so
would not appear to include any particle-like behavior. However, if we can control the source well
enough to turn down the incident intensity so low that only one particle per second leaves the source,
then we can observe particle behavior with our own eyes. In the case of the light beam, the particles of
light are photons. Given that the screen is sensitive enough, the low intensity source produces individual
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blips on the screen corresponding to the arrivals of the individual particles. At first, these blips appear at
seemingly random places on the screen, as shown in Fig. 6.24(a). However, as more blips are recorded
[Figs. 6.24(b) and (c)] we begin to see that the density of blips coincides with the interference pattern
[Fig. 6.24(d)] from the wave model, as described by Eq. (6.114). The individual blips are consistent with
our notion of a particle and its spatial localization, but they are inconsistent with our notion of a wave
because they do not individually exhibit the interference pattern predicted above. On the other hand, the
interference pattern that builds up after many particles is consistent with our wave interference model,
but is inconsistent with our idea that particles travel in straight lines such that each particle from the
source should go through one slit and arrive at the corresponding upper or lower spot on the screen.

Thus, we appear to arrive at a paradox. Some aspects of the experiment are consistent with a
particle model, while others are consistent with a wave model. The quantum mechanical resolution is
to say that we use the wave model to predict the probabilities of detecting individual particles. This
is consistent with the interpretation we used in the spins sections where the quantum state vector was
used to predict the probability that a spin projection was measured to be up or down. So what we called
the light intensity in the classical wave description is now transformed into a probability of detecting
photons at particular places on the screen. Any given photon arrival occurs randomly on the screen and
the pattern builds up only after many arrivals. This is what we mean by wave-particle duality. (More
complete discussions of this example can be found in Feynman and Cohen-Tannoudji et al.)

If you are not a little confused at this point, try this: What if you could measure which slit the par-
ticle went through? That is, which path did the particle take to arrive at the screen? Well, if you knew
which slit the particle went though, then the wave description wouldn’t be right, because it requires
that the wave goes through both slits in order to define the path length difference in Eqgs. (6.111) and
(6.114). If the wave picture isn’t right, then the interference pattern shouldn’t be present. As it turns
out, the interference pattern does indeed disappear if you know which slit the particle went through.
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FIGURE 6.24 A computer simulation of the arrival of particles at the detection screen in a double-slit

experiment, showing (a) random early arrivals, (b) and (c) the buildup of an interference pattern, and
(d) a plot of the predicted interference intensity distribution.
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The answer to this conundrum lies at the heart of quantum mechanical measurement theory. As hard as
you might try, you cannot measure, and therefore cannot know, which slit the “particle” goes through
without disturbing it just a little bit. The simplest way to measure which slit the particle goes through
is to watch, but you need some light to watch. If you see the particle, then at least one photon must
have scattered from the particle toward your eye, and the change in momentum of that photon in the
scattering process will (through conservation of momentum) impart an equal and opposite change to
the particle’s momentum. This change is enough to alter the phase of the particle’s wave function and
destroy the interference fringes. In the early days of quantum mechanics, such “which path” experi-
ments were merely “thought” experiments or gedanken experiments because they were too hard to
perform. However, in recent years careful experiments have demonstrated these effects beyond doubt.

One of the important features of an atom interferometer is its ability to measure extremely small
changes in potential energy. This ability arises from the dependence of the de Broglie wavelength of
the particle on the potential energy. If the potential energy varies, then the kinetic energy and hence the
momentum varies because the energy is conserved. The de Broglie wavelength depends on the particle
momentum, so a varying potential gives rises to a varying wavelength

h
Aip = —

i (6.115)

\Vom(E - V)

A measurement of the potential energy with an atom interferometer proceeds as shown in Fig. 6.25.
Different regions of potential energy are placed behind slit 1 and behind slit 2. A difference in the two
potential energies produces a phase shift between the two wave functions that interfere at the distant
screen. Hence, a measurement of the fringe shift in the interference pattern is a measurement of the
potential energy difference. The different regions might, for example, have different electric fields,
which produce different energies in atomic states (see Section 10.7.2). Or, if the atom interferometer
is oriented vertically (or at an angle) instead of horizontally, then the two paths experience different
gravitational potential energies. Recent experiments have been precise enough to test features of Ein-
stein’s general theory of relativity. Atom interferometers can also measure rotation and acceleration,
similar to fiber optic gyroscopes that are commonly used for navigation.

V1 r

Source
[ ] r2

FIGURE 6.25 Double-slit atom interferometer for measuring potential energy differences.
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SUMMARY

In this chapter, we learned about the unbound states of quantum particles. The momentum eigenstate
wave functions are

1 )
= @ (x) = —=eP/. 6.116
P) = o) = s 6116
For a free particle [ V(x) = 0], the momentum eigenstates are also energy eigenstates with energy
2
E=1 6.117)
2m
A free particle has a characteristic wavelength given by the de Broglie relation
h
Ade Broglie — ; (6.118)

A more realistic representation of particle motion is obtained by superposing momentum
eigenstates in a wave packet. The amplitude of each momentum component is ¢(p) and the resultant
superposition is

1 * _
P(x) = ﬁ[ o(p)e™ " dp, (6.119)

which has the form of a Fourier transform. The momentum amplitudes are related to the position space
wave function through the inverse Fourier transform

1 - i
= — P/ dx. 6.120
¢0) = 5 / _lx)e (6.120)
The Heisenberg uncertainty relation between position and momentum is
fi
AxAp = 3 (6.121)

and tells us that tight spatial localization requires a broad range of momenta, and a particle with a
well-defined momentum is spread over a large spatial region. The Gaussian wave packet is the only
wave packet that satisfies the equality of the uncertainty relation and so is referred to as a minimum
uncertainty state.

If a potential energy is present, the unbound states are scattering states. A particle incident on
a potential well is partially transmitted and partially reflected, except at certain resonance energies
where there is no reflection. A particle with energy below the height of a potential barrier can tunnel
through the barrier, a phenomenon that is not observed classically.

PROBLEMS

6.1 Calculate the de Broglie wavelengths of the following items:
a) an electron with a kinetic energy of 3 eV
b) a proton with a kinetic energy of 7 MeV
¢) abuckyball (Cg,) with a speed of 200 m/s
d) an oxygen molecule at room temperature
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e) araindrop
f) yourself walking to class

In which of the above cases might you expect quantum mechanics to play an important role
and why?

6.2 The wave function for a particle in one dimension is
@) P(x) = Ae ™77,
a) Normalize the wave function.
b) Calculate the expectation value (x) of the position.
¢) Calculate the uncertainty Ax of the position.
d) Calculate the probability that the particle is found in the region 0 < x < a.

e) Plot the wave function and the probability density and indicate the results to (b), (c), and
(d) on the plot.

f) Calculate the expectation value {p) of the momentum.

g) Calculate the uncertainty Ap of the momentum.

h) Does this state satisfy the uncertainty principle?
Repeat for other wave functions:

(i) P(x) = Axe ¥ /7
1
(iii) P(x) = sz 7

6.3 A beam of particles is prepared in a momentum eigenstate | p,). The beam is directed to a
shutter that is open for a finite time 7.

a) Find the wave function of the system immediately after passing through the shutter.
b) Find the momentum probability distribution of the beam after the shutter.

6.4 Calculate the momentum space wave function for a particle in an energy eigenstate of the
infinite square well. Plot the momentum probability densities for the n = 1, 2, and 10 energy
eigenstates. Discuss your results.

6.5 Show that the momentum and Hamiltonian operators commute for a free particle. Do this two
ways, using both the differential form (position representation) of the operators and the abstract
form.

6.6 Calculate the commutator of the position and momentum operators. Do this two ways, using
both the position representation of the operators and the momentum representation.

6.7 Show that the momentum eigenstates gop(x) = AelP/h satisfy the Dirac orthogonality condition
in Eq. (6.23) and that the normalization constant is A = 1/V2h. Use the Dirac orthogonality
condition to normalize the wave vector eigenstates ¢;(x) = Ae™ and explain why the result
differs from that for the momentum eigenstates.

6.8 Use your favorite computational plotting tool to create and plot a wave packet comprising
three sinusoidal waves, as done in Section 6.2.1. Vary the separation 8p of the side modes
from the central mode and notice the effect upon the spatial extent 8x of the “localized” wave
packet. Quantify the relationship between the momentum spread 6p and the position spread Ox.
Animate your plots and distinguish the motion of the wave packet envelope and the motion of
the sinusoidal waves inside the envelope.

6.9 Perform the Gaussian integral in Eq. (6.48) and verify the result in Eq. (6.49).
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6.10 Calculate the expectation values of position and momentum for a Gaussian wave packet by
direct integration and verify Eqs. (6.56) and (6.59).

6.11 Use your favorite computational plotting tool to create and plot a Gaussian wave packet. Vary
the width B of the momentum distribution and notice the effect upon the spatial extent Ax of
the wave packet. Quantify the relationship between the momentum spread and the position
spread. Animate your plots and distinguish the motion of the wave packet envelope and the
motion of the sinusoidal waves inside the envelope.

6.12 Show that a propagating Gaussian wave packet broadens in position space but not in
momentum space. Plot the position-momentum uncertainty product as a function of
time and show that the Gaussian wave packet is a minimum uncertainty state. Discuss
your results.

6.13 Discuss each step in the calculation of the phase and group velocities in Egs. (6.62) and (6.63).

6.14 Consider a particle whose wave function is #(x) = Asin(pyx/%). Is this wave function an
eigenstate of momentum? Find the expectation value (p) of the momentum and the momentum
probability distribution. Calculate the uncertainty Ap of the momentum. What are the possible
results of a measurement of the momentum?

6.15 Use the uncertainty principle to estimate the ground state energy of a particle of mass m
confined to a box with a size of a. Calculate the energy in electron volts for an electron
confined in a box with a = 0.1 nm, which is roughly the size of an atom.

6.16 Use the uncertainty principle to estimate the ground-state energy of a particle of mass m bound

in the harmonic oscillator potential V(x) = %kx2.

6.17 Use the uncertainty principle to estimate the ground-state energy of a particle of mass m bound
in the potential V(x) = alx|.

6.18 Use the uncertainty principle to estimate the ground-state energy of a particle of mass m bound
in the potential V(x) = bx*.

6.19 Use the uncertainty principle to estimate the ground-state energy of the hydrogen atom.

6.20 Calculate the position uncertainty for a particle bound to an infinite square well of width L
if (a) the particle is in the ground state, and (b) if the probability density is uniform across
the well.

6.21 A beam of particles is described by the wave function

(//(x) = Aeio/lix g=/4a’

a) Calculate the expectation value {p) of the momentum by working in the position
representation.

b) Calculate the expectation value (p) of the momentum by working in the momentum
representation.

6.22 A beam of particles is described by the wave function
() {Aeil’o"/ﬁ(b—x), x| < b
x) =
09 |x| > b.
a) Normalize the wave function.
b) Plot the wave function.

¢) Calculate and plot the momentum probability distribution.
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6.23 Some radioactive nuclei emit electrons (beta radiation), so you might speculate that electrons
can exist within a nucleus. Use the uncertainty principle to estimate the minimum kinetic
energy (beware of relativity) of an electron confined within a nucleus of size 2 fm. Compare
that with the Coulomb potential energy of the electron and comment on the possibility of
electron confinement within the nucleus.

6.24 Solve the boundary condition equations (6.90) to find the amplitudes for transmission and
reflection in Eq. (6.91).

6.25 Electrons incident upon a finite square well of depth 12 €V are transmitted with unit probabil-
ity when their kinetic energy is 20 eV. What is the minimum width of the well? Assuming this
minimum width, for what other kinetic energies are the electrons also transmitted completely?
Does this well have any bound states?

6.26 A finite square well of depth 8 eV has 5 bound states. Electrons incident upon the well are
transmitted with unit probability when their kinetic energy is 11 eV. What is the width of the
well? For what other kinetic energies are the electrons also transmitted completely?

6.27 A finite square well has depth 5 eV and width 0.5 nm. What are the bound-state energies of this
well? Find the kinetic energies of electrons incident upon the well that are transmitted with unit
probability.

6.28 A finite square barrier has height 5 eV and width 1 nm. Find the kinetic energies of electrons
incident upon the well that are transmitted with unit probability.

6.29 Consider a potential energy step as shown in Fig. 6.26 with a beam of particles incident from
the left.

a) Calculate the reflection coefficient for the case where the energy of the incident particles is
less than the height of the potential energy step.

b) Calculate the reflection coefficient for the case where the energy of the incident particles is
greater than the height of the step.

¢) Plot your results as a function of the incident energy and comment.

6.30 Show that a double step potential can be designed such that particles of particular energies are
transmitted with unit probability. The optical analogue is an antireflection coating.

6.31 Calculate the probability of transmission of an electron with kinetic energy 5 eV through a
barrier of height 10 eV and width 1 nm.

V(x)

0
FIGURE 6.26 Step potential.
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6.32 Consider a particle incident upon a potential energy barrier with a barrier height larger than the
kinetic energy. Show that the growing exponential wave inside the barrier is always less than or
equal to the decaying exponential term.

244 for

6.33 Show that the tunneling probability through a barrier of width d is proportional to e
qd > 1.

6.34 If the tunneling current in a scanning tunneling microscope is 1 nA at 1 nm tip-surface
separation, how much current will flow at tip-surface separations of 0.8 nm, 1.2 nm, or 2 nm?

Assume that the work functions of the metals are 5 eV and that the bias voltage is minimal.

RESOURCES
Activities

The bulleted activity is available at

www.physics.oregonstate.edu/qmactivities

* Time Evolution of a Gaussian Wave Packet: Students predict and study the time evolution of a
Gaussian wave packet.

Quantum Tunneling and Wave Packets: This simulation experiment from the PHET group at the
University of Colorado animates wave functions tunneling through barriers:

http://phet.colorado.edu/en/simulation/quantum-tunneling

Further Reading

Interference experiments with particles are discussed in these articles:

A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, “Demonstration of single-
electron buildup of an interference pattern,” Am. J. Phys. 57, 117-120 (1989).

0. Nairz, M. Arndt, and A. Zeilinger, “Quantum interference experiments with large molecules,”
Am. J. Phys. 71, 319-325 (2003).

D. E. Pritchard, A. D. Cronin, S. Gupta, D. A. Kokorowski, “Atom optics: Old ideas, current
technology, and new results,” Ann. Phys. (Leipzig) 10, 35-54 (2001).

The Nobel Prize for scanning tunneling microscopy is described here:

nobelprize.org/nobel_prizes/physics/laureates/1986/


www.physics.oregonstate.edu/qmactivities
http://phet.colorado.edu/en/simulation/quantum-tunneling

CHAPTER

Angular Momentum

In the last two chapters, we learned the fundamentals of solving quantum mechanical problems with
the wave function approach. We studied particles bound in idealized square potential energy wells
and free particles. We are now ready to attack the most important problem in the history of quan-
tum mechanics—the hydrogen atom. The ability to solve this problem and compare it with precision
experiments has played a central role in making quantum mechanics the best proven theory in physics.

The hydrogen atom is the bound state of a positively charged proton and a negatively charged
electron that are attracted to each other by the Coulomb force. Classically, we expect the electron
(m, = 9.11 X 107" kg) to orbit around the more massive proton (m, = 1.67 X 10~*" kg), in the
same manner that the earth orbits around the sun, as depicted in Fig. 7.1(a). However, the uncertainty
principle dictates that we cannot know the position of the electron well enough for Fig. 7.1(a) to be a
valid representation, but rather, the electron is represented by a probability cloud as in Fig. 7.1(b). By
the end of the next chapter, we will be able to predict the details of the many different possible shapes
of the electron cloud.

As always in quantum mechanics, we begin by identifying the Hamiltonian of the system of inter-
est because of its role in determining the dynamics of the system through the Schrédinger equation

od
i 1) = Hlp). (7.1)

(@) (b)

FIGURE 7.1 (a) A classical atom and (b) a quantum atom.
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Once we know the Hamiltonian, we find the energy eigenstates by solving the energy eigenvalue equation
H|E) = E|E). (7.2)

The energy eigenstates form the preferred basis for expanding any initial state and applying the
Schrodinger time evolution recipe, so solving the energy eigenvalue equation is the primary task
required to solve most quantum mechanical problems.

Compared to the problems in the last two chapters, the hydrogen atom system presents us with
two major complications: two particles and three dimensions. The goal of this chapter is to simplify
both these aspects of the problem. Analogous to the approach taken in classical mechanics, we reduce
the two-body problem to a fictitious one-body problem and we separate the three spatial degrees of
freedom in a way that each spherical coordinate can be treated independently. A flowchart depicting
these two simplifications is shown in Fig. 7.2. In this chapter, we perform all the steps of Fig. 7.2 except
the radial coordinate part. In particular, we focus on the two angular degrees of freedom because they
relate to the angular momentum, which is a conserved quantity. In the next chapter, we solve the radial
aspect of the problem for a 1/r Coulomb potential energy, which leads to the quantized energy levels
of the hydrogen atom. The journey through the next two chapters requires some mathematics that may
appear daunting; we provide the roadmaps in Figs. 7.2 and 7.6 so you can see the forest for the trees.

Hsysl/’sys(R:r) = Esys‘/’sys(R’r)

7.21

wsys(R’r) = WCM(R)WreI(r)

7.20

Hemem(R)= Ecmyem(R)| | Hreithrei(r) = Ereirel(F)
7.24,7.27 7.24,7.28

/

vem(X,¥.2)
7.30

1 /

Urel(16,0)=R(NOO)D(¢)
8.69

AN

A

‘l’sys(Rrr) = WCM(X: Y,Z)lﬂre|(f,9,¢)

FIGURE 7.2 Flowchart for solving the hydrogen atom energy eigenvalue problem by reducing the
two-body problem to a one-body problem and by separation of the spherical coordinate variables.
The numbers in the corners of the boxes refer to the relevant equation numbers in the text.
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For a three-dimensional system of two particles, the Hamiltonian is the sum of the kinetic energies
of the two individual particles and the potential energy that describes the interaction between them:

2 2
HH=&+&+ V(r,,r,). (7.3)
J 2m,  2m, P2

Particle 1 has mass m, position r;, and momentum p;; particle 2 has mass m,, position r,, and
momentum P,, and the interaction of the two particles is characterized by the potential energy
V(r;,1,). We assume that the potential energy depends only on the magnitude of the separation of
the two particles

V(ry,ry) = V(|r; — 1), (7.4)

which we refer to as a central potential. In this chapter, we do not need to know the actual form of
the central potential. In fact, the quantum mechanical angular wave functions we find in this chapter
are valid for any central potential, which is a very powerful result. We introduce the Coulomb potential
energy for the hydrogen atom system in the next chapter.

7.1 B SEPARATING CENTER-OF-MASS AND RELATIVE MOTION

In classical mechanics, we simplify the motion of a system of particles by separating the motion of the
composite system into the motion of the center of mass and the motion about the center of mass. We
take this same approach to simplify the quantum mechanical description of the hydrogen atom. We will
work this through in some detail because the procedure of separating the motion is very common and
needs to be understood, but, in fact, we will not pursue the motion of the center of mass beyond this
section. In the next section, we’ll begin the discussion of the motion about the center of mass, which is
where many treatments of the hydrogen atom start.

As illustrated in Fig. 7.3, we define the center-of-mass coordinate position vector for this two-
body system as

nyry + mory

R=—"—"7- (7.5)

m1+m2

and the relative position vector as
r=r, —r. (7.6)
In classical mechanics, we typically use velocities, which are obtained by differentiation of position

with respect to time. In quantum mechanics, we use momentum as the preferred quantity, so the appro-
priate quantities to separate the two-body motion are the momentum of the center of mass

P=p +p; (7.7)
and the relative momentum

mpy — npp
p, = 1Pz~ MaPr (7.8)
my + my
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my (X2,Y2,Z5)
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my (X1,Y1,21)

FIGURE 7.3 The center-of-mass and relative coordinates for a two-body system.

The relative momentum takes the simpler form that looks like a relative velocity

Prei _ & _ & (79)
Bmoomy
if we define the reduced mass w.:
1 1 1
—_ —4 —
m m
g (7.10)
g
® mg + my

With the definitions in Egs. (7.7) and (7.8), the two-body Hamiltonian in Eq. (7.3) becomes
(Problem 7.1)

2
HS .= LZ + prel
Y 2M  2p

+ V(r), (7.11)

where the relative particle separation r is the magnitude |r, — r;|. This procedure has separated the
system Hamiltonian into two independent parts:

Hyy = Hey + Hy, (7.12)
with a center-of-mass term
P2
Hew = 200 (7.13)

representing the motion of a particle of mass M = m; + m, located at position R with momentum
P = p; + p,, and a relative term

pfel
H, = 5 + V(r) (7.14)
M
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representing the motion of a single fictitious particle of mass u located at position r = r, — r; with
momentum p,,; subject to a potential energy V(r) created by a force-center that is fixed at the origin.
Notice that the center-of-mass Hamiltonian H,, does not depend on the relative motion variables p,,;
and r, and the relative Hamiltonian H,,; does not depend on the center-of-mass motion variables P
and R; this is what we mean by “separable.” In contrast, Eq. (7.3) presents the same Hamiltonian in
terms of p, and r; and p, and r,, but the potential energy V contains both r; and r,, so H is not sepa-
rable in those coordinates. Notice also that the center-of-mass position vector R does not appear in
the Hamiltonian at all, which, classically, is a reflection of the fact that the momentum of the center
of mass is conserved because there are no external forces. For the hydrogen atom system, the reduced
mass is . = 0.9995m, and the center of mass is located very near the proton.

The separation of the Hamiltonian into center-of-mass motion and relative motion can also be
done using the explicit position representation of the momentum operators as differentials. In the posi-
tion representation, the one-dimensional momentum operator is

= —ih d (7.15)
= —jh—. .
P dx
In three dimensions, the momentum operator is cast in terms of the gradient operator V:
.o 9 J » J ~ .
p = —zﬁ(fl +—j+ fk) = —ihV. (7.16)
ax ay 0z
For a two-particle system, the momentum operators for the two particles are
Y J 2 J .
p; = —lh<1 +—j+ k> = —ihV,
Bxl Byl aZI
(7.17)

d » J » d

P = —iﬁ(i +—j+ k> = —ihV,.
Xy 9y, 0z

Substituting these position representations into the Hamiltonian in Eq. (7.3) leads to the same separa-

tion as in Eq. (7.11), where the center-of-mass momentum operator has the position representation

(Problem 7.1)

Y J J .

P=—ial—i+—j+—k|=—iAV;. (7.18)
X aY (4

X, Y, and Z are the Cartesian coordinates of the center-of-mass vector R, and V is the gradient opera-

tor corresponding to the center-of-mass coordinates. The relative momentum operator has the position

representation

. < o 9o 0 > ,

P = —ih|l —i+ —j+ —k | =—iaV,, (7.19)
x ady 0z

where x, y, and z are the Cartesian coordinates of the relative position vectorr = r, — r; and V, is the

gradient operator corresponding to the relative coordinates.

With the Hamiltonian separated into center-of-mass motion and relative motion, we expect that
the quantum state vector can also be separated. This is not always the case, as we saw in the discussion
of entanglement in Chapter 4, but it is a valid assumption for the hydrogen atom problem we want to
solve because the potential energy is a function only of the relative coordinate r. Hence, we write the
wave function for the system as

lpsys(Rsr) = l/jCM(R) (prel(r)' (720)
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The energy eigenvalue equation for the system is

Hsys lps_\'s(R’ l‘) = Esys lp.vy.v(Ra I') ’ (721 )
and substituting the separated Hamiltonian [Eq. (7.12)] and separated wave function [Eq. (7.20)] gives
(Hepr + Hye))Yom(R) $r0(r) = Egy hep(R) g (r). (7.22)

The separate center-of-mass and relative Hamiltonians act only on their respective wave functions
because the gradients Vg and V, are independent, so Eq. (7.22) becomes

Yra(r) Hoppon(R) + Yep(R)Hyoifoi(v) = Egys Wep(R) (). (7.23)

We assert that the separate center-of-mass and relative Hamiltonians satisfy their own energy eigen-
value equations (Problem 7.2)

Heyhen(R) = Ecypen(R)
Hrel‘»[’rel(r) = Ereld/rel(r)

and arrive at the energy eigenvalue equation for the system

HvyswCM(R) wre/(r) = (ECM + Erel)([jCM(R) l;[jrel(r>’ (725)

which demonstrates that the system energy is the additive energy of the two parts

(7.24)

Esys = ECM + Erel' (726)

Using the separate Hamiltonians in Eqs. (7.13) and (7.14), the separated energy eigenvalue
equations are

P2
ﬁtpCM(R) = Ecutbem(R) (7.27)
and
P
(2” + V(r)>t/frez(r) = Erarel(r)- (7.28)
i

The center-of-mass energy eigenvalue equation (7.27) is the free particle eigenvalue equation we
encountered in Chapter 6, while the relative motion energy eigenvalue equation (7.28) contains the
interaction potential and so has the interesting physics of the hydrogen atom. Using the position rep-
resentation of the momentum operator in Eq. (7.18), the center-of-mass energy eigenvalue equation is

#> (az 9? 9?

ol + o + aZj)!lch(X,Y,Z) = Ecuyen(X.Y.Z). (7.29)

The solution to Eq. (7.29) is the three-dimensional extension of the free-particle eigenstates we stud-

ied in Chapter 6
1 .
lpCM(X,Y,Z) = 4(27Tﬁ)3/2 el(PxX+PyY+PzZ)/h (730)

with energy eigenvalues

1 2 2 2
Eow = 5, (Py + P} + P). (7.31)
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For measurements of observables associated with the relative motion, the center-of-mass wave func-
tion contributes only an overall phase to the system wave function and so has no effect on calculat-
ing probabilities of relative motion quantities. We can therefore leave the center-of-mass motion and
concentrate only on the relative motion dictated by the energy eigenvalue equation (7.28). That is the
problem we want to solve for the hydrogen atom. Remember that the angular momentum discusssion
that will follow in this chapter is valid for any central potential. In Chapter 8, we will insert the specific
form of the potential for the hydrogen atom.

7.2 B ENERGY EIGENVALUE EQUATION IN SPHERICAL COORDINATES

The relative motion Hamiltonian that governs the hydrogen atom is

2
H=—+V(r), (7.32)

where we drop the “relative” subscripts because we are now focusing exclusively on the relative
motion and ignoring the center-of-mass motion. Using the position representation of the momentum
operator from Eq. (7.19), the Hamiltonian is represented by

h2
H=—-—V>+V(r) (7.33)
2p

and the energy eigenvalue equation is the differential equation

(—Zivz . V(r))zp(r) e (7.34)

Because the potential energy in Eq. (7.34) depends on the parameter r only, this problem is clearly
asking for the use of spherical coordinates centered at the origin of the central potential. The system of
spherical coordinates is shown in Fig. 7.4(a) and the relations between the spherical coordinates r, 6, ¢
and the Cartesian coordinates x, y, z are

X = rsinf cos¢
y = rsinf sin¢g (7.35)

z = rcosé.

The differential volume element dV = dx dy dz expressed in spherical coordinates is
dV = r*sinf do dé¢ dr. (7.36)
This volume element is shown in Fig. 7.4(b), leading one to consider the grouping
dv = (rd6)(rsin do)(dr). (7.37)
However, for calculating the normalization of wave functions, we will group the terms as

dv = (sin0d6)(d¢)(r*dr) (7.38)
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and normalize each coordinate piece of the wave function separately. It is also convenient to express
the volume element as

dV = rrdrdQ, (7.39)
where

dQ = sinf dO d¢ (7.40)
is the differential solid angle element.
In spherical coordinates, the gradient operator is

d ~1 9 ~ 1 d
V=r—+60——+ — 7.41
r ar r 906 ¢ rsinf d¢ ( )
and the Laplacian operator V> = V-V is
19 d 19 d 1 9
Pol(2), 1y 1R,
P> or ar r*sinf 96 a0 r*sin’0 d¢h?

Using this spherical coordinate representation, the energy eigenvalue equation (7.34) becomes the dif-
ferential equation

h2[16<26)+ 1 a('aa)+ 1 62}/;(0(#)
|5 \r—— sinf — r,o,
2ulr? ar \ or 2 sinf 90 06 r? sin?@ agp?

+ V(r)ip(r.0.9) = EY(r.0.4)|.

(7.43)

This looks formidable, so it is worth remembering that this is just the position representation of the
energy eigenvalue equation

H|E) = E|E). (7.44)

Solving Eq. (7.43) for the energy E and the eigenstates |[E) = s(r,0,¢) is our primary task, but first
let’s discuss the important role that angular momentum plays in this equation.

z4
\;\\V\dr
Z \\\
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7 N
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\ \
] \
: dg [
- ~
r : ‘\ \
0 ! L
| Vo
| N \ !
T >
S~ 1 ’ | | e
Lo / dp7 = bl Y
—————————— T "_s—
X

(@) (b)

FIGURE 7.4 (a) Spherical coordinates and (b) the differential volume element.
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7.3 B ANGULAR MOMENTUM

7.3.1 W Classical Angular Momentum

The classical angular momentum is defined as

L=rXnp. (7.45)

In the case of central forces, the torque r X F is zero and angular momentum is a conserved quantity:
dL

T= u =0 = L = constant. (7.46)

A central force F(r) depends only on the distance of the reduced mass from the center of force
(i.e., the separation of the two particles) and not on the angular orientation of the system. Therefore,
the system is spherically symmetric; it is invariant (unchanged) under rotations. Noether’s theorem
states that whenever the laws of physics are invariant under a particular motion or other operation,
there will be a corresponding conserved quantity. In this case, the conservation of angular momentum
is related to the invariance of the physical system under rotations.

7.3.2 H Quantum Mechanical Angular Momentum

In quantum mechanics, the Cartesian components of the angular momentum operator L = r X p in
the position representation are

. . ﬁ( d d )
= yp. — = —inlv-= - &
x = YPz — 2Py y 9 Z ay
.. ad ad
L, = zp, — xp, = —ik (ZE - xg) (7.47)
. . . d d
L. = xp, — yp. = —if Yo V)

Position and momentum operators for a given axis do not commute ([x, p,] = i#, etc.), whereas posi-
tion and momentum operators for different axes do commute ([x, p,] = 0, etc.). We can use these
commutators to calculate the commutators of the components of the angular momentum operator. For
example,

LX>L = z — ZPys TPx T X 4
(L, Ly] = [yp. = 2wy 2px = 2] (7.48)
= YPZPx T YPXPe T ZPyIPx T IPyXPe T IPYP: t IPxZPy T XD T XPLIDy .

Now use the commutation relations to move commuting operators through each other (e.g.,
YP.2Dx = YP.D.2) and cancel terms:

[Lx’Ly] = YDxP:Z — XYP P; — 2ZPxPy + XPyZP; = YPxZP; + 2ZPxPy + xyp.p. — xpypzz(7 49)
= YPxPZ T XPyIP. T YPxIP: T XPyD:Z-

Finally, collect terms and use the commutator relation [z, p.| = if:
(Lo, L] = xp(zp. — p.2) — ypulzp. — p.2)
= ap)lzp.] = ypdap.] (7.50)
= ifi(xp, = yp.)
= ihL

7 .
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Cyclic permutations of this identity give the three commutation relations

[L,.L,] = ifL,
[L,,L.] = itL, (7.51)
[L.,L] = ifiL,|.

These are exactly the same commutation relations that spin angular momentum obeys (Section 2.4)!
So orbital and spin angular momentum appear to have something in common, as you might expect.
Indeed, this is why the physical property of spin angular momentum was given this name.

When we studied spin, we found it useful to consider the S> = S+S operator. The corresponding
operator for orbital angular momentum is

L?=L-L=1L + Lf, + L. (7.52)

In the spin case, the operator S commutes with all three component operators. Let’s try the same with
orbital angular momentum. For example,

2L =[+L0+1L]
Yy 4 X
— [r2 2 2
=[]+ 2] +[12L] (7.53)
=LL —-LL +LL —LL.
yox Xy X X"z
Add zero to this equation, but choose the terms that sum to zero cleverly so they help:

(L’L]=LLL, —LLL, +LLL,~LLL +LLL —LLL +LLL —LLL,
) )

=0 =0
= Ly[Ly’Lx] + [L)"Lx}Ly + Lz[LZ?Lx] + [Lz’Lx]Lz (7'54)
= —ihL,L, — ihL L, + ihL L, + ihL,L,
=0.
The other two components also commute with L? (Problem 7.4):

[LA4L] =0

[L%L,] =0 (7.55)

[L%L]=0].

So orbital and spin angular momentum obey all the same commutation relations.
Though we did not do it that way in Chapter 1, the eigenvalues and the eigenstates of spin angular
momentum can be derived solely from the commutation relations of the operators (see Section 11.3).

The spin eigenvalue equations are
S%smg) = s(s + 1)h2|sm,)
S.|smy) = mjh|sm;).

(7.56)

The states |sm,) are simultaneously eigenstates of S? and S, which is possible because the two opera-
tors commute with each other. Because orbital angular momentum obeys the same commutation rela-
tions as spin, the eigenvalue equations for L? and L_ have the same form:

L2|[tm,) = €(¢ + 1)#%|em,)

(7.57)
L|tm¢) = meh|tmy)
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and the states |€m,) are simultaneously eigenstates of L and L. Hence, we can draw on all the work
we did in the spins chapters to help us understand orbital angular momentum. The quantum number €
is the orbital angular momentum quantum number and gives a measure of the “size” of the angular
momentum vectorin thatthemagnitudeis vV €(€ + 1)#.Thequantumnumber1,isthe orbital magnetic
quantum number and indicates that the magnitude of the z-component of the angular momentum s 1, fi.
There is one crucial difference between spin angular momentum and orbital angular momentum.
In the spin case, the allowed quantized values of the spin angular momentum quantum number s are
the integers and half integers:
s =0,5,1,5,2,5,3,

o4 (7.58)

o=
[SSTIO8)
[SS119)
[[STEN]

In Chapters 1-3 we studied spin-1/2 and spin-1 systems. In the case of orbital angular momentum, the
quantum number ¢ is allowed to take on only integer values

€=0,1,2,3,4, .| (7.59)

Other than this important distinction, spin and orbital angular momentum behave the same in quantum
mechanical calculations of probabilities, expectation values, etc. The spin magnetic quantum number
my spans the range from —s — + in integer steps. The orbital magnetic quantum number m, is similarly
restricted to the 2¢ + 1 values

me=—6—C+1,..,—1,0,1,...6—1¢| (7.60)
In the spin-1/2 system, we represent the spin operators as matrices:
3 1 0 (1l 0
P Y et Y
4 \0 1 ©o2\0 -1
(7.61)

5 .
SX - 7<0 1> SV - ﬁ(0 l)’
2\1 O ’ 2\i 0

where the basis states of the representation are the eigenstates of S? and § . as defined in Eq. (7.56). For
orbital angular momentum, we also represent the operators as matrices, with the exception that only
integer values of ¢ are allowed. For example, the matrix representations of the orbital angular momen-
tum operators for € = 1 are

1 0 0 1 0 0
=20 1 0 L.=#0 0 0
0 0 1 0 0 -1
(7.62)
0 1 0 0 —i 0
L= 01| =" o =i
x T y = R
V2\o 1 o V2o i o

where the basis states of the representation are the eigenstates of L? and L, as defined in Eq. (7.57).
These matrices are exactly the same as the spin-1 matrices we defined in Chapter 2.7.
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Example 7.1 A particle with orbital angular momentum ¢ = 1 is in the state

) =211 + \/210). (7.63)

Find the probability that a measurement of L, yields the value 7 for this state and calculate the
expectation value of L,.

The eigenstate of L, with eigenvalue L, = +# (and eigenvalue L? = 2#%) is
|€ = 1,m, = 1) = |11), so the probability of measuring L. = +# is

P = (1))
= [(11](\/411) + \/§|10>)\2 (7.64)
= WA + /(o)

The states |¢m,) form an orthonormal basis, so (11/11) = 1 and (11]10) = 0, and the probability is

P, = [\/*
(] ‘ 3 (7.65)
—1
3.
The expectation value of L, is
(L) = (WL|w). (7.66)
Let’s calculate this with matrices. Using the matrix (column) representation of |if):
1 1
) = —— V2], (7.67)
V3
we get
] 1 0 O ) 1
(L)y=—=(1 V2 o)alo o o |—=|V2
(7.68)

I
:g(l V2 o)lo

0
h
g.

These calculations are no different than if this were a spin-1 problem.

So it looks like we can solve orbital angular momentum problems using our spin knowledge, and
you may well ask: Is that all there is to it? Yes and no! If you can solve a problem like Example 7.1
using the bra-ket or matrix notation we developed in the spins chapters, then do that. But there are
problems where we need to do more.
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In Chapters 1-3 we never discussed a position representation of spin operators or eigenstates,
because it is not possible to describe spin angular momentum using the wave function language we
developed in Chapter 5. In contrast, it is possible to represent orbital angular momentum operators and
eigenstates in the position representation. We have already presented the position representation of the
orbital angular momentum operators L,, L,, and L, in Eq. (7.47), and the end result of this chapter is a
position representation of the angular momentum eigenstates | €, ). In solving for the allowed spatial
wave functions, we will prove that the orbital angular momentum is quantized according to Egs. (7.59)
and (7.60).

Armed with wave functions detailing the spatial dependence of orbital angular momentum, we
will then be able to visualize the angular probability distribution of the electron around the proton
in the hydrogen atom. We will be able to understand why two hydrogen atoms form a molecule and
why the carbon bonds in a diamond lattice are oriented in such a way to make diamond so unique. For
example, Fig. 7.5 shows the angular orientation of the four tetrahedral bonds that one carbon atom
makes within the diamond lattice.

To see the importance of orbital angular momentum in solving the hydrogen atom energy eigen-
value equation, we change the angular momentum operators in Eq. (7.47) to spherical coordinates.
Using the relations in Eq. (7.35), one can show that the angular momentum operator L, has the spheri-
cal coordinate representation (Problem 7.8)

d
L, = —ih— 7.
= i (7.69)

and depends on ¢ alone. Likewise, we convert L, and L, to spherical coordinates (Problem 7.8) and
obtain the operator L> = L-L = L2 + L§ + L%:

L? = —#? (7.70)

1 9 ( 9 ) 1 92
— ——(sinf— | + —
sinf 96 90 sin’0 9¢*

which depends on 6 and ¢, and not on r. We now have the expressions for the two operators L? and L.
that we need to express the angular momentum eigenvalue equations (7.57) in the spherical coordinate
representation, which we do later in this chapter.

Now compare the L? operator in Eq. (7.70) with the energy eigenvalue equation (7.43). You
notice that the L? operator is part of the differential operator in the energy eigenvalue equation. Hence,
we can rewrite the energy eigenvalue equation H|y) = E|i) with the L? operator

ﬁZ

_m[lf’(,za) _ L]}}p(r,g,d,) FV((r0.6) = EW(ro.6)|. (771

2 or Jar K2

All of the angular part of the Hamiltonian is contained in the L? angular momentum operator. In this
form, it is clear that the central force Hamiltonian commutes with the orbital angular momentum oper-
ators L? and L, (Problem 7.9)

[HL?] =0
L] = 0 (1.72)

which implies that we can find simultaneous eigenstates of all three operators.
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FIGURE 7.5 Angular dependence of the four sp® hybrid orbitals in a diamond lattice.

7.4 B SEPARATION OF VARIABLES: SPHERICAL COORDINATES

We have already simplified the two-body nature of the hydrogen atom problem to an effective one-
body problem by separating the relative motion (interesting) from the center-of-mass motion (not so
interesting). We now proceed to simplify the three-dimensional aspect of the problem by separating
the three spherical coordinate dimensions from each other. To do this, we apply the standard tech-
nique of separation of variables to the energy eigenvalue differential equation (7.71). This technique
is reviewed in Appendix E, where six steps detail the process in its general form. The flowchart in
Fig. 7.6 shows how the separation and recombination process will progress over the remainder of this
chapter and through the next chapter.

In the first instance, we apply the six steps of the separation of variables procedure to isolate the
radial » dependence and the angular 6, ¢ dependence into two separate equations.

Step 1: Write the partial differential equation in the appropriate coordinate system. We have done
this already in Eq. (7.71)

ﬁ2

_m[la(rza) - le}/;(r,e,d)) + V(r)y(r.0,¢0) = Ey(r.0,¢). (1.73)

2 or Jar K22

Step 2: Assume that the solution #s(r, 8, ¢) can be written as the product of functions, at least one of
which depends on only one variable, in this case r. The other function(s) must not depend at
all on this variable, that is, assume

¥(r.0.¢) = R(r)Y(6,9). (7.74)

Plug this assumed solution into the partial differential equation (7.73) from Step 1. Because
of the special form of ¢, the partial derivatives each act on only one of the functions in . Any
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partial derivatives that act only on a function of a single variable may be rewritten as total
derivatives, yielding

#2[ 1 d{( ,dR 1
Y— R(L?Y) | + RY = ERY. 7.7
2M[ 2 dr( dr) 22 R( )] v(r) (1.75)

Hy(r,0,0) = Ey(r,6,¢)
7.43

¥(r6.9) = R(r) Y(6,¢)

/

Y(6.¢) = ©(0)2(¢)

7.81

%eqn =B
7.83

7.74

d —
- —eq” = A@

>
®,(¢) " B(m)
7.100 4 HLegn=ER

<L2¢m(¢) = mhq),,,(cb)) O(cosb)F~~ A@) 7.79
7.156

/ R.(r)
8.67

Y(0.¢)
7.161

CLZY'" (6.6) = L(0+1)R2Y (6, ¢> \

n!m(rg ¢) r) Ym(g ¢)
8.69

(M, (r00) = B, (r00))

FIGURE 7.6 Flowchart of the separation of variables procedure applied to the hydrogen atom.
The numbers in the corners of the boxes refer to the relevant equation numbers in the text.
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Step 3:

Step 4:

Step 5:

Step 6:

Note that the orbital angular momentum operator L2 acts only on angular spatial functions
[Eq. (7.70)].

Divide both sides of the equation by 4y = RY:
11 d ( 2dR> 11 }
——|==—|r*—) - === (L*)| + V(r) = E. 7.76
2u {R P dr "ar Yhzrz( ) (r) (7.76)

Isolate all of the dependence on one coordinate on one side of the equation. To isolate the r
dependence, we multiply Eq. (7.76) by 2 to clear the r dependence from the denominator
of the angular term (involving angular derivatives in L? and angular functions in Y). Further
rearranging Eq. (7.76) to get all of the r dependence on the left-hand side, we obtain:

1 d 2dR(r) 21 , 1 1 2
R(r) E(’ dr ) T BTV g )

(7.77)

function of r only function of 0, ¢ only

The left-hand side of Eq. (7.77) is a function of r only, while the right-hand side is a function
of 6, ¢ only.

Now imagine changing the isolated variable » by a small amount. In principle, the left-hand
side of Eq. (7.77) could change, but nothing on the right-hand side would. Therefore, if the

equation is to be true for all values of r, the particular combination of r dependences on the
left-hand side must result in no overall dependence on r—the left-hand side must be a con-

stant. We thus define a separation constant, which we call A in this case:

1 d 2dR(r))_2£ _ - W SR -
R(") dr(f o 2 (B V) =3 r6.0) " Y(6,4) = A (1.78)

Write each equation in standard form by multiplying each equation by its unknown function
to clear it from the denominator. Rearranging Eq. (7.78) slightly, we obtain the radial and
angular equations in the more standard forms:

— w d 21) #? B
[ s dr(’ ar) V0 H A G IR() = ER(r) (7.79)
L*Y(0,4) = AR Y(0,9). (7.80)

Notice that the only place that the central potential V() enters the set of differential equations is in
the radial equation (7.79), which is not yet in the form of an eigenvalue equation because it contains
two unknown constants, £ and A. Equation (7.80) is an eigenvalue equation for the orbital angular
momentum operator L with eigenvalue A%2. It has the same form as Eq. (7.57), so we fully expect

that the

separation constant A = €(¢ + 1), which we will prove shortly. The angular momentum

eigenvalue equation is independent of the central potential V(r), so once we have solved for the
orbital angular momentum eigenstates, we will have solved that aspect of the problem for all central
potentials. Only the radial equation need be solved again for different potentials.

The separation of variables procedure can be applied again to separate the 6 dependence from the
¢ dependence in the angular equation (7.80). If we let

Y(6,¢4) = 0(0)®(¢), (7.81)
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then the separated equations are (Problem 7.10)

1 df. d 1 o
[@%(“ngﬁ) - B Sinzf)}@(e) =-A0(0) (7.82)
I o(p)
e B d(¢), (7.83)

where we have defined the new separation constant as B. Equation (7.83) is an eigenvalue equation for
the operator d> / d¢?* with eigenvalue —B. Equation (7.82) is not yet in the form of an eigenvalue equa-
tion because it contains two unknown constants A and B.

We started with a partial differential equation in three variables and we ended up with three ordi-
nary differential equations by introducing two separation constants A and B. You should always get
one fewer separation constant than the number of variables you started with; each separation constant
should appear in two equations of the final set.

So in turn we have identified a radial differential equation for R(r), a polar angle differential
equation for @(0), and an azimuthal differential equation for ®(¢). But note that the radial equation
contains the polar separation constant A and the polar equation contains the azimuthal separation
constant B. So we must solve the azimuthal equation first, then the polar equation, and finally the
radial equation. The azimuthal solution to Eq. (7.83) determines the constant B, which then goes
into Eq. (7.82) to determine the polar angle solution and the constant A. The combined azimuthal and
polar solutions also satisfy the eigenvalue equation (7.80) for the orbital angular momentum operator L.
Finally, the constant A goes into the radial equation (7.79) and the energy eigenvalues are determined.

Rather than simply solving these mathematical equations, we will place each of these three
eigenvalue equations in some physical context by identifying situations that isolate the different equa-
tions from the original energy eigenvalue equation H|E) = E|E). In this chapter, we focus on the two
angular equations, which are independent of the central potential energy V(r). In the next chapter, we
solve the radial equation for the special case of the hydrogen atom with the Coulomb potential energy
function.

7.5 H MOTION OF A PARTICLE ON A RING

To isolate the azimuthal eigenvalue problem in Eq. (7.83), we consider a system with no radial or
polar angle dependence. This system comprises a particle of mass u confined to move on a ring of
constant radius ry, as shown in Fig. 7.7. We assume that the ring lies in the x, y plane, so that in spheri-
cal coordinates § = /2. Thus, the motion takes place at constant r and constant 6, with the azimuthal
angle ¢ as the sole degree of freedom. The wave function ¢ is independent of r and 6, so derivatives
with respect to those variables are zero. Hence, the energy eigenvalue equation [Eq. (7.43)] reduces to

e VG =, (7.84)
2 ré 8d>2 Ty ring? .

which is the position representation of

Hring|Ering> = ringlEring>' (785)
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I Known quantities
¢ /'ly rO! I! h

X Parameters
¢

Unknown quantities
Ering, ';b

FIGURE 7.7 Particle confined to move on a ring.

Following our notation in the previous section, we call the wave function ®(¢) and we change the
partial derivative in Eq. (7.84) to a total derivative because there is only one variable. For this simpli-
fied ring problem, the potential energy is a constant V(r,), which we choose to be zero, but we have to
remember that we cannot make this choice when we are working on the full hydrogen atom problem.
We also identify ,u,rg = [ as the moment of inertia of a classical particle of mass u traveling in a ring
about the origin. With these choices, the energy eigenvalue equation becomes

&
—Edj)z@w) = E,n,® (). (7.86)

This is the same eigenvalue equation we found in Eq. (7.83) for the azimuthal function ®(¢) as long
as we identify the separation constant B as

21

B = 3 Enm (7.87)

in this problem of a particle on a ring. Thus, this idealized particle-on-a-ring example has the same dif-
ferential equation, and hence the same wave function solutions, as the separated azimuthal equation in
the three-dimensional hydrogen atom problem.
If we compare the azimuthal differential equation (7.86) with the orbital angular momentum
operator in Eq. (7.69), we note that the energy eigenvalue equation can be expressed as
12
5 2(¢) = E,;, 2(9), (7.88)
which again emphasizes the importance of angular momentum. This energy eigenvalue equation is
what you would expect for a classical particle rotating in a circular path in the x,y plane with kinetic
energy T = Iw?/2 = L?/2I and resultant Hamiltonian
12
Z

Hy. =T=—, 7.89
ring 2] ( )
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assuming zero potential energy. We noted earlier that eigenstates of L, obey an eigenvalue equation

LZ

m) = mh|m), (7.90)

where we suppress the € quantum number (for the moment) because it is not applicable to this ideal-
ized one-dimensional particle-on-a-ring problem. The |m) states are also eigenstates of L2:

m) = m*h*|m) (7.91)

L
and hence of the Hamiltonian of the particle on a ring:

Hyinglm) = Ejing|m)
L ) = w2 ). 7

21 21

So it looks like we already know the answer; that the energy eigenvalues are E = m?#*/2I and the
separation constant is B = m?>. However, we know the properties of the |) states in the abstract only;
we do not know their spatial representation. That comes from solving the differential equation (7.86),
which is the position representation of the abstract equation (7.92). Let’s solve it and confirm our
expectations about the energy eigenvalues.

B Azimuthal Solution
The azimuthal differential equation written in terms of the separation constant is
d*0(¢)
—>— = —B®(¢). 7.93
o (4) 7.9%

The solutions to this differential equation are the complex exponentials
D(p) = Ne*V59, (7.94)

where N is the normalization constant. Mathematically B could have any value, but the physics
imposes some constraints.

There is no “boundary” on the ring, so we cannot impose boundary conditions like we did for the
potential energy well problems in Chapter 5. However, there is one very important property of the wave
function that we can invoke: it must be single-valued. The variable ¢ is the azimuthal angle around the
ring, so that ¢ + 2 is physically the same point as ¢. If we go once around the ring and return to our
starting point, the value of the wave function must remain the same. Therefore, the solutions must sat-
isfy the periodicity condition ®(¢ + 27) = ®(¢). In order for the eigenstate wave function ®(¢)
to be periodic, the value of VB must be real (complex VB would result in real exponential solutions).
Furthermore, the solutions must have the correct period, which requires that \/B be an integer:

m =0, £1, £2, ... (7.95)

So we see that there are many solutions, each corresponding to a different integer (which can be zero,
positive, or negative). We write the solutions as

®,,(p) = Ne™®. (7.96)
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The quantum number m is the orbital magnetic quantum number we introduced in Section 7.3. We
don’t use a subscript on m here because there is no need to distinguish it from spin for now.

If we operate on the eigenstate wave function ®,,(¢) with the derivative form of the L, operator,
we obtain

Lb,(6) = it (Ne™)

= mh(Neim¢)

= mhd,,(¢).

As expected, we have found that the energy eigenstates for the particle on a ring are the states |m) that
satisfy the L, eigenvalue equation (7.90).

As usual, we find the normalization constant N in Eq. (7.94) by requiring that the probability of
finding the particle somewhere on the ring is unity:

2 2
1= / @ (o) D,,(d)dd = / N'e ™ Nem® dp = 27 |N|”. (7.98)
0 0
We are free to choose the constant to be real and positive:
1
N=——. (7.99)

We have thus found the position representation ®,,(¢) = (p|m) of the |m) states:

—— M|, (7.100)

im) = ®,(¢) = o

The eigenfunctions of the ring form an orthonormal set (Problem 7.11):

2
/ D(P)D,,(d)dd = &, (7.101)
0

To reiterate, these functions are eigenstates of the ring Hamiltonian

Hring‘m> = Ering‘m>

(7.102)
Hring(bm<¢) = Ering(pm<d))
as well as eigenstates of the z-component of orbital angular momentum
L = mh
clm) = mh|m) (7.103)
LD, (¢) = mhd,()|.
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The allowed values of the separation constant B are B = m?, so the possible energy eigenvalues
using Eq. (7.87) are
2

fi
E, = mzﬂ, (7.104)

which is exactly what we expected from Eq. (7.92). The spectrum of allowed energies is shown in
Fig. 7.8. The eigenstates corresponding to +|m| and —|m| states have the same energy, so there are
two energy states at every allowed energy except for the one corresponding to m = 0. Thus the
particle-on-a-ring system exhibits degeneracy, which we first encountered in the free-particle system
in Section 6.1.1. For the particle-on-a-ring system, all states are two-fold degenerate except form = 0,
which is nondegenerate. The +m degeneracy of the energy eigenstates corresponds to the angular
momentum states with L, = +m# and L, = —mh. That is, the two degenerate energy states represent
states with opposite components of the angular momentum along the z-axis. The energy is the same
regardless of the direction of rotation, which is analogous to the free particle in one dimension where
the energy is independent of the direction of travel.

The particle on a ring is a one-dimensional system even though it exists in a two-dimensional
space. This is because there is only one degree of freedom ¢, similar to the particle-in-a-box system
we studied in Chapter 5, where the single degree of freedom was x. The solutions to both problems
have the same oscillatory form. As in the particle-in-a-box problem, the energy eigenvalues of the par-
ticle-on-a-ring system are discrete because of a boundary condition. The difference is that the bound-
ary condition appropriate to the ring problem is periodicity because ¢ is a physical angle, rather than
(x) = 0 at the boundaries, which is appropriate to an infinite potential.

E/E;
r
B m|=4
151
10__ |m|:3
S Im| =2
i jm] =1
ol m=0

FIGURE 7.8 Energy spectrum for a particle on a ring.
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7.5.2 @ Quantum Measurements on a Particle Confined to a Ring

Many of the aspects of quantum measurement applied to this new system are similar to the spin and
particle-in-a-box examples we studied previously (e.g., Examples 2.3, 5.5, and 7.1). However, the
degeneracy of energy levels presents a new aspect. Because the states |m) and |—m) have the same
energy, the probability of measuring the energy E|, is the sum

2
P

P, = [(ml)* + [(~mly) (7.105)

except for the m = 0 state. On the other hand, the state |m) uniquely specifies the orbital angular
momentum component along the z-direction, so the probability of measuring the angular momentum
component is

Pr—wn = |(mly)[. (7.106)

Example 7.2 A particle on a ring is in the superposition state
) = 5 (10) + 2[1) + |=1) + [2)). (7.107)

If we measure the energy, what is the probability of measuring the value E; = 42/2I and what is
the state of the system after measuring that value?
The probability of measuring the value E, = #/2I is obtained using Eq. (7.105):

e, = (1) + (= 1]y

= [{1lgs(lo) + 210+ [=1) + 2D+ [l llod + 2l =) < 2D

5
z.

After the measurement, the new state vector is the normalized projection of the input state onto the
kets corresponding to the result of the measurement (postulate 5, Chapter 2):

Vaper £,) = 2R (7.109)

which in this case is

= ([0) +2[1) + [=1) + [2))

’L/fafter E, > = \/7TE]

= Q1)+ [-1)

)]+ =11
(7.110)

Using Stern-Gerlach analyzers, measurements of the angular momentum component L, could
be made after the energy measurement, and would yield the results shown in Fig. 7.9 (Problem 7.12).
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FIGURE 7.9 Energy measurement and orbital angular momentum component measurements.

7.5.3 W Superposition States

The eigenstate wave functions for the particle on a ring are complex, so we must plot both the real
and imaginary components for a proper graphical representation of the wave function. Plots of three
®,,(¢) eigenstates are shown in Fig. 7.10. The probability density of an eigenstate is

2
Pu($) = [P.(d)]" (7.111)
Substituting in the eigenstate wave function from Eq. (7.100), we obtain
’ 1
= 7.112
V2 ¢ 21 ( )

which is a constant independent of the quantum number m. So there is no measurable spatial depen-
dence of the |m) eigenstates.

However, there is spatial dependence in the probability density for superposition states. For
example, consider a state of the system with an initial wave function comprising two eigenstates:

P(4,0) = 1@, (¢) + 26°D,, (). (7.113)
) m=0 () m=1 () =

1 1 y - 1 A

4 — ¢ 4 "r\ > ¢ ‘\ FAA

n 2n 7\ /2n \/ In ,’ 27r

\ / \, / /
-1 1 -1 1 \\_// =11 / \/I
Ver ver Vorn

FIGURE 7.10 Eigenstate wave functions for a particle on a ring. The real part of the wave function is the solid

line

and the imaginary part is the dashed line.
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We assume that this function is already properly normalized (so that c? + cg = 1), and we assume
that the constants c¢; and ¢, are real. An overall phase has no physical meaning (cannot be measured),
so we can always choose one coefficient to be real. Relative phases play a crucial role in measurement,
so we have made the relative phase explicit by separating the phase e from the coefficient of the sec-
ond term. Using the Schrodinger time-evolution recipe from Chapter 3, the initial state in Eq. (7.113)
becomes

lp ( (l,), t) = q)ml (Q’)) eiiE‘ml‘I/ﬁ + 62€i9q)m2 ( d)) e*iE\,,,Z‘t/h

7.114
eimZd)e_iE\mz\t/h. ( )

1 . . )
= ¢ etmlqbe iE) /R + 62819
21 21

For this state, the probability density for measuring the position of the particle on the ring is

(. 0)* = o' (d.1)d(,1)

- ( Cle_lmld)e-HE"““I/ﬁ + cze_’oe_’”’zd’eJ”E"“z"/ﬁ) ( Clelml(be_lE‘m“t/ﬁ + czeleelmzd)e—tE‘mz‘t/ﬁ)

(7.115)
_ ZL[C? n C; n Clcz(e—im14>e+iE‘m,‘r/heioeimzqse—iamz‘r/ﬁ n eim@e—@ml‘z/ﬁe—ioe—im@eﬂE‘mZ‘r/h)]
T

— ﬁ[l + 2cjc; cos {(ml —m)p — 6 — (E\m]\ - E|'"z\>t/h}]'

P(.1)

This probability density exhibits spatial dependence and time dependence in the form of a wave mov-
ing around the ring. There are four measurable properties of this probability density wave: the spatial
frequency, the temporal frequency, the amplitude, and the phase of the wave. These four quantities are
determined by the factors (m; — m,), (E},| = Ej,)), cic2, and 6, respectively, in Eq. (7.115). Using
the measured values for these four quantities, the direction of the wave, and the normalization condi-
tion c% + c% = 1 allows us to determine the five constants c, ¢,, my, m,, and 0 that specify the wave
function superposition in Eq. (7.113) (Problem 7.17).

Example 7.3 Calculate and plot the probability density for the initial superposition state

W($,0) = /10, (0) + /20 (4). (7.116)

The time-evolved wave function is

1 . . . .
w(t) = = \/;: e \/% i gmitt21 (7.117)

V2w
and the probability density is

P(p,1) = L{] + %/icos(&j) -T- %t)}
(7.118)

Il
[\ ‘ —
3
| — ]
—
_|_
(3]
(98]
£
2.
=
N
N
<
|
i
N———
| I



226 Angular Momentum

The probability density varies around the ring and at # = 0 is a maximum where sin4¢ = +1, or
¢ = 7 /8,57 /8,97 /8, and 137 /8. The spatial dependence of the probability density is plotted in
Fig. 7.11 in three different graphical representations. The traditional plot in Fig. 7.11(a) is similar
to the particle-in-a-box plots and conveys the idea of a varying density, but the single dimension
fails to make it clear that the left and right ends are connected on the ring and must have the same
density. The plot in Fig. 7.11(b) makes the connection between ¢¢ = 0 and ¢ = 27 clear by
plotting the probability density using grayscale (color) as a parameter along the ring. The plot in
Fig. 7.11(c) combines the ideas of the previous two plots by using both the vertical scale and gray-
scale to represent the probability density. Because the probability density varies with time, each of
the plots in Fig. 7.11 moves (toward increasing ¢ in this example) when they are animated. (See the
activity on a particle confined to a ring.)

P(o)
A
0.3

0.2

0.1

¢=n/2

¢=0

g

(b)

FIGURE 7.11 Probability density of a superposition state for a particle on a ring displayed as
(a) a linear plot, (b) grayscale around the ring, and (c) height and grayscale around the ring.
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We have now completed our investigation of the particle on a ring. We have identified the Hamil-
tonian, found the energy spectrum, found the position representation of the eigenstates, and studied the
probability distributions, including the time dependence. These eigenstates are the same ones we will
use as the azimuthal part of the three-dimensional wave function to solve the hydrogen atom problem.

7.6 H MOTION ON A SPHERE

We have now solved for the azimuthal part of the hydrogen atom wave function, so we turn our atten-
tion to the polar angle part of the wave function. This is best done in the context of a system that
involves both angular variables 6 and ¢, so that we find the solutions ©(6) to Eq. (7.82) and then com-
bine them with the azimuthal states ®,,(¢) to form the solutions ¥(8,¢) to the angular momentum
eigenvalue equation (7.80). The system we choose to discuss angular wave functions is that of a par-
ticle of mass u confined to the surface of a sphere of radius ry, as shown in Fig. 7.12, which is a natural
extension of the ring problem. The results of this analysis yield predictions that can be successfully
compared with experiments on molecules and nuclei that rotate more than they vibrate. For this reason,
the problem of a mass confined to a sphere is often called the rigid rotor problem. Furthermore, the
solutions Y (0,(75) that we find, called spherical harmonics, occur whenever one solves a partial dif-
ferential equation that involves spherical symmetry.

For a particle confined to a sphere, the wave function ¢ is independent of r, so derivatives with
respect to r are zero and the energy eigenvalue equation (7.43) reduces to

ﬁz[l a(,ea>+ 1 az}ﬁv( Y = Epere (7.119)
- ——— ——| sinf— — 7 =E, , .
2uril sing 96 30 ) sin20 a¢p> 0 wphere
which is the position representation of
Hsphere‘Esphere> = Esphere|Esphere>' (7120)
z
Known quantities
ro H,y r@v ,l‘: ﬁ
X y Parameters
0, ¢
Unknown guantities
Espherer ¢’

FIGURE 7.12 Particle confined to move on the surface of a sphere.
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Following our previous notation, we call the wave function Y(6, ¢) = ©(0)®d(¢). For this simplified
sphere problem, we choose the potential energy V(r,) to be zero, as in the ring problem. We identify
ur(z) = I as the moment of inertia of a classical particle of mass w moving on a sphere. With these
changes, the energy eigenvalue equation is

19 d 1 9 }
- —(sinf— | + — |Y(0,¢) = EgereY(0,0). 7.121

2]|: sinf 90 (sm 80) sin20 ad)z ( d)) sphere ( ¢) ( )
Using Eq. (7.70), we identify the angular differential operator as the position representation of the
angular momentum operator L? and write the energy eigenvalue equation in operator form:

2
% Y(G, d)) = Espherey(e’ d)) . (7 1 22)
This eigenvalue equation appears similar to the ring problem but is actually very different, because
now the particle can move anywhere on the sphere and so the angular momentum is no longer con-
fined to the z-direction. Equation (7.122) is the same eigenvalue equation we obtained in Eq. (7.80)
through separation of variables for the angular function Y(6,¢) = ©(0)®(4), as long as we identify
the separation constant A as
21

A= ?ES[,M,. (7.123)
As noted above, we expect that the separation constant A is equal to €(¢ + 1) because the L? oper-
ator obeys the eigenvalue equation (7.57). Now that we know that this sphere problem is equiva-
lent to the angular momentum eigenvalue equation, we proceed to solve for the polar angle function
®(0) that we identified in the differential equation (7.82). We have already solved for the azimuthal
angle wave function ®,,(¢), so at the end we combine @(6) and ®,,(¢) to yield the eigenstates
Y(6,¢) = O(0)®d,,(¢p) for the particle on the sphere. In due course, we’ll find that the @(6) eigen-
states have their own quantum numbers, and so we’ll label the polar angle states as ©7(#) and the

spherical harmonics as Y '?(6, ¢) (the m label is a superscipt, not an exponent).

B Series Solution of Legendre’s Equation

The polar angle equation (7.82) is our first encounter with a differential equation that requires a
sophisticated solution method. The next two sections detail the series solution method and arrive at
the Legendre and associated Legendre functions that solve the polar angle equation. If you are already
experienced with this method and are knowledgeable about the Legendre functions, you may safely
skip these two sections.

The solutions ®,,(¢) to the ¢ equation (7.83) that we found in the ring problem told us the pos-
sible values of the separation constant B = m?, where m is any integer. We now substitute these
known values into the polar angle differential equation (7.82). The 6 equation becomes an eigenvalue
equation for the unknown function ®(6) and the separation constant A:

1 d( d m* B
{E£(smad—) - ]@(a) = —A0(0). (7.124)

sin’6

To solve this differential equation, we start with a change of independent variable z = cos 6, where
z is the rectangular coordinate for the particle, assuming a unit sphere. We also introduce a new function

P(z) = 0(0). (7.125)
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This step is not mathematically necessary but resolves the difference between the required normaliza-
tion properties of quantum mechanial wave functions [@(6)] and the standard normalization used for
the solutions [P(z)] to Eq. (7.124). As 6 ranges from O to 7, z ranges from 1 to —1. Using the chain

rule for derivatives and sinf = V1 — 7, the differential term becomes

d d d d d
L _2d_ gl = \V1-24 7.126
o dodz Vg Yk (7.126)

Notice, particularly, the last equality: we are trying to change variables from 6 to z, so it is important to
make sure we change all the 0’s to z’s. Multiplying by sin#, we obtain:

d d
inf— = —(1 — 22)—. 7.127
s1n0d9 ( Z)dz ( )

Be careful finding the second derivative; it involves a product rule:

1 d d d d
— Z|sine— )= —((1 - 2\
sinf db (Smea@) dz <( ¢ )dz)

d? d
S
dz? dz

(7.128)
-(1-2)

Inserting Eq. (7.128) into Eq. (7.124), we obtain a standard form of the associated Legendre
equation:

&’ d m?
_n4_, 4 __m _
<(1 z )dz2 2+ A = Zz)>P(z) 0. (7.129)

Once we solve this equation for the eigenfunctions P(z), we substitute z = cosf everywhere to find
the quantum mechanical eigenfunctions @(6) of the original equation (7.124).

It is easiest to begin the solution of Eq. (7.129) with the m = 0 case, which corresponds to the
simplest possible ¢ dependence: ®y(p) = 1/V2ar. Setting m = 0 in equation (7.129) gives us the
special case known as Legendre’s equation:

2 d2 d —
(1-2 )d—ZZ —2 A P(z) = 0. (7.130)

By dividing this equation by (1 — z*), we express it as

d? 2 d A >
- _ — P = 0’ 7.131
<d22 (1= 2%)dz " (l - z2) (2) ( )

which emphasizes the mathematical singularities atz = *1.

We use the series method to find a solution of Legendre’s equation; that is, we assume that the
solution can be written as a series

P(z) = EanZ” (7.132)
n=0
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and solve for the coefficients a,. The differentials

= >anz""! (7.133)
n=0
dzP < )
— = Eann n—1)7"" (7.134)

substituted into Eq. (7.130) yield

OZEann—l —zEannn—l”2—212anz”1+A2az

n=0

Izann—l Eann—l —ZEanZ +A2az

(7.135)

To combine the sums, we must collect terms of the same powers. To do this, we note that the first two
terms of the first sum are zero:

ap(0)(=1)z2 + a,(1)(0)z' =0+ 0, (7.136)

so we shift the dummy variable n —n + 2 in the first sum, giving

Eann(n - 1)z
n=0

>, yaln + 2)(n + 1)z
n=-2

= ayean +2)(n + 1)z
n=0

(7.137)

Now all the sums in Eq. (7.135) have the same power and we group the sums together to yield

©

Slapa(n +2)(n + 1) = an(n — 1) = 2a,n + Aa,]" = 0. (7.138)
n=0

Now comes the magic part. Because Eq. (7.138) is true for all values of z, the coefficient of z" for
each term in the sum must separately be zero:

ay2(n+2)(n+1) —an(n — 1) — 2a,n + Aa, = 0. (7.139)

Therefore, we can solve Eq. (7.139) for the recurrence relation, giving the later coefficient a,,, in
terms of the earlier coefficient a,,:

nn+1) —A (7.140)
Upin = 7~ a,. .
2T L )+ 1)
Plugging successive even values of n into the recurrence relation Eq. (7.140) allows us to find a,, ay,
etc. in terms of the arbitrary constant ¢, and successive odd values of n allow us to find a5, as, etc. in
terms of the arbitrary constant a;. Thus, for the second-order differential equation (7.130), we obtain
two solutions as expected. The coefficient a; becomes the normalization constant for a solution with
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only even powers of z, and a; becomes the normalization constant for a solution with only odd powers
of z. For example, some even coefficients are

A
a, = _an
(7.141)
-Gt =(50)3)
“= TR 12 )\2)%
and some odd coefficients are
2 - A
an =
3 6 ay
(7.142)
_12-A (12—A)(2—A)
ST B 20 6 )¢
so that
A 2—A
P(z) = ao[zo - <E>Z2 + } + al[zl + ( >z3 + ] (7.143)

We seek solutions that are normalizable, so we must address the convergence of the series solu-
tion. Note that for large n, the recurrence relation gives

y+2
a

=1, (7.144)
n

which implies that the series solution we have assumed does not converge at the end points where
z = 1 1. This is to be expected because the coefficients of Eq. (7.131) are singular at z = =+ 1, which
correspond to the north and south poles 6 = 0,77. But there is nothing special about the physics at
these points, only the choice of coordinates is special here. This is an important example of a problem
where the choice of coordinates for a partial differential equation ends up imposing boundary con-
ditions on the ordinary differential equation which comes from it. To ensure convergence, we thus
require that the series not be infinite, but rather that it terminate at some finite power n,,,,. Inspection
of the recurrence relation in Eq. (7.140) tells us that the series terminates if we choose

A = NPy + 1), (7.145)

where n,,,, is a non-negative integer. When we started this problem, we expected the separation con-
stant to be A = €(€¢ + 1) and we have found just that, as long as we identify the termination index
Nar With the orbital angular momentum quantum number €. We have now succeeded in finding the
quantization condition for orbital angular momentum, and it is just as we expected from our work
with spin angular momentum. But we came to it from a very different perspective, which is one of the
beautiful aspects of physics. We have now found that the orbital angular momentum quantum number
£ must be a non-negative integer:

€=0,1,2,3,4, ... (7.146)

The solutions to Eq. (7.130) for these special values of A are polynomials of degree ¢, denoted Py(z),
and are called Legendre polynomials.
The Legendre polynomials can also be calculated using Rodrigues’ formula:

1 d*

= — — 2 — ¢
el dzf(z 1)". (7.147)

Py(z)
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Table 7.1 Legendre Polynomials

PO(Z) =1

P1(Z) =2z

Py(z) = 3(32> = 1)

Py(z) = 1(52° — 32)

Py(2z) = §(352* — 302% + 3)
P5(z) = §(632° — 702° + 152)

The first few Legendre polynomials are shown in Table 7.1 and are plotted in Fig. 7.13. There are
several useful patterns to the Legendre polynomials:

* The overall coefficient for each solution is conventionally chosen so that P,(1) = 1. As
discussed in the next section, this is an inconvenient convention that we are stuck with.

 Py(z) is a polynomial of degree €.

 Each P,(z) contains only odd or only even powers of z, depending on whether ¢ is even
or odd. Therefore, each P,(z) is either an even or an odd function.

e Because the differential operator in Eq. (7.130) is Hermitian, we are guaranteed that
the Legendre polynomials are orthogonal for different values of € (just as with Fourier
series), that is,

1
. 2
[ 1Pk(z)m(z)dz = 41 Sie- (7.148)

Note that the Legendre polynomials are not normalized to unity, rather the “squared norm” of P, is
2/(2¢ + 1).

Notice that when we substitute the separation constant A = €(€ + 1) back into the original dif-
ferential equation (7.130)

d*p dP
1 -2)——-2z—+¢¢+1)P=0 7.14
(1=22) 5 -2, +dernp=o (7.149)
P/(z)
/=0 1

FIGURE 7.13 Legendre polynomials.
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the result is a different equation for different values of €. For a given value of €, you should expect
two solutions of Eq. (7.149), but we have only given one. The “other” solution for each value of ¢ is
not regular (i.e., it blows up) at z = = 1. In cases where the separation constant A does not have the
special value €(¢ + 1) for non-negative integer values of ¢, it turns out that both solutions blow up.
We discard these irregular solutions as unphysical for the problem we are solving.

7.6.2 W Associated Legendre Functions

We now return to Eq. (7.129) to consider the cases with m # 0. We need a slightly more sophisticated
version of the series technique from the m = 0 case, and we do not detail this here. We again find solu-
tions that are regular at z = *+ 1 whenever we choose A = ¢(¢ + 1) for ¢ € {0, 1,2, 3, ...}. With
these values for A, we obtain the standard form of the associated Legendre equation, namely

4> d m?
R B el " —
<(1 z )dz2 2de + 66+ 1) (- Z2)>P(z) 0. (7.150)

Solutions of this equation that are regular at z = =+ 1 are called associated Legendre functions, and
are calculated from the Legendre functions by differentiation:

m —m m2dm
PR = P = (1= )" p)

(7.151)

1 dm+€

_ %(1 - Zz)m/Z

dZm+€ (Zz -1 )f,

where m = 0.In Eq. (7.151), the integer m is a superscript label—not an exponent—on the associated
Legendre function PZ’(z), but m is an exponent on the right hand side of the equation. The associated
Legendre equation (7.150) is independent of the sign of the integer m, so

The Legendre function P(z) is a polynomial of order ¢, so the m™ derivative in Eq. (7.151), and hence
the associated Legendre function P}'(z), vanishes if m > €. In the ring problem, we learned that m
must be an integer, but there was no limit on the possible values of those integers. Now we have dis-
covered an additional constraint on the magnetic quantum number for the sphere problem

|m =0+ 1,..,-1,0,1,....¢—1,¢| (7.153)

Again, this is consistent with our expectations from the spin problem.

It is more useful for us to express the Legendre polynomials and the associated Legendre functions
in terms of the polar angle 6 rather than the variable z, so we substitute z = cos@ into the functions.
The Legendre polynomial P,(cosf) is a polynomial in cos, while the associated Legendre function

P;,"(COSG) is a polynomial in cos# times a factor of sin” 6 because of the additional term

(1 — 22" = (sin0)"” = sin"9 (7.154)
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in Eq. (7.151). Some of the associated Legendre functions are shown in Table 7.2 and are plotted in
Fig. 7.14. The plots in Fig. 7.14 are polar plots where the “radius” r at each angle 6 is the absolute
value of the function P 'Z(cos@) , as illustrated further in Fig. 7.15. The associated Legendre functions
are defined over the interval 0 = 6 = 7, but the convention is to plot the functions reflected in the
z-axis in anticipation of their application to the full three-dimensional hydrogen atom.

Some useful properties of the associated Legendre functions are:

s PY(z) = 0if [m| > ¢

(£1) = 0form # 0<cf. factor of (1 — Zz)m/Z)
(~z) = (1) P'/(z) (behavior under parity)

/]P'Z(Z)pg(z)dz _ 2 (€ + m)! 5

| (2¢ +1) (€ —m)!

0

Pl
P
P

—

P) 2

P 2 o

FIGURE 7.14 Polar plots of associated Legendre functions.
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r= |le(9)|

FIGURE 7.15 Polar plot of an associated Legendre function.

The last property shows that for each given value of m, the associated Legendre functions form an
orthogonal basis on the interval —1 = z = 1. Any function on this interval can be expanded in terms
of any one of these bases. The associated Legendre functions are not normalized to unity, but by multi-
plying by the appropriate factor we construct the eigenstates O (9) that solve the eigenvalue equation
(7.124) and are normalized to unity over the interval 0 = 6 = 7:

/ 07(0)07(6)sind do = 5,,,. (7.155)
0

These eigenstates are

2¢ 1) (€ — !
(e+1)( m) P"(cosh), m =0, (7.156)

OO = ) T

with the negative m states defined by

®,"(0) = (-1)"07(6), m=0. (7.157)

Table 7.2 Associated Legendre Functions

Py =1

P = coso P§ = 3(5¢c0s*0 — 3cosf)
P} = sing P} = 3sin6(5cos’0 — 1)
P9 = J(3cos’0 — 1) P2 = 15sin?6 cos#

P; = 3sinf cosh Pg = 15sin’6

P3 = 3sin’6
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7.6.3 W Energy Eigenvalues of a Rigid Rotor

We now know the separation constant A in Eq. (7.124), which determines the energy of the parti-
cle bound to the sphere through Eq. (7.123). Substituting A = €(¢ + 1) into Eq. (7.123) gives the
allowed energy eigenvalues
72

E, = 216(6 +1). (7.158)
The energy is independent of the magnetic quantum number m, so each energy level is degenerate,
with (2¢ + 1) possible m states for a given €. The free particle and the particle on a ring both exhib-
ited degeneracy because the kinetic energy was independent of the direction of the motion. Similarly,
the rotational kinetic energy of the particle on a sphere is independent of the orientation of the angular
momentum. The spectrum of energy levels is shown in Fig. 7.16. The selection rule for transitions
between these levels is A¢ = =+ 1, yielding the emission lines in Fig. 7.16. The transition energies are

AE = E¢ — Ey

ﬁZ 2
= E(e +1)(€+2)— EW +1)

2 (7.159)
=—2(¢+1)
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FIGURE 7.16 Energy spectrum and transitions of a rigid rotor.



7.6 Motion on a Sphere 237

my

rl

r
m,® 2
FIGURE 7.17 A diatomic molecule is the simplest example of a rigid rotor. The two-atom
system rotates around an axis perpendicular to the symmetry axis of the molecule.

A physical example of this particle-on-a-sphere model is the rigid rotor. The simplest rigid rotor is
a diatomic molecule, as illustrated in Fig. 7.17. The two atoms with a separation r, have a moment
of inertia about the center of mass of I = p,r(z), just as we have assumed in our particle-on-a-sphere
model. Molecular spectroscopists call the energy #> /21 the rotational constant of the molecule.

For example, consider the diatomic molecule hydrogen chloride HCl. The equilibrium bond
length is ry = 0.127 nm, which gives a rotational constant

2

#
—| =1.32meV =10.7cm L. (7.160)
2 gy

The experimentally measured value is 10.4 cm™'. That seems close, but is in fact a clue that something
is missing from the model. It turns out that the coupling of the vibrational motion (Chapter 9) to the
rotational motion changes the energy levels of a real molecule. Refining simple models leads to better
understanding; our job here is to gain basic understanding.

7.6.4 W Spherical Harmonics

We have in hand the eigenfunctions of the two angular equations, so we can construct the energy
eigenstates of the particle on the sphere. The normalized solutions of the ¢ equation (7.83) that satisfy
periodic boundary conditions are the ®,,(¢) states in Eq. (7.100) with the restriction that the magnetic
quantum number m be an integer. The normalized solutions of the 6 equation (7.82) that are regular at
the poles are the @'6"(0) states in Eq. (7.156) with the restriction that € = 0, 1,2, ...andm = —¢, ..., €
in integer steps. The product ®}'(6)®, (¢) of the two solutions yields the function Y}'(6, ) that we
assumed when we applied the separation of variables procedure to the angular equation (7.80). These
angular functions are the spherical harmonics

" _ e (€4 1) (€= [m])t o
Yy (6.¢) = (—1) \/ i (% |m|) P (cosB)e™, (7.161)

the first few of which are listed in Table 7.3. The somewhat peculiar choice of sign is conventional and
gives the useful result

Y"(0.6) = (=1)"v{"(6.9). (7.162)
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Table 7.3 Spherical Harmonics

¢ m Y7(6,)
0 _ 1
0 0 Vo=V
1 0 Y? = %cos@

+1 yil = :F\/gsineei"‘”
2 0 Y0 = /1 (3cos?0 — 1)

+1 Y = F\/42 sin6 cosfe
+2 Y3t = \/%sinzaei’w
3 0 Y9 = \/%(SCOQB — 3cosh)
+1 YE = F\/ &5 sin0(5cos’0 — 1)
+2 Yfz = \/%sinZO cosfer2¢

+3 Y3i3 = \/%sinwei"}‘b

Let’s now discuss the important properties of the spherical harmonics.

Orthonormality
The spherical harmonics are orthonormal on the unit sphere

2w T
(€m|bmy) = / / YPC(0,0) Y72 (0.) sin6 df dp = 8,6, | (7.163)
0 0 -

which means that two wave functions must have the same angular momentum (€; = ¢,) and the
same z-component (m; = m,) or else the overlap integral is zero. The ¢ orthogonality comes from the
associated Legendre 6 functions and the m orthogonality comes from the complex exponential ¢ func-
tions. The orthonormality condition is also written compactly as an integral over the full solid angle

/ Y7 (0,0) Y02 (0,6)dQ = 80,0,8m, (7.164)

for those common occasions when there is no need to consider separate angular integrals.

Completeness
The spherical harmonics are complete in the sense that any sufficiently smooth function (6, ¢)
on the unit sphere can be expanded in a Laplace series as

% €
¥(6.¢) = ;} ;{cemY}”(Oﬁ)- (7.165)

The ¢, expansion coefficients are found by projecting the superposition wave function onto the
|¢m) eigenstates:

21 T
Com = (€m|ir) =/ / Y7 (6,9) (0, $)sing d de. (7.166)
0

0
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e Parity
The behavior of the spherical harmonics under the parity operation r — —r is determined by the
angular momentum quantum number €. Spherical harmonics with even ¢ have even parity and
those with odd ¢ have odd parity:

Y7 — 6, +m) = (=1) Y"(0,6). (7.167)

To summarize, we have found that the spherical harmonics Y'Z(G, ¢) are eigenstates of the Ham-
iltonian for the particle on a sphere [Eq. (7.121)]. Because the Hamiltonian for this problem is pro-
portional to the L7 orbital angular momentum operator [Eq. (7.122)], the spherical harmonics are also
eigenstates of L’ [Eq. (7.80)]. The spherical harmonics contain the CDm(d)) eigenstates, so they are also
eigenstates of the L, operator (Problem 7.24). These three eigenvalue equations are

m hz m
HrphereY( (6,¢) = Ee(e + l)Yf (e’d))

L2Y"(0,6) = €(¢ + 1)RY"(6,5)
LY} (0,¢) = mhY7(6.¢)

(7.168)

These three operators share eigenstates because they commute with each other (Problem 7.9).

For a particle on a sphere, the measurement probabilities are complicated by the degeneracy,
just as we saw in the particle on a ring [Eq. (7.105)]. For a state |i/), the probability of measuring the
energy E, is a sum over all the degenerate states:

¢
2
Pp, = 2 [{tmly)]". (7.169)
m=—{

The probability of measuring the L? angular momentum observable to be €(¢ + 1)#? is also given by
Eq. (7.169) because the energy eigenstates and the L? eigenstates exhibit the same degeneracy. The
probability of measuring the L, angular momentum observable to be m# is the sum over all the € states
for which that value of m is allowed:

[

Pl = | (emly)]. (7.170)

t=m

Let’s practice using the spherical harmonics.

Example 7.4 A particle on a sphere is in the state

$(6.9) = \/12 sin26cos . (7.171)

What are the probabilities of energy (H) and angular momentum (L2 and Lz) measurements?
This wave function looks almost like a spherical harmonic eigenstate, so we try to do this
problem by inspection. Using trigonometric identities, rewrite the wave function as

i 4 P
P(6,0) = \/g (25in0c0s0)(%>
= \/g sinfcosfe’® + % sinf cosfe @ (7.172)

_\% (_\/g Singcoseei¢> + \/% <\/§ sin@ cos@eiid’),
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which we recognize from Table 7.3 of spherical harmonics as the superposition
w(0.¢) = —5Y1(0.0) + 57, '(0.6). (7.173)

In Dirac notation, this state is

ly) = —J5011) + J5[1.-1). (7.174)

So, without doing any integrals, we obtain the expansion coefficients
Com = {€m|ih) = = J5808m + 380101 (7.175)

and the energy measurement probabilities

3

P = > |(em|y)|’

m=—¢
(7.176)
= (~&on) +(Son)
=8,.

The probability of measuring the energy to be E; = #2/I is 100%, as is the probability for measur-
: 2 hz2
ing " = 24~

The probability of measuring L, = % is

|
M

Pr=n= |<€1|¢’>|2

€
2 7.177
(~) 7D

1
3.

Similarly ?, -, = 1/2.

Solution by inspection is nice when it works, but sometimes we must bite the bullet and integrate,
as we’ll see in the example in the next section.

7.6.5 W Visualization of Spherical Harmonics

Visualization of spherical harmonics is a challenge because of the two-dimensional structure of the
wave functions and the fact that they are represented by complex numbers. To overcome the com-
plex problem, it is common to plot the complex square, which is the probability density, or to plot
the absolute value. In either case, the azimuthal dependence vanishes as we saw with the ring prob-
lem earlier. A two-dimensional polar plot, like we used for the Legendre polynomials, is therefore
sufficient to display the polar angle dependence, as shown in Fig. 7.18(a). To convey the uniform
azimuthal dependence, one should visualize the polar plot as rotated around the vertical z-axis, as
displayed in the three-dimensional polar plot in Fig. 7.18(b). In this plot, the “radius” at each angle
0, ¢ is the complex square of the spherical harmonic function. In the ring case, we also displayed the
probability density as a grayscale on the ring itself, which suggests plotting the spherical harmonic
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probability density as grayscale (or color) on the sphere, as shown in Fig. 7.18(c). The grayscale
sphere can then also be projected onto a flat surface, as mapmakers do, yielding the two-dimensional
representations in Figs. 7.18(d) and (e). Note that these plots do not yet give the three-dimensional
electron probability density because the spherical harmonics are not functions of the radius . We
still have to learn about the radial wave function in the next chapter.

The three-dimensional polar plots for the first four sets of spherical harmonics are shown in
Fig. 7.19. The standard convention is to label the spherical harmonics, or orbitals, with a letter
corresponding to the value of the orbital angular momentum quantum number ¢:

¢=01234567..

(7.178)
leter=s p d f g h i k...

The plots in Fig. 7.19 show angular momentum eigenstate wave functions. In many cases, such as the
carbon atom in Fig. 7.5, the actual orbitals are superpositions, or hybrids, of the angular momentum
eigenstates.

e

0 z 4 3r
2 2

(d) (e)

FIGURE 7.18 Spherical harmonic |Y ;(9, d))\z displayed as (a) a two-dimensional polar plot,
(b) a three-dimensional polar plot, (c) grayscale on a sphere, (d) grayscale on a flat rectangular
projection, and (e) grayscale on a flat Mollweide projection.
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FIGURE 7.19 Three-dimensional polar plots of some spherical harmonics.

Example 7.5 Given the angular wave function for a particle on a sphere

1
P(0,9) = \/ 752060 (Z + cos’260 + sin2¢>>, (7.179)
generate the histogram of possible energy measurements.
To find the probabilities of energy measurements
g 2
Pe, = 2 [{tmly)",

m=—{

(7.180)
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we must find the overlap integrals

2 T
Con = (€m|ih) —/0 /0 Y?*(G,zf))w(e,(b)sinﬁdé)dd). (7.181)

This wave function looks like it could be a finite sum of spherical harmonics, but the wild nor-
malization constant is a clue that an infinite sum is required. You could try to calculate the cy,
coefficients by hand, but this problem is a good chance to explore the power of mathematical pack-
ages such as Mathematica, Maple, or Matlab. Mathematica, for example, has the spherical harmon-
ics built into its system and the overlap integral requires one command line

Table|[Integrate[Conjugate[SphericalHarmonicY[1,m,0,¢]]

(7.182)
¥l6,d]sinl6],{6,0,7},{¢,0,27}],{1,0,7},{m,~1,1}],

which generates a table of the c,,, coefficients for € = 0 — 7 and m = —¢ — ¢, assuming (0, ¢)
has been defined previously. A subset of the results is presented in Table 7.4. The last column of
the table is the probability of measuring the energy E,. From the explicit square roots in the results,
it is evident that Mathematica does the integral analytically, not numerically. The results also indi-
cate the symmetries of the wave function. Only m = —2, 0, 2 states contribute nonzero terms to
the expansion because of the symmetry of the azimuthal dependence of the wave function:

.2 — i _ —ip 12
sin“¢ E(e e ) /2i] (7.183)
I

(€2 + &2 - 2).

For m = 0, the coefficients beyond € = 6 are zero because the polar angle term cos’ 26 has no
cos‘@ or sin‘@ terms beyond € = 6. The m = 2 coefficients extend to £ = .

Table 7.4 Coefficients of Spherical Harmonic Expansion

m =
£ 2
cm | =3 -2 —1 0 1 2 3 > | ceml
m=—¢
429 2042469
0 69 4875535 4875535
1 0 0 0 0
1001 143 ~ /1001 1440725
2 =5 278602 0 80 2925321 0 5 278602 2925321
3 0 0 0 0 0 0 0 0
_ 3003 39 3003 1795131
= 4 0 278602 0 =1 28 53630885 0 278602 0 5360885
5 0 0 0 0 0 0 0 0
13 11 A/ 5 134 /_ 11 3050869
6 0 -2 139301 0 512 32178531 0 2 139301 0 64357062
7 0 0 0 0 0 0 0 0
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FIGURE 7.20 Histogram of energy measurements.

A partial histogram of energy measurement probabilities is shown in Fig. 7.20. The energy
probabilities for the states up to € = 6 shown in Table 7.4 and Fig. 7.20 sum to 0.9923, so we
expect that the finite spherical harmonic expansion

6 ¢
Unire(0,0) = 2 2 ¢, Y7(0.6) (7.184)
=0 m=—¢

should be a good approximation to the actual wave function. The original wave function and the
finite spherical harmonic expansion are shown in Fig. 7.21. The match between the two is good,
except at the endpoints 6§ = 0,7, which is a phenomenon similar to that seen in Fourier series
expansions. Note that this wave function exhibits azimuthal dependence because it is a superposi-

tion of different m states.

(a) (b)

FIGURE 7.21 (a) Original wave function and (b) 6-term spherical harmonic expansion.
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SUMMARY

In this chapter, we introduced the idea of orbital angular momentum and illustrated its importance in
solving the three-dimensional differential equation that is the energy eigenvalue equation for the hydro-
gen atom. By separating variables in the eigenvalue equation H|E) = E|E), we isolated the differential
equations for the angular variables 6 and ¢ from the differential equation for the radial variable r. Only
the radial differential equation includes the potential energy, so the solutions to the angular equations are
valid for all central potentials. The ¢ equation yielded the azimuthal wave functions

®,(p) = L jimo (7.185)

y

and the 6 equation yielded the polar wave functions

(2¢+1) (¢ = |m])!
\/ 2 (e+ |m|),Pe(0059)- (7.186)

The products of these two are the total angular wave functions, which are the spherical harmonics

20+ 1) (£ — |m|)! A
Py e, 1
b+ [m) 7 (cosb)e (7.187)

[em) = Y7(0.¢) = (—1)<'"*m>/2\/ (

The spherical harmonics are eigenstates of the angular momentum operators L? and L,. In Dirac nota-
tion, the eigenvalue equations are

L2[¢m) = €(€ + 1)#2|em)

(7.188)
L.|tm) = mh|tm).
In wave function notation, the eigenvalue equations are
L2Y"(6,¢) = ¢(¢ + 1)A*Y"(6,¢
(0.6) = (¢ + DEYI(0.6) .

LYV(0.0) = mhY'(60,¢).

The limitations on the quantum numbers m and € arise from requiring the wave function to be periodic
in ¢ and finite at § = 0,7, respectively. The quantum numbers m and € must be integers with the
limitations

m=—€¢—¢+1,.0,..,¢—1,¢

€=0,1,2,3,..% (7.190)

PROBLEMS

7.1 Show that the two-body Hamiltonian in Eq. (7.3) can be separated into center-of-mass and
relative Hamiltonians, as in Eq. (7.11). Do this in two ways: (a) with momentum operators in
the abstract, and (b) momentum operators in the position representation.

7.2 Use the separation of variables procedure in Appendix E to separate the two-body energy eigen-
value equation into the center-of-mass and relative energy eigenvalue equations in Eq. (7.24).

7.3 Use the separation of variables procedure in Appendix E to separate equation Eq. (7.29) into
three ordinary differential equations for each Cartesian coordinate.
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7.4 Verify the angular momentum commutation relations in Egs. (7.51) and (7.55).
7.5 An angular momentum system with € = 1 is prepared in the state

) = A1) + i55]10) — S1,-1).

a) What are the possible results of a measurement of the angular momentum component L_,
and with what probabilities would they occur?

b) What are the possible results of a measurement of the angular momentum component L,
and with what probabilities would they occur?

¢) Plot histograms of the predicted measurement results from parts (a) and (b).
7.6 An angular momentum system with ¢ = 1 is prepared in the state

) = J5l11) — F5110) + igk[1,-1).

a) What are the possible results of a measurement of the angular momentum component L_,
and with what probabilities would they occur?

b) Suppose that the L, measurement on the system yields the result L, = —#. Subsequent to
that result, a second measurement is performed to measure the angular momentum com-
ponent L. What are the possible results of that measurement, and with what probabilities
would they occur?

¢) Draw a schematic diagram depicting the successive measurements in parts (a) and (b).
7.7 An angular momentum system is prepared in the state

) = Jl11) = F5l10) + i75]22) + iS[20).

a) What are the possible results of a measurement of the angular momentum observable L?,
and with what probabilities would they occur?

b) What are the possible results of a measurement of the angular momentum component L,
and with what probabilities would they occur?

¢) Plot histograms of the predicted measurement results from parts (a) and (b).

7.8 Using Egs. (7.35) and (7.47), show that the orbital angular momentum operators L,, L, and L,
are represented in spherical coordinates as

J J
L, = iﬁ(simi)% + cos¢ cott‘)ad))
L, = h( b g + sin¢ cotf a)
, = —cos¢p—— + sing cotd—
y = 30 ap

., 0
L, = —ih—
Z 3@"

and verify that the operator L?> = L-L = Li + L3 + L? is represented in spherical coordi-
nates as in Eq. (7.70). )

7.9 Verify that the angular momentum operators L and L. commute with the central force
Hamiltonian.
7.10 Use the separation of variables procedure in Appendix E on the angular equation (7.80) to obtain
Eq. (7.82) and Eq. (7.83) for the polar and azimuthal angles.
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7.11 Show by direct integration that the azimuthal eigenstates ®,,(¢) are orthonormal.

7.12 Consider the particle-on-a-ring state in Example 7.2. What are the possible values of a mea-
surement of the observable L.? Calculate the measurement probabilities and show that they
agree with the results indicated in Fig. 7.9.

7.13 Consider the normalized state |i) for a quantum mechanical particle of mass u constrained to
move on a circle of radius rg, given by:

a) What is the probability that a measurement of L, will yield 247 3A?
b) What is the probability that a measurement of the energy yields E = 2#°/I?
¢) What is the expectation value of L, in this state?
d) What is the expectation value of the energy in this state?
7.14 A particle on a ring is in the normalized state

) = F5(10) + il1) = 2i[2) + 3]-2)).

a) What are the possible results of an energy measurement and what are the corresponding
probabilities? Calculate the expectation value of the energy.

b) What are the possible results of an L, measurement and what are the corresponding prob-
abilities? Calculate the expectation value of L. .

7.15 Consider the normalized state |i/) for a quantum mechanical particle of mass u constrained to
move on a circle of radius ry, given by

W= s
V= 2 + cos(3¢)’

where N is the normalization constant.

a) Find the normalization constant V.

b) Plot the wave function.

¢) What is the expectation value of L in this state?
7.16 A particle on a ring is prepared in the initial state

) = \/32) — i3 -1).

Find the probability density as a function of time.
7.17 The time-dependent probability density for a particle on a ring is measured to be

1 2V2\V3 . 3h
P(p,t) = 277[1 — =53 —sin( 3¢ + Et .
Determine the initial state of the particle.

7.18 Calculate the moment of inertia of a diatomic molecule, as depicted in Fig. 7.17. Express the
moment two ways: (1) in terms of the individual masses m; and m, and the coordinates r; and r,,
and (2) in terms of the reduced mass p and the atom-atom separation ry.

7.19 Calculate the rotational constant for the hydrogen iodide (HI) molecule.
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7.20 In each of the following sums, shift the dummy index n —n + 2. Don’t forget to shift the lim-
its of the sum as well. Then write out all of the terms in the sum (if the sum has a finite number
of terms) or the first five terms in the sum (if the sum has an infinite number of terms) and con-
vince yourself that the two different expressions for each sum are the same:

3
a) En
n=0
5 .
b) 256m¢
n=1

) Eann(n —1)7"2
n=0

7.21 Use Rodrigues’ formula, by hand, to generate the first five Legendre polynomials. Show by
direct integration that P,(cos#) is orthogonal to P,(cos@), and that P,(cosf) is normalized
according to Eq. (7.148).

7.22 Generate the associated Legendre functions P;(z) and P;(z) by hand. Express each function
both as a function of the argument z and as a function of 6.

7.23 Use the definitions in Egs. (7.151) and (7.161) to generate the spherical harmonics Y ?(0, o)
and Y, 2(0, ¢). Ensure that they are normalized and orthogonal by direct integration.

7.24 Verify that the spherical harmonics are eigenstates of the orbital angular momentum component
operator L, by direct application of the position representation of L,. What are the eigenvalues?

7.25 Verify that the spherical harmonics are eigenstates of the orbital angular momentum operator
L?. What are the eigenvalues?

7.26 Consider the new operators L, and L_ defined by L+ = L, * iL,. Use the results of Problem 7.8
to show that the position representations of these operators in spherical coordinates are

L+::ﬁeﬂ¢(i4if+icmﬂii>.

- 96 ap
Act with these new operators on all the ¢ = 1 spherical harmonic wave functions and sum-
marize your results in Dirac notation. Based on your results, postulate the names of these new
operators. This is a preview of Chapter 11.

7.27 Express the ¢ = 1 spherical harmonics in Cartesian coordinates. Combine the m = =+ 1 func-
tions in two possible ways to make real functions that closely resemble the m = 0 function.

7.28 Use your favorite tool (e.g., Maple, Mathematica, Matlab, pencil) to generate the Legendre
polynomial expansion of the function f(z) = sin (7z). How many terms do you need to
include in a partial sum to get a “good” approximation to f(z) for —1 < z < 1? What do you
mean by a “good” approximation? How about the interval —2 < z < 2? How good is your
approximation then? Discuss your answers. Answer the same set of questions for the function
g(z) = sin(3mz).

7.29 Consider the normalized state of a particle on a sphere given by:

W) = J5l1,—1) + J5/10) + [00).

a) What is the probability that a measurement of L, will yield 24? —#? 04?
b) What is the expectation value of L, in this state?
¢) What is the expectation value of L? in this state?
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d) What is the expectation value of the energy in this state?
€) What is the expectation value of L, in this state?
7.30 A particle confined to the surface of a sphere is in the state

2
N(%—w), 0<0<§
P(0,¢) =
ar
0, 5<0<7T,

where the normalization constant is
1

N =

S .
™ 3 2

a) Find the coefficients for the [€m) = |00),
harmonics expansion of (6, ¢).

L=1),

10), and |11) terms in a spherical

b) What is the probability that a measurement of the square of the total angular momentum
will yield 2427 0427

¢) What is the probability that the particle can be found in the region 0 < 6 < 77 /6 and
0 < ¢ < 7/6? Repeat the question for the region 57/6 < § < wand 0 < ¢ < 7/6.
Plot your approximation from part (a) above on and check to see if your answers seem
reasonable. (The activity on linear combinations of spherical harmonics has a Maple
worksheet ylmcombo.mws for plotting.)

RESOURCES
Activities

These activities are available at
www.physics.oregonstate.edu/qmactivities

Eigenstates of a Particle Confined to a Ring: Students investigate eigenstates of a quantum particle
confined to a ring.

Guessing the Legendre Polynomial Expansion of a Function: Students try to fit a given function
with a linear combination of Legendre polynomials using the guess and check method.

Finding Legendre Coefficients: Students use Maple to find the first few coefficients of a Legendre
series to approximate a function.

Particle Confined to a Ring: Students visualize linear combinations of eigenstates and study anima-
tions of time evolution of the probability density.

Particle Confined to a Sphere: Students visualize the spherical harmonics.

Linear Combinations of Spherical Harmonics: Students visualize states that are made up of linear
combinations of spherical harmonics.


www.physics.oregonstate.edu/qmactivities

CHAPTER

Hydrogen Atom

The angular wave functions we found in the last chapter are independent of the particular form of
the central potential that binds the system. The remaining radial part of the wave function, however,
depends critically on the central potential you choose. The radial part of the problem determines the
allowed energies of the system and hence the spectroscopic fingerprint of the system that we observe
in experiments. In this chapter, we solve for the quantized energies and the radial wave functions of
the bound states of the hydrogen atom, which is the simplest atomic system, comprising one electron
bound to one proton in the nucleus. The electron and proton are bound together by the Coulomb poten-
tial, which underlies the bonding in all atoms, molecules, liquids, and solids.

8.1 B THE RADIAL EIGENVALUE EQUATION

In Chapter 7, we separated the three-dimensional energy eigenvalue equation into differential equa-
tions for each of the spherical coordinates r, 6, and ¢p. We solved the ¢ eigenvalue equation (7.83) and
found the azimuthal eigenstates ®,,(¢) and eigenvalues m, which determined the separation constant
B = m?. We then used the separation constant B to make the 0 differential equation (7.82) into an
eigenvalue equation and solved for the polar eigenstates @ {m(G) and the eigenvalues ¢(¢ + 1), which
determined the separation constant A = €(¢ + 1). We now use the separation constant A to make the
radial differential equation (7.79) into an eigenvalue equation for the energy E:

h2 d B d hZ B
{_Zﬂrz dr<r dr> + V() + (e + 1) e R(r) = ER(r). @.1)

Solving this differential equation will give us the radial eigenstates R(7) and the allowed ener-
gies E. We then combine the three separated eigenstates into the three-dimensional eigenstate
(r,0.¢) = R(r)Y}(6,¢), where the spherical harmonics Y}'(6,¢) = 07(6)®,,(¢) are the prod-
ucts of the azimuthal and polar eigenstates that we found in Chapter 7.

Before we begin the solution, notice that the radial eigenvalue equation (8.1) resembles a one-
dimensional eigenvalue equation with an effective potential energy V.4

h2e(e + 1)

5 (8.2)

Veglr) = Vir) +
lr) = V) + =
The term #*¢(¢ + 1) /2ur? in the effective potential energy is called the centrifugal barrier. It
behaves like a repulsive potential, and it increases with € in exact analogy with classical mechanics. In
this viewpoint, the effective potential energy that determines the radial motion of the electron is differ-
ent for each state with a different angular momentum quantum number ¢, as shown in Fig. 8.1.
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FIGURE 8.1 The effective potential for different values of the angular momentum quantum number €.
For the hydrogen atom, the Coulomb potential energy is responsible for attracting the electron to
the proton. This Coulomb potential energy is

Ze*

dmeyr’

V(r) = (8.3)

where we assume that the nucleus has a charge +Ze so that our solution applies to the general case of a
hydrogenic atom: H, He", Li*", etc. With this choice of V(r), the radial differential equation is

R, 2ar w2 )
dar:  rdr K2 dareyr 2ur?

R =0. 8.4

The potential energy at » = « is V() = 0, so bound states have energy E < 0 while unbound
states have energy £ > 0.

It is convenient at this point to rewrite the radial differential equation in terms of dimensionless
energy and position parameters. The angular differential equations in Chapter 7 were treated similarly
because the separation constants A and B were dimensionless. We define a characteristic length scale
of the hydrogenic atom as a, such that the dimensionless radius is

p= (8.5)

Without knowing what this scale is yet, we write the differential equation for R(p) as

1dR  12dR 2 zet R0+ 1)]

*272 *277 7211 + ¢ - ( 5 2 ) R = O (86)

a” dp a- pdp f daregap 2uap
Multiplying Eq. (8.6) by a?, we obtain

d’R  2dR [2ud* uzZe® \2a €€+ 1)]

— +t -+ > E + S )= - 3 R =0. (8.7)

dp pdp A daegh™) P p ]
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The terms inside the square brackets of Eq. (8.7) are now dimensionless, so we identify the hydrogen
characteristic length scale as

Arregh?
a= 70 (8.8)
nZe

and the characteristic energy scale as 42 /2ua’. We define a dimensionless energy parameter as

E
= (8.9)

(5
2ua’

where we assume that E < 0 because we are seeking bound-state solutions. Using #°/2ua’ as the
energy scale is reasonable in light of the ground state energy being E; = 7°4?/2ma’ for a particle in
a box of size a. With the dimensionless length and energy parameters, the radial differential equation
becomes

2R 2dR 2 (e +1
R, d+{—2 uRzo. (8.10)

dp> " pdp P

p P’

In this dimensionless form, the eigenvalue we are seeking is y? and the eigenfunction is R(p).

8.2 B SOLVING THE RADIAL EQUATION

8.2.1 W Asymptotic Solutions to the Radial Equation

To solve the radial eigenvalue equation (8.10), it is instructive to first get some clues about the form
of the solution by looking at the limiting behavior of the solutions for large and small p (i.e., large
and small 7). For large p, the terms in Eq. (8.10) involving p ' and p~2 can be neglected, so Eq. (8.10)
becomes approximately
R
— — YR =0. 8.11
0 Y (8.11)

This equation has the familiar exponential solutions R(p) = e*?, where the + symbol is required
because Eq. (8.11) involves the second derivative of R(p). We eliminate one of these signs by not-
ing that the solution e¢*”” blows up as p goes to infinity. We want solutions for the wave functions to
yield reasonably behaved probability densities (that is, they must be finite everywhere), and we must
therefore discard any solution that leads to an infinite probability. Our solution for the radial wave
function in this limit then becomes:

R(p)~e " (large p). (8.12)

Now let’s look at the behavior of the solutions when p is small. Now the p~? term dominates and
we neglect the other terms in the square brackets in Eq. (8.10). In this case, we obtain the approximate
equation

&R 2dR (€ + 1)

+ 28 R=o. 8.13
dp*  pdp P’ ©1
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We see by inspection that a solution of the form R(p) = p? satisfies Eq. (8.13). For this choice of
R(p), each term in Eq. (8.13) is proportional to p? 2, and the three terms sum to zero for all values of

p when
L2 e+)
qlg = Vp" > + =gp"" — ———p? =0, (8.14)
P P
which leads to
glg+ 1) —¢€e+1)=0. (8.15)
This quadratic equation for g yields two solutions: ¢ = € and ¢ = —¢ — 1. For small p, the solution

p " 'blows up, so we discard this solution. We then have the limiting form
R(p)~p"  (smallp). (8.16)

Combining Egs. (8.12) and (8.16), we expect the radial solution to look something like
R(p)~ p'e . We have not violated the proper behavior at the limits by combining these two solutions;
R(p) remains well-behaved for p = 0 and p — . What else do we need to complete the solution? We
need to know the radial dependence at intermediate p, so let’s try an additional function H(p) that is well-
behaved by remaining finiteat p = 0 (Or blowing up more slowly than p_l) and as p — % (or blowing
up more slowly than ¢”?). We therefore seek solutions to the radial equation of the form

R(p) = p'eH(p), (8.17)
and our next goal is to determine the function H(p).

8.2.2 W Series Solution to the Radial Equation

We substitute the trial function R(p) = p‘e ™ H(p) into the radial differential equation (8.10) in
order to find the differential equation for the new function H(p). Immediately, we find that we need
the first two derivatives of R(p):

——=p"le"[¢H(p) — yoH(p) + pH'(p)], (8.18)

where H'(p) = dH/dp, and

d’R . , "
W ple[(2 = 2y — 2y0) H(p) + (2 + 2¢ = 2yp)H'(p) + pH"(p)].  (8.19)
Now we substitute Eqs. (8.18) and (8.19) into Eq. (8.10) and collect terms to obtain the differential
equation for H(p):
d*H dH
p—> + 200+ 1 —9yp)— +2(1 —y —y0)H(p) = 0. (8.20)
dp dp

Just as we did with the 6 differential equation in Chapter 7 [Eq. (7.132)], we use a power series
expansion to solve the radial equation (8.20). We assume that H(p) has the form

H(p) = Z)cjpf} (8.21)
E
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and now our job is to find the ¢; coefficients. The derivatives of H (p) in this series form that we need are

©

H <. i . ;
—— =2’ = 20 + Dejap?
= =
(8.22)

2 j + 1 ]+1pj ]’

where we have shifted indices in the first equation, as we did in the angular solutions in Section 7.6.1.
Substituting Eq. (8.22) into Eq. (8.20), we obtain

] ©

%j(j + 1) p? +2(¢ + )2(1 + 1)cjv1p’
= j=0

. (8.23)
—2721€,p’+21—’y—y€2 =

In order for all terms of the series in Eq. (8.23) to sum to zero for any and all values of p, the coef-
ficient of each power of p must be zero, just as for the Legendre equation solution. The coefficient of
the general term p” is

JG A+ Ve + 206+ 1) + ey — 2vje + 2(1 =y = v€)¢; = 0, (8.24)
which leads to the recurrence relation

29(1 +j+¢) — 2
Cj+l = y( ] ) Cj' (8.25)
G+ 1)(j+20+2)

The recurrence relation shows us that the starting coefficient ¢ determines all of the remaining expan-
sion coefficients in the function H(p). The normalization requirement determines ¢,, as you have
probably already realized, and we’ll return to this point in Section 8.4.

In our study of the polar angle wave functions ®(6), we found that we had to force the series to
terminate to prevent the wave function from becoming infinite. So far, we have assumed that the series
expansion of H(p) includes an infinite number of terms (j— ). We have forced the asymptotic
forms of R(p) to remain finite, so let’s see how the new part of the solution, H(p), behaves for large
values of j and how that affects the radial function R(p) = p‘e " H(p).

For large j, the recurrence relation in Eq. (8.25) is

yj 2y

Cj+1 = ~5°C

2= (8.26)

J

This is exactly the same recurrence relation we find for the exponential function! The series expansion
of the exponential function

o~ o 0‘22 0‘33
—r;);x =1 ST TR e S (8.27)

has a recurrence relation ¢j;; = = (a/(j + 1))cj = (a/j)cj for large j. Hence, the large j limit in
Eq. (8.26) implies that for large P,

H(p) = e, (8.28)
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which leads to an asymptotic radial function
R(p) = peefypezw’ = pee’/”. (8.29)

This asymptotic behavior has the same exponential pathology that we rejected in arriving at Eq. (8.12),
so we must reject it once again. We do that by forcing the series expansion of H(p) to terminate at a
finite value of j, just as we did for the Legendre polynomials.

Hence, the requirement that the wave function be normalizable leads us to define a value j,,,,,
such that the numerator of the recurrence relation, Eq. (8.25), goes to zero and terminates the series:

29(1 + jypae + €) — 2 =0. (8.30)
Because j and ¢ are integers, (1 + j,,.. + €) is also an integer, which we denote as n:
n = Jmax €+ 1. (8.31)

This new integer is the principal quantum number of the hydrogen atom. The definition of the prin-
cipal quantum number in Eq. (8.31) leads us to three important conclusions.

* The integers j and € both start at 0 (make sure you know why), so the principal quantum number
n starts at 1 and continues to infinity because € can go to infinity:

[n=1,23 .| (8.32)

* The dimensionless energy parameter 7y has discrete values! We learn this by substituting the
new quantum number 7 into Eq. (8.30) and solving:

Y= (8.33)
n
Furthermore, the energy itself takes on only discrete values, and we find those values by
substituting Eq. (8.33) into the definition of y in Eq. (8.9). We also need the length scale in
Eq. (8.8) and arrive at

2
1 E E 47T80ﬁ2>

_nz_< ﬁz > : <ﬁ2>< Mzez
2ua’ 21

So the requirement that the radial wave function be well behaved has led us to the quanti-
zation condition on the allowed energies of the hydrogen atom. Solving Eq. (8.34) for the
allowed energy yields

(8.34)

2
E (28 ¢ 1.2,3 (8.35)
= =, n=1273..1, .

" wm* \dmey ) #2

which relates the hydrogen energy to the newly defined principal quantum number n. We’ll
say more about the energy spectrum in the next section.

* The angular momentum quantum number < is limited to a finite set of values for every n. We
learn this by solving Eq. (8.31) for €:

€=n— jou — L. (8.36)
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The polar angle eigenstate solution in Chapter 7 told us that the angular momentum quantum
number ¢ had a range from 0 to infinity. The lower limit of 0 is consistent with Eq. (8.36), in
which case n = j,,, + 1. However, the upper limit of infinity is consistent with Eq. (8.36)
only for the special case of n = . For finite values of n, € cannot exceed n — j,.c — 1,
which is largest for the case of j,,, = 0, implying that €,,, = n — 1. Thus, the radial
eigenvalue solution places a new limit on the allowed values of the angular momentum quan-
tum number ¢ that came from the polar eigenvalue equation:

[€=0,1,2,.. n—1] (8.37)

We now know all the quantum numbers for the hydrogen atom, so let’s take a moment to summa-
rize our journey. We solved the ¢ eigenvalue equation and found that the magnetic quantum number
m was any integer from negative infinity to positive infinity. We then solved the 0 eigenvalue equation
and found that the angular momentum quantum number € was an integer from O to infinity, but that
the absolute value of the magnetic quantum number m could be no larger than €. Finally, we have now
solved the r eigenvalue equation and found that the principal quantum number 7 is an integer from 1 to
infinity, but the angular momentum quantum number ¢ can be no larger than n — 1. In summary, the
hydrogen atom quantum numbers are

n=123,..®
€=012,..,n—1 (8.38)
m=—¢—¢ +1,.0,..,¢—-1,¢|

8.3 M HYDROGEN ENERGIES AND SPECTRUM

The solution to the radial eigenvalue equation has now given us the quantized energy eigenvalues of
the hydrogenic atom:

2

E L(Ze) m 1,2,3 (8.39)

= - =, n=1273,..]. .
! 22 \dme,) #2

The principal quantum number n ranges from 1 to infinity and is sometimes referred to as the shell
number. The quantized energies are less than zero because the zero of potential energy is taken to be
where the electron and nucleus are separated to infinity—also called the ionization limit. Note that E
depends only on 7 and not on ¢, even though the radial wave function R,,(r) depends on both n and ¢
through the j,,,, in Eq. (8.31).

It is common to express the hydrogen energy in different forms that are more instructive than the
jumble of constants in Eq. (8.39). To simplify our discussion, we focus on the hydrogen atom itself
and set Z = 1. We also follow the convention of using the electron mass m, rather than the reduced
mass u at this stage, and then using the correct reduced mass in later calculations. With these simplifi-
cations and a few rearrangements of constants, the hydrogen energy levels are

1 AN

e
E, = ——m,* ) 8.40
" 2n? e <47Tsoﬁc> (8.40)



8.3 Hydrogen Energies and Spectrum 257

This form is useful because it contains the electron rest mass energy E,,,; = m,c> and a collection of
fundamental constants, which must be dimensionless. The dimensionless constant inside the parenthe-
ses is the fine structure constant

e2

= — 8.41

4meghc ( )
so named because of its role in the fine structure of the hydrogen spectra that we’ll study in Chapter 12.
More important, the fine structure constant is a measure of the fundamental strength of the electromag-
netic interaction, and is also called the electromagnetic coupling constant. In terms of the fine structure
constant, the hydrogen energy levels take on the simple form

E,=———a'm,”|. (8.42)

a=—1| (8.43)

The electron rest mass energy has the approximate value

myc® = 511 keV |. (8.44)

At this level of precision, the hydrogen energy levels are

I
E, =——1366V|. (8.45)
n

You should commit the three numerical values in Egs. (8.43), (8.44), and (8.45) to memory.

Another common and convenient form of the hydrogen energy level formula is obtained by using
the length scale we defined in Eq. (8.8). In the case of hydrogen, the nuclear charge is Z = 1, and
using the electron mass rather than the reduced mass, we define the quantity

Agre
ag = 5 (8.46)
mge
as the Bohr radius, with the approximate value

ap = 0.0529nm = 0.529 A | . (8.47)

In terms of the Bohr radius, the hydrogen energy levels are
E, = LN é (8.48)

" 2n2 \4mey ag) |’ ’

which emphasizes the Coulomb binding of the atom.
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The spectrum of hydrogen energy states is shown in Fig. 8.2. There are several noteworthy fea-
tures of the hydrogen energies:

Energy (eV)

There are an infinite number of bound states in the hydrogen atom because the Coulomb
potential energy falls off slowly for r— . In contrast, a three-dimensional finite square
well has a finite number of bound states, similar to the one-dimensional case.

The hydrogen energy levels are degenerate with respect to the € and m quantum numbers
because the energy depends on n only. For each energy level E,, there are n possible € states
ranging from € = 0 to € = n — 1 in unit steps. For each of those ¢ states, there are 2¢ + 1
possible m states ranging from m = —€ to m = +¢ in unit steps. The total number of states
at each energy level E,, is the sum of these possibilities:

—_

n— n—1 n—1 nln — 1
(2€+1)=22€+21=2¥+n=n2. (8.49)
=0 =0 =0
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FIGURE 8.2 Hydrogen energy levels and emission spectrum.
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When we include the two spin possibilities of the electron—spin up and spin down along the
z-axis—then there are 2n° possible states per energy level. The m degeneracy is a result of the
spherical symmetry of the hydrogen atom and is removed if we break this symmetry, for exam-
ple by applying an electric or magnetic field in a given direction (Chapter 10). The ¢ degeneracy
is a result of a special symmetry of the 1 /r Coulomb potential and is removed when we account
for non-Coulomb interactions in the atom (Chapter 12).

* The results we have obtained for the hydrogen energy levels are the same as those obtained
with the semi-classical Bohr model. That is a bit surprising because the Bohr model used
some incorrect physics. Because of this equality of results, the energy levels we have derived
here are often still referred to as the Bohr energies.

e The Bohr energies require corrections due to relativity and internal magnetic fields
that change the energies at the level of about 1 part in 10%, and considering that today’s
spectroscopic techniques permit a precision of 1 part in 10'4, 1 part in 10* is huge! This
means that hydrogen is a wonderful playground to test refinements of the simplest
models. We will study some of these effects in Chapter 12.

Hydrogen atoms absorb or emit light when electrons make transitions between energy levels.
When an electron transitions from a higher-lying to a lower-lying level, a photon is emitted. Some of
these emission lines are shown in Fig. 8.2. Transitions to the n = 1 ground state comprise the Lyman
series, with the lowest energy transition (n = 2 — 1) referred to as the Lyman-a line or L,,, the next
one Lg, etc. Transitions from higher levels down to the n = 2 level comprise the Balmer series and
transitions down to the n = 3 level comprise the Paschen series. The wavelengths of some of these
transitions are listed in Table 5.1. Transitions to higher-lying levels require the absorption of light.

Whether the photon is emitted or absorbed, its energy matches the energy difference between the
two atomic states involved:

Loa( @ VLo L
Ephomn - AEﬂ - |Ef - El| - Emec (47T80ﬁc> nlz I’l? . (850)
The energy of the photon is related to its wavelength via
he
Ephomn =fho = hf = 7, (851)
so the wavelength of the photon obeys the relation
1 1
—=R.,|3~ 3| (8.52)
A n,ooon
where we define the Rydberg constant as
P (e2 )2 553
T 4atic \dmey) | '

The Rydberg constant was discovered empirically in the nineteenth century through experimental
measurements of the spectrum of hydrogen. The subscript % refers to our use of the electron mass
in Eq. (8.53) as opposed to the reduced mass, which must be done to get accurate results. If we use
the reduced mass for hydrogen in Eq. (8.53), then the result is referred to as Ry. Ry and R.. differ
by 5 parts in 10* (huge!), so in precision measurement it’s important to be clear which is being used.
Today the Rydberg constant is the second most precisely measured fundamental constant (the g-factor
of the electron being the most precise). The latest measured value is

R.. = 109 737.315 685 27(73) cm™ .. (8.54)
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It is also common to use the term Rydberg (without the word “constant”) in reference to the energy
instead of the inverse wavelength. For example, one often writes the hydrogen energies in the form

1

E, = ——=Ryd (8.55)
n

where one Rydberg (Ryd) is equal to 13.6 eV.

Not all transitions between states are allowed in the hydrogen atom. As we discussed in Chapter 3,
the probability of a transition is proportional to the matrix element of the light interaction between
the two states: <¢n o f‘ V,v,,,’z//nlgim) [Eq. (3.109)]. The general properties of these matrix elements
determine the selection rules that tell us which transitions are allowed and which are forbidden. For
the electromagnetic interaction that characterizes the emission and absorption of light, the selection
rules for transitions in the hydrogen atoms are

AC=¢— = *1

Am =my—m; =0, X1/ (8.56)

These selection rules are primarily due to the conservation of angular momentum. The photon has
spin angular momentum 1, so when an atom absorbs or emits light, the atom must change its angular
momentum by one unit. Some of the allowed transitions in hydrogen are shown in Fig. 8.3 where the
different angular momentum states s, p, d, etc. are identified in order to emphasize the A¢ = * 1 tran-
sitions. We will study these transitions and selection rules further in Chapter 14.

-10
~11

-12
-13
—14L

FIGURE 8.3 Transitions between states in hydrogen, emphasizing the A¢ = * 1 selection rule.
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8.4 B THE RADIAL WAVE FUNCTIONS

Let’s now return to the radial wave function solution R(p) = p‘e ¥ H(p) [Eq. (8.17)]. We have
determined that y = 1/n, established that n and ¢ are restricted integers, and found the recurrence
relation for the coefficients in the series H(p). The next thing to do is to put the dimensions back into
the problem. In terms of the Bohr radius ag, the length scale parameter a is

4’7T80ﬁ2 ay (8 57)
a = = — 5 .
m,Ze* Zz

and we have continued the convention of using the electron mass m, rather than the reduced mass .
The dimensionless radial position p is then

r_Zr
a ay

p= (8.58)

The radial wave function with the dimensions back in place is

4
z -
Rulr) = <ar> eZ’r"”“0H<r>. (8.59)
0 o

We label the radial wave functions as R, using the two quantum numbers » and ¢ that affect the radial
dependence. Now we’re ready to use our knowledge of the allowed quantum numbers and the recur-
rence relation to find the polynomial H(Zr/ay) for each state. The polynomial terminates at the value

jmax =n—+4— 1. (860)

Let’s look at solutions for a few particular values of n and ¢, and then we’ll discuss the general results
for the radial wave function.

The ground state of hydrogen has the principal quantum number n = 1 and the angular momen-
tum quantum number € = 0, so Eq. (8.60) tells us that the polynomial terminates at j,,,. = 0. That’s
the simplest polynomial possible! Hence, we have H(Zr/ay) = ¢, and the radial wave function is

Ryo(r) = coe %1%, (8.61)

The constant ¢, is determined from the normalization requirement (Problem 8.1).

The first excited state of hydrogen has n = 2 and two possible values for €: ¢ = 0 and ¢ = 1.
For the 2s state (¢ = 0), Eq. (8.60) tells us that the polynomial terminates at j,,, = 1. The polyno-
mial is therefore H(Zr/ay) = ¢, + ¢;(Zr/a,). The coefficients ¢, and c; are related by the recurrence

relation Eq. (8.25):

1
¢ =3¢ (8.62)

so that H(Zr/ay) = co(1 — Zr/2ay). The radial wave function is therefore
Rao(r) = coe 7?4 (1 — Zr/2ay). (8.63)

Again, the constant ¢ is determined from the normalization requirement, and it must be emphasized
that the coefficients for different sets of quantum numbers n and ¢ are not related to each other.

For the 2p state (¢ = 1), the polynomial terminates at j,,,, = 0, so H(Zr/ay) = ¢,. The radial
wave function is therefore

Ry, (r) = core_zr/zav. (8.64)
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Table 8.1 Radial Wave Functions of Hydrogenic Atoms
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Continuing this procedure results in the complete set of radial wave functions, some of which are
shown in Table 8.1 and illustrated graphically in Fig. 8.4.

It turns out that the radial wave functions can also be written in terms of a common set of functions
known as the associated Laguerre polynomials L’; (x), which are defined as

dr
P(y) =
L7(x) dxqu(x). (8.65)
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FIGURE 8.4 Radial wave functions for hydrogen energy eigenstates.
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The ordinary Laguerre polynomials L, (x) are defined as
L(x) = e*——(x%™). (8.66)

The Laguerre polynomials Lq(x) are of degree ¢, so the associated Laguerre polynomials L’; (x) are of
degree ¢ — p. Using these defintions, the radial wave functions are

3 1/2 ¢
—€¢—1)!
Ry(r) = —{(22) (n)} ¢ Zrinas <ZZr> L2 (22r /nay) | (8.67)

nay) 2n[(n + €)!]3 nay

The associated Laguerre polynomial Ligl(ZZr/ nay) is a polynomial of degree
(n+¢€) —(2¢+1)=n— € — 1, as expected from the value of j,,, given by Eq. (8.60). Be
aware that there are differing definitions of the Laguerre polynomials, so the expression for the radial
wave function may look different in other texts.

In Chapter 7, we normalized each of the angular wave functions separately, and we do the same
here with the radial function. This isn’t mathematically or physically necessary; it’s just a convenient

way to do it. The radial normalization condition is

/ Pdr[R(r)] = 1. (3.68)
0

which includes the r? term we discussed in Eq. (7.38). The normalization condition in Eq. (8.68) is
what we need to find the ¢, coefficients in Egs. (8.61), (8.63), and (8.64) and was used to normalize the
radial wave functions in Eq. (8.67).

8.5 B THE FULL HYDROGEN WAVE FUNCTIONS

Finally, we’re finished! We’ve solved each of the separated differential equations, we’ve found the
three quantum numbers 7, €, and m for the hydrogen atom, and we’ve found the allowed energies.
We’re now ready to recombine the three separated parts of the wave function to form the full three-
dimensional energy eigenstate wave functions of the hydrogen atom

[n€m) = Y,0,(r.0,0) = Ry(r)Y7(6,0)]|. (8.69)

The full eigenstates for the first few energy levels of a hydrogenic atom are given in Table 8.2; the
radial part comes from Eq. (8.67) and the angular part from Eq. (7.161). These states are also eigen-
states of the angular momentum operators L? and L,. They can be eigenstates of H, L2, and L, simul-
taneously because these three operators commute with each other. The three eigenvalue equations are:

13.6 eV
Hl/’n(m(r’evd)) = _Tewn(m(r’e’ d))

Lzl/jnfm(r’gsd)) = €(€ + 1)ﬁ2¢n(m(ra0’¢) (870)

Lzl/jném(r’e’(b) = mﬁl/jnfm(r’ei ¢)
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Table 8.2 Energy Eigenstate Wave Functions of Hydrogenic Atoms
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The normalization condition for the full wave function is the three-dimensional integral

P32, +2(r 0, ¢’

L = (ntm|ntm) = / e (r-0.0) "V

0 2 T
_ / / / R () [¥"(0.0)# sino 0 dbr.
0 0 0

It is instructive to rewrite Eq. (8.71) to emphasize our choice to normalize the radial and angular parts
of the wave function independently:

o 2 pw
1 = (ntm|ntm) = {/0 r2|Rn€(r)|2dr}{/0 /0 |Y?(0’¢)25m0d0d¢}' (8.72)

=1 =1

(8.71)

We could break this down further into 6 and ¢ pieces, but that step is not generally necessary. Note
again that the r* part of the differential volume element goes with the radial integral.
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The probability density is the absolute square of the wave function, so for an energy eigenstate

P(r,0,) = |Wom(r.0,0)|

, (8.73)
= |Rue(r) YE(0. )"

Multiplying the probability density by the infinitesimal volume element dV = rdrsinfdf d¢ gives
the probability of measuring the electron to be within that volume element:

2(r,0,0)aAV = |,0m(r.0, )| r* drsind do dep

) (8.74)
= |R,(r)Y7(0.)|" r*drsing d dep.
To calculate the probability of finding the electron within some finite volume, we integrate Eq. (8.74)
over that region.

Because the probability density is three dimensional, it is difficult to represent graphically on a
flat piece of paper. We needed three dimensions to properly visualize the two-dimensional spherical
harmonic probability densities, so we would need four dimensions to visualize the three-dimensional
atomic probability density. A variety of different visualization schemes are possible, many aided by
the power of modern computers.

Let’s start with the ground state of the hydrogen atom. The wave function is

Pr00(r,0,¢) = e (8.75)
7703
and the probability density is
2 |
Proo(r,0,9) = [P100(r0,0)|” = —5e 2rfea, (8.76)
may

The dimensions of the probability density are 1/ length® as you would expect for a three-dimensional
density. For the hydrogen ground state, the probability density is independent of the angles 6 and ¢,
which means that the electron cloud around the nucleus is spherically symmetric. The three-dimen-
sional electron probability distribution of the 1s state is illustrated in Fig. 8.5. In Fig. 8.5(a) the three
axes represent physical space and the value of the probability density is represented by a grayscale
(white is high, black is low). Just three parallel planes are shown, allowing us to “peek” at the distribu-
tion. In Fig. 8.5(b), the grayscale density plot in the x-z plane (y = 0) is shown. On a computer, you
can animate the motion of the slicing planes in Fig. 8.5(a) to visualize the full electron cloud, and you
can also use color while you’re at it (see the activity on hydrogen probability densities). Figure 8.6(a)
represents the 1s probability density in the x-z plane using height above the plane as the indicator of
probability density, and Fig. 8.6(b) shows the probability density in a one-dimensional plot as a function
of r, the distance from the nucleus. All of these representations demonstrate that the probability density
for measuring the electron position in the s state is largest at the origin.

Grayscale density plots in the x-z plane for the eigenstates in the first three energy levels of the
hydrogen atom are shown in Fig. 8.7. The density plots for negative values of m are indistinguishable
from those for positive m, so they are not included. In the grayscale plots in Fig. 8.7, we plot the abso-
lute value of the wave function, which is the square root of the probability density, to provide a better
visual representation of the electron distribution. The spatial scales are different for each value of n.
Each plot has a range of —3n’%a to +3n’a, .
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FIGURE 8.5 (a) Two-dimensional slices of the three-dimensional electron distribution of the ground
state of hydrogen. In each slice, the probability density is represented by grayscale (black = 0,
white = maximum). (b) The particular two-dimensional probability density slice aty = 0.
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? (x,0,2)02
0.1

Here are some important features of the radial wave functions and the probability densities.

e All the radial functions have an r* dependence, so the wave function vanishes at the origin

except for the s states (f = O). This is caused by the centrifugal barrier that “repels” the
electron from the nucleus for € = 1, as we saw in the effective potential in Fig. 8.1. For s
states, the probability density at the origin is
1 2
21 R0(0)]

2.(0.0.9) = [,00(0.0.0)|" = [Ro0(0)¥(0. )" =

Lz ) (8.77)
7 \nay )

This nonzero probability density is important because it means that the electron has some finite
probability of being inside the nucleus, which affects the real energy levels when we consider
the nucleus not to be a point particle, as well as some other effects we address in Chapter 12.

P (r0,0)
)
0.3
1s
0.2}
011
r
1 2 3 a
(@ (b)

FIGURE 8.6 Probability density of the ground state of hydrogen (a) represented as the height
above the x-z plane and (b) plotted as a function of radius.
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(3,0,0) (3,1,0) 1,1)  (320) (3,2,1) (3.2,2)

FIGURE 8.7 Grayscale density plots in the x-z plane of the absolute value of the
wave function for hydrogen energy eigenstates |n€m) denoted by the labels above
each plot. The spatial range of each plot is —3n%ay to +3n%aj.

» Each radial wave function R,,(r) has n — € — 1 nodes and n — ¢ antinodes. The particle-
in-a-box energy eigenstates also have more nodes as the energy increases. The hydrogen
radial functions for a given n have fewer nodes for higher ¢ states, but the angular wave func-
tions compensate for that by having more nodes.

« The full wave function has parity (—1)¢ (recall that the parity operation is r — —r). The par-
ity of the wave function derives from the parity of the spherical harmonics, which we noted in
Eq. (7.167). The parity is important later in calculating matrix elements.

* The probability densities are independent of the azimuthal angle ¢, which we have already
seen in Chapter 7 from the nature of the spherical harmonics.

The probability plots we have shown are informative, but ultimately we need to calculate prob-
abilities or expectation values to compare with experiments. These are often done with computers, but
you need to know what to tell the computer to do. Let’s work an example that is analytically tractable.

Example 8.1 Find the probability that the electron in the ground state of hydrogen is measured to
be within one Bohr radius of the nucleus and calculate the expectation value of the radial position r.

The probability is the integral of the probability density over a sphere of radius a,, so we limit
the r integral to r < a and integrate over the full range of 6 and ¢:

Py = / 2(r,0,¢)dV

sphere r<ay

ag 2w T
/ / / ?(r,0,¢) r*sind dd de dr (8.78)
0 0 0
ag 2 T
= / / / IRne(r)Y?(9,¢)|2r2sin0ded¢dr.
0 0 0
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We separate the radial and angular integrals

Ao 2 T
Py = {/ ran((r)|2dr}{/ / |Y’;(0,¢)2sin9ded¢} (8.79)
0 0 0 .

The angular integral is unity because the spherical harmonics are normalized (See! The separate
normalization is useful!), leaving

Ao
Prw = | PIRu (580
0
Now we put in the radial ground state wave function to get

do 3

47
Preay = / 2= el dr, (8.81)

0 a

0
Substituting x = 2Zr/a, and integrating gives
2z |
= 5[(—422 — 47 - 2)e ¥ +2]. (8.82)

2z
1 1
Precay = 2/0 Xe ¥ dy = E(—xz - 2x — 2)e7x
0

For the hydrogen case, Z = 1, and the probability is

Po, =1 —(2+2+1)e?]=1-5¢2
<w=[1-( )e?] ¢ (8.83)
=0.323.

In a set of radial position measurements, 32% of the results will be within one Bohr radius of the
nucleus.
The expectation value of the radius is

(ry = (n€m|r|ntm) = (100|r/100)

:/r‘lpnfm(ria’d))fdv

o 27 T
=/ / / PR () Y"(6,8)|° rsin6 db db dr.
0 0 0

Again, we separate the radial and angular integrals

(r) = {/Owr3|Rn((r)|2dr}{/0277/0#|Yf(O,(b)’zsianGd(f)}. (8.85)

The angular integral is unity and we get

(8.84)

(r) = / P Roe(r) . (8.56)
0
Substituting in the radial ground state wave function, we get

A
(r) = / = e g, (8.87)
0 ag
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FIGURE 8.8 Radial probability integrand for the hydrogen 1s ground state. The hatched
region indicates the probability .-, and the arrow indicates the expectation value <r> .

Substituting x = 2Zr/a, and integrating gives

[

_ % P _ %/ 3 a0 o)
(r) 42/0 x“e*dx 42( X 3x 6x 6)e .
_ 3%
-2z

269

(8.88)

For the hydrogen atom, the mean value of the radius is 3a,/2. The integrand r2|Rn(g(r)|2 of the
integral in Eq. (8.80) is plotted in Fig. 8.8. The hatched area under the curve represents the prob-
ability we calculated above that the electron is measured to be in the region 0 = r = a,. The arrow
indicates the expectation value of the radius, which is beyond the peak because the integrand is

not symmetric.

Expectation values of the radial position are useful for many calculations we will do later. We

quote here without proof the expectation values (n€m|r*|n€m) for different powers:

(r) = Tl = e(e +1)]

ﬁ[Snz +1=3¢0€+1)]

()= s
r a8n3€(€ + %)(f + 1)'

The result in Example 8.1 agrees with the general expression in the first equation above.

(8.89)
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8.6 M SUPERPOSITION STATES

Having solved the energy eigenvalue equation for the hydrogen atom and found the allowed energies
and allowed wave functions, we can now use them to find the time evolution of the atom with arbitary
initial conditons using the Schrodinger time-evolution recipe we developed in Chapter 3. If the atom
starts in one of the energy eigenstates, then the time evolution of the system is

(1)) = (r.0,¢.1) = Ry(r)Y7(0,¢)e ", (8.90)

where E, are the energy eigenvalues given in Eq. (8.39). The wave function acquires an overall time-
dependent phase factor, but that does not affect any measurements we make on the system, so this is a
stationary state, as we have seen in previous chapters.

More interesting time-dependent behavior occurs if the system starts in a superposition of energy
eigenstates. In this case, the time evolution of the wave function is

lg(2)) = v(r,0,¢,1) Ecm () Y70, ) e ", (8.91)

where the expansion coefficients are obtained from the projections of the initial state |/( = 0)) onto
the energy eigenstates

2w
Coom = (n€m|y(0) / / smeda/ dp R ,(r) Y7 (0,6)¥(r.0,4,0). (8.92)

Example 8.2 Find the time evolution of an equal superposition of the 1s ground state and the
2po(m = 0) excited state:

9(0)) = 51100) + 5[210). (8.93)

These states are both energy eigenstates, so the time evolution is obtained by application of the
Schrodinger recipe:

¥(r.0,¢,1) = %z%oo(r,e’d’)e_im/ﬁ + %l/lzlo(r,gy(ﬁ)e_mzt/ﬁ

_ 1 o0 B/ 4 rcost o120 g iEat

2ma’ \Vi ag Say (8.94)

— 1 e*iElt/ﬁ (efr/ao + rcost e*r/ZaOefiw2]t>,

2’7T(18 4\/200
where the Bohr frequency is w,, = (E, — E;) /A. Noting that z = rcosf), we rewrite the wave
function as

1 . z _ )
10,¢,t) = ————¢ L/t (e_’/“" + e_’/z"“e_"“2">, 8.95
¢(r,0,¢.1) - N (8.95)

which emphasizes the z-dependence of the state. The probability amplitude (absolute value of
the wave function) is displayed in Fig. 8.9(a) at time t = 0. The electron cloud is displaced in the
positive z-direction, but as time evolves, animation of Fig. 8.9(a) shows that the cloud moves up
and down along z. This is a model of the oscillating electric dipole moment that is responsible for
the radiation that the atom emits at the Bohr frequency (Problem 8.13).
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(a) (b)

FIGURE 8.9 Probability amplitude (wave function) densities for (a) 1s-2p and
(b) 2s-2p superposition states.

Example 8.3 Find the time evolution of an equal superposition of the 2s excited state and the
2p, (m = 0) excited state:

|¢(0)) = %|200> + %|210>. (8.96)
The time-evolved state is

P(r.0,0,1) = %lﬁzoo(r,gﬁ)e_mﬂ/h + %lﬁzlo(hg,@e_mzt/h

1 rcosf e*r/ZaO e*iEzt/h

ma) 8ag (8.97)

r _ -
)€ r/2aoe iEst/h 4

o=l

1 —

2 7Ta(3) 2a
1 _iE ro\ _ z

— ¢! 2f/ﬁ(<1 _ 7)6‘ rlay 4~ r/ZaO)'

21 /’7TL13 2(10 4(10

In this case, the two states are degenerate in energy and there is no relative time-dependent phase
factor. The probability amplitude (absolute value of the wave function) is displayed in Fig. 8.9(b)
at time t+ = 0. The electron cloud is displaced in the negative z-direction in this case because of the
different radial wave function for the 2s state, and as time evolves, the cloud does not move. This
is a model of a static electric dipole moment that we will use again when we study the response of
the atom to an applied electric field—the Stark effect—in Chapter 10. Such an s-p superposition is
a hybrid orbital that can be used to explain molecular bonding. Two atoms with displaced electron
clouds facing each other reduce the electrostatic repulsion of the positively charged nuclei and
stabilize the system.
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SUMMARY

The radial part of the energy eigenvalue equation contains the crucial physics of the Coulomb interac-
tion that determines the energies of the bound hydrogen atom. Solving the radial differential equation
yields the quantization condition on the energy. The new quantum number is the principal quantum
number n = 1, 2, 3,.... The resultant energies of the hydrogen atom states are

1
E, = ——13.6€V. (8.98)
n
The length scale of the hydrogen atom is set by the Bohr radius

ay = 0.0529 nm. (8.99)

The radial wave functions R,;(r) combine with the spherical harmonics from Chapter 7 to give
the full three-dimensional wave functions of the hydrogen atom

|n€m> = Wnem(”,e,(f’) = Rne(r)YT(e’(b) (8100)

The allowed values of the three quantum numbers are

n=1273,..%
€=012.,n—1 (8.101)
m=—¢—¢+1,.0,..,¢—1,¢

The hydrogen atom states is,,,,,(7,6,¢) are simultaneously eigenstates of the Hamiltonian H, and the
angular momentum operators L? and L_:

Hd’nfm(rve’ ¢) = End’nbn(r’e’ ¢)
de’n(/,m(rvead)) = €(€ + 1)h2¢n€m(r’0’¢) (8102)
Lzl/jn{’m(r’ 6’ d)) = mh‘rbném(r’ 0’ d)) .

PROBLEMS

8.1 Calculate the coefficient ¢, that normalizes the radial wave function R,o(r) in Eq. (8.61) and
confirm the wave function shown in Table 8.1.

8.2 Use the recurrence relation for the radial wave function to construct the n = 3 radial states of
hydrogen. Calculate the normalization constant for the R5,(r) state.

8.3 Use the definition of the radial wave function in terms of the associated Laguerre polynomials
[Eq. (8.67)] to construct the radial wave function Ry, (r).

8.4 Show that the wave functions representing the |[100) and |210) states are orthogonal.

8.5 By direct application of the differential operators, verify that the state |321) = s3,,(r,6, ) is
an eigenstate of H, L?, and L. and determine the corresponding eigenvalues.

8.6 Calculate the probability that the electron is measured to be within one Bohr radius of the
nucleus for the n = 2 states of hydrogen. Discuss the differences between the results for the
¢ = 0and ¢ = 1 states.
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Calculate the probability that the electron is measured to be in the classically forbidden region
for the n = 2 states of hydrogen. Discuss the differences between the results for the ¢ = 0 and
{ = 1 states.

Calculate by direct integration the expectation values (r*) and (1/r) of the radial position for
the ground state of hydrogen. Compare your results to the quoted expressions in Eq. (8.89)
and discuss your results. Did you expect that (1/r) # 1/(r)? Use your result for {1/r) to
find the expectation value of the kinetic energy of the ground state of hydrogen and discuss
your result.

Calculate by direct integration the expectation value of the radial position for each of the
n = 3 states of hydrogen. Compare your results to the quoted expression in Eq. (8.89) and
discuss your results.

Calculate the probability that the electron in the ground state of a hydrogenic atom of nuclear
charge Z is measured to be inside the nucleus. A nucleus with A nucleons (Z protons and
A—Z neutrons) has an approximate radius of » = (1.2 X 107> m)A'/3. Calculate the prob-
abilities for hydrogen and uranium-238.

Tritium is an isotope of hydrogen, with a nucleus comprising one proton and two neutrons. The
tritium nucleus (triton) is radioactive, decaying by beta (electron) emission to the helium-3
nucleus comprising two protons and one neutron. An electron is initially in the ground state of
a tritium atom. After the instantaneous beta decay, what is the probability that the electron is in
the ground state of the new atom?

Find the ground state energy, the effective Bohr radius [using Eq. (8.8)], and the Lyman-alpha
wavelength of the following hydrogenic systems:

a) deuterium: electron and nucleus with one proton and one neutron

b) positive helium ion: *He™

¢) positronium: electron (¢ = —e, m = m,) and positron (¢ = +e, m = m,)
d) muonium: electron and antimuon (g = +e, m = m, = 207m,)

e) muonic hydrogen: muon and proton

f) hydrogen-like uranium: >3¢°!*

Consider the one-dimensional probability density ?(z) along the z-axis obtained by integrating
over a plane perpendicular to the z-axis, either in Cartesian coordinates

P(z) = / / e oy 2) 2y

or in cylindrical coordinates

2 ©
7’(2)—/0 /Oltﬂnem(p,¢,Z)zpdpd¢-

Calculate this probability density for the superposition states |¢;) = (]100) + [210))/V2
and [if,) = (]200) + [210))/ V2. Use these probability densities to find the expectation
value of the electric dipole moment d = gr and verify that the moments for these two states
are oppositely oriented as indicated by Fig. 8.9. Plot and animate the probability densities to
verify that one state is oscillating and one state is static.
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8.14 A hydrogen atom is initially in the superposition state

8.15

(0)) = =l211) — A32,-1) + J5]422).

a) What are the possible results of a measurement of the energy and with what probabilities
would they occur? Plot a histogram of the measurement results. Calculate the expectation
value of the energy.

b) What are the possible results of a measurement of the angular momentum operator L? and
with what probabilities would they occur? Plot a histogram of the measurement results.
Calculate the expectation value of L2,

¢) What are the possible results of a measurement of the angular momentum component oper-
ator L, and with what probabilities would they occur? Plot a histogram of the measurement
results. Calculate the expectation value of L, .

d) How do the answers to (a), (b), and (c) depend upon time?

Consider a particle of mass m bound in an infinite square potential energy well in three
dimensions:
0, 0<x<LO<y<LO<z<L
V(z) = :
o0, otherwise.

Use separation of variables in Cartesian coordinates to find the energy eigenvalues and eigen-
states of this particle in a cubical box. Find the degeneracy of the first 6 energy levels.

RESOURCES

Activities

These activities are available at

www.physics.oregonstate.edu/qmactivities

Radial Wavefunctions: Students visualize the radial part of the probability density of the hydrogen
atom.

Hydrogen Probability Densities: Students visualize the probability density of the electron in the
hydrogen atom.

Further Reading

High resolution spectroscopy of the hydrogen atom is discussed in this article:

T. W. Hénsch, A. L. Schawlow, and G. W. Series, “The spectrum of atomic hydrogen,”

Scientific American, 240(3), 94-110 (1979).


www.physics.oregonstate.edu/qmactivities

CHAPTER

Harmonic Oscillator

In the last four chapters, you have learned the tools for analyzing the motion of particles in quantum
mechanics. You applied these tools to three important problems: (1) a particle bound in an infinite
square potential energy well in one dimension, (2) a free particle in one dimension, and (3) the hydro-
gen atom in three dimensions. In this chapter we will solve another system with bound states in a one-
dimensional potential energy well: the harmonic oscillator. This system resembles the infinite square
well or particle-in-a-box system—the harmonic oscillator box just has a different shape. To solve the
harmonic oscillator problem, we introduce a new method and some new tools in the process. Then we
use the solutions to the harmonic oscillator problem as a means to review the fundamental tools and
concepts of quantum mechanics.

9.1 M CLASSICAL HARMONIC OSCILLATOR

Let’s first review the classical harmonic oscillator before we study the quantum mechanical case. A
prototypical classical harmonic oscillator system is a mass m connected to a spring that is fixed to a
wall at its other end. The spring force is governed by Hooke’s law, which says that the force F is a
restoring force and is proportional to the displacement x of the mass from equilibrium:

F = —kx, O.1)

where k is the spring constant. This linear restoring force is derivable from the quadratic potential
energy function V(x) = Skx?.

The beauty of the mass-on-a-spring system is that it is a model for many other systems in nature
that behave as harmonic oscillators. To see why this is so, consider the generic potential energy curve
shown in Fig. 9.1. We are typically interested in finding the motion in the ground state or other low
energy states of the system. As the dashed line suggests, near the minimum at x, of the potential
energy function that governs the system, the potential energy has the shape of a parabola, (i.e., it looks
like a harmonic oscillator). This parabolic shape is also evident if we consider a Taylor series expan-
sion of the function about the minimum:

Vi —x0) = Vo) + (- x) Y] 4 LY

— + ... 9.2)
dx X=X 2 d‘x2 X=X

The leading term in Eq. (9.2) is the quadratic term because the first two terms are zero: (1) the
potential energy offset V(xy) can be defined to be to zero because a constant potential energy
does not affect the motion, and (2) the linear term is zero because the potential derivative

275
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(i.e., slope) is zero at the minimum. Hence the motion of the system is that of a harmonic oscilla-
tor in the vicinity of the potential energy minimum, and we identify the spring constant k as the
second derivative of the potential energy evaluated at the minimum x,. If the motion takes the
system too far from the minimum, the shape may deviate slightly from a parabola, and the motion
will be altered, but we still find it useful to start by considering the motion as harmonic and then
asking how that motion is perturbed. For these reasons, you will study harmonic oscillators as
long as you do physics.
The motion of the classical harmonic oscillator is solved by using Newton’s second law:

F = ma
d* 9.3
k= m % 93)
dt
It is convenient to define a new constant
k
W= ] 9.4)
m
and rewrite the equation of motion as
d’x 5
— = —wx(1). 9.5
e (1) 9.5)

This is a standard differential equation that you have likely encountered many times before. The
solution is the sinusoidal function

x(¢) = Acos (wt + ¢), (9.6)

where the amplitude A and phase constant ¢ are determined by the initial state of the motion of the
system. The motion is characterized by a single angular frequency (i.e., a single harmonic—hence the
name) given by w.

V(x)

FIGURE 9.1 A general potential energy function (solid)
is approximated by a quadratic harmonic potential (dashed)
in the vicinity of the potential minimum.
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9.2 @ QUANTUM MECHANICAL HARMONIC OSCILLATOR

The procedure for finding the quantum mechanical Hamiltonian of any system is to first find the clas-
sical energy and then rewrite that in terms of quantum mechanical operators. The potential energy of
the harmonic oscillator is

V(x) = kx?. 9.7)

The total mechanical energy of the system is the sum of kinetic and potential energies:

»?

E ="+ jkx’. 9.8

om 2 9.8)

The oscillator frequency w plays an important role in quantum mechanics, so it is common to rewrite

the potential energy using w in place of k. From Eq. (9.4) we have k = mw?’, so that the quantum
mechanical Hamiltonian for the harmonic oscillator is

I;2
H= —+ ITmw’z?|. 9.9)

We denote the operators X and p with carets to distinguish them from the variables x and p, but we
often don’t use the caret notation if there is no ambiguity.

As always, our goal when presented with a new potential energy system is to solve the energy
eigenvalue equation H|E) = E|E) to find the allowed energies in the system. Then we use the energy
eigenstates as the preferred basis to apply the recipe for Schrodinger time evolution. In the previous
potential energy well problems, the square wells and the hydrogen atom, we expressed the energy
eigenvalue equation H|E) = E|E) as a differential equation in the wave function picture (i.e., the posi-
tion representation). For the harmonic oscillator, the energy eigenvalue differential equation is

72 d*ep(x) 1
—%7 + EmwzxzquE(x) = E(,DE(X). (9.10)

We can solve Eq. (9.10) using a power series solution, similar to the approach taken in the hydrogen
atom solutions in Chapters 7 and 8. Rather than do that here, we present a new method of solution that
is more elegant and is known as the operator method or the algebraic method. Of course, we get the
same results either way.

If you haven’t seen it before, the operator method for solving the quantum mechanical harmonic
oscillator problem appears to be magic. We arrive at the solution by defining some new quantities that
you would not imagine would be useful and by using minimal information about what how the opera-
tors X and p behave. This operator method is also useful in describing angular momentum, and it is the
basis of quantum field theory.

To make this discussion of the operator solution to the harmonic oscillator problem clearer, let’s
go ahead and present the energy spectrum answer to the problem. As we discussed in Chapter 5, the
solutions to bound state problems in different quantum mechanical systems share many features. The
bound states in a potential energy well are discrete, with the ground state near, but not at, the bottom
of the well. The positions of the energy levels depend upon the shape of the well. In the case of the
infinite square well that we studied in Chapter 5, the energy levels scale with n%, where n is the quan-
tum number labeling the energy levels n = 1, 2, 3, ... . Hence the energy level spacing in the infinite
square well increases as n increases, as shown in Fig. 9.2(a). The hydrogen atom that we studied in
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FIGURE 9.2 Spectra of energy eigenstates in (a) the infinite square well, (b) the hydrogen atom,
and (c) the harmonic oscillator well.

Chapter 8 has energy levels that scale as 1/n? and so they get closer together as 7 increases, as shown
in Fig. 9.2(b). The harmonic oscillator has a special potential energy well shape that gives rise to
energy levels that scale linearly with n and hence are evenly spaced, as shown in Fig. 9.2(c). The
energy eigenvalues of the harmonic oscillator are

E,=ho(n+%), n=0123,.. (9.11)

The convention is to label the ground state of the 