7.35 is nothing more than a definition of spherical coordinates. ⎧ x = r sinθ cosϕ ⎪ ⎨ y = r sinθ sinϕ ⎪ ⎩ z = r cosθ 7.47 is the set of algebraic conditions expressed by the vector definition 𝐋 = 𝐫 × 𝐩. ⎧ L̂𝓍 = yp𝓏 - zp𝓎 = -ιħ (y ∂͟_ - z ∂͟_ ) ⎪ ∂y ∂y ⎪ ⎨ L̂𝓎 = zp𝓍 - xp𝓏 = -ιħ (z ∂͟_ - x ∂͟_ ) ⎪ ∂y ∂y ⎪ ⎪ L̂𝓏 = xp𝓎 - yp𝓍 = -ιħ (x ∂͟_ - y ∂͟_ ) ⎩ ∂y ∂y Substituing 7.35 into 7.47, ⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ ) ⎪ ∂y ∂y ⎪ ⎨ L̂𝓎 = -ιħ (r cosθ ∂͟_ - r sinθ cosϕ ∂͟_ ) ⎪ ∂y ∂y ⎪ ⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ ) ⎩ ∂y ∂y ⎧ L̂𝓍 = -ιħ (r sinθ sinϕ ∂͟_ - r cosθ ∂͟_ ) ⎪ ∂y ∂y ⎪ ⎨ L̂𝓎 = ιħ (r cosθ ∂͟_ + r sinθ cosϕ ∂͟_ ) ⎪ ∂y ∂y ⎪ ⎪ L̂𝓏 = -ιħ (r sinθ cosϕ ∂͟_ - r sinθ sinϕ ∂͟_ ) ⎩ ∂y ∂y