Bound states of a central potential ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ For any central potential V(r) = V(│r│) the eigenfunctions of H can be separated as ❬r❙E,l,mₗ❭ = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,ϕ) The radial S.E. is ⎡−͟ħ͟² ⎛ ∂͟²͟ + 2͟∂͟ ⎞ + l͟(l͟+͟1͟)ħ͟² + V(│r│) ⎤ Rₑ﹐ₗ(r) = E Rₑ﹐ₗ(r) ⎣2m ⎝ ∂r² r∂r ⎠ 2 m r² ⎦ Rₑ﹐ₗ(r) = U͟ₑ͟﹐͟ₗ͟(r) r (pic) ... (pic) Developed radial schrodinger equation using U(r) replacement - Developed normalization condition If V(r) is not more singular at the origin than 1/r^2 then the SE has power series solutions. Thus for small r we take U(r) → rˢ (pic) substitute U(r) = rˢ into S.E. -ħ²/2m [(s(s-1) + l(l+1)] + V r² = E r² For r → 0 r² → 0 V(r) r² → 0 ⇒ s(s-1) + l(l+1) = 0 ⇒ s = l+1 or s = -l If s = -l, the normalization conditions ∞ │∞ ∫ r⁻²ˡ dr = 1/(2l-1) 1/(r²ˡ⁻¹) │ → diverges 0 │0 Uₑ﹐ₗ(r) → (r→0) → rˡ⁺¹ Rₑ﹐ₗ(r) → (r→0) → rˡ The Hydrogen Atom ━━━━━━━━━━━━━━━━━ V(r) = -e²/r For a hydrogenic ion with nuclear charge Z V(r) = -Ze²/r Eigenfunctions: Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ/r Yₗ﹐ₘ(θ,φ)