reestablish fundamental brakets spin Z operators raising/lowering operators (lowering erased before pic) commutations relations (erased before pic) Now setup a two-spin system (pic) Look at general operator expressions ?? in different spaces ?? Take direct product of A and B (pic) Developed 𝐒 using raising lowering operators (pic: last y should be an x) Proved this. (pic x2) Still missing a 1/2 somewhere! But moving on to see proper solutions of direct product. Eigenvalues are 𝐒² = ħ² S(S+1) = ⎧ 2ħ² ⎨ ⎩ 0ħ² 𝐒 = ⎧ 1 (3 eigenstates) ⎨ ⎩ 0 (1 eigenstate) (pic) Plugging back to direct product matrix (pic) FOUND PROBLEM of -1/2 from the up/down raising/lowering operator interactions (pic) finished diagonalizing operator product