Two Spin-½ Particles ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ uncoupled basis ─────────────── ❙s₁ s₂ m₁ m₂❭ ❙+ +❭, ❙- -❭, ❙+ -❭, ❙- +❭ coupled basis ───────────── ❙S Mₛ❭ ❙1 1❭, ❙1 -1❭, ❙1 0❭, ❙0 0❭ Given the state ❙1 0❭ = 1/√2(❙+ -❭ + ❙- +❭) : P₁₂❙1 0❭ = ❙1 0❭ (symmetric) ❙0 0❭ = 1/√2(❙+ -❭ - ❙- +❭) : P₁₂❙0 0❭ = -❙0 0❭ (antisymmetric) Spatial Representation ────────────────────────────────────────────────────────────────────────── ❙Ψ❭ = ❙Ψₛₚₐₜᵢₐₗ❭❙Ψₛₚᵢₙ❭ Symmetric: ❙Ψ❭ˢ = ❙Ψₛₚₐₜᵢₐₗ❭ˢ❙Ψₛₚᵢₙ❭ˢ OR ❙Ψₛₚₐₜᵢₐₗ❭ᴬ❙Ψₛₚᵢₙ❭ᴬ Antisymmetric: ❙Ψ❭ᴬ = ❙Ψₛₚₐₜᵢₐₗ❭ᴬ❙Ψₛₚᵢₙ❭ˢ OR ❙Ψₛₚₐₜᵢₐₗ❭ˢ❙Ψₛₚᵢₙ❭ᴬ Helium Atom ────────────────────────────────────────────────────────────────────────── Fermions, so overall must be antisymmetric Configuration Term Energy 1s² 1s 0 ❙Ψ❭ = 1/√2 (❙a❭₁ₛ❙b❭₁ₛ + ❙b❭₁ₛ❙a❭₁ₛ)❙0 0❭ 1s²s 3s 1.46 ❙Ψ❭ = 1/√2(❙a❭₁ₛ❙b❭₁ₛ - ❙b❭₁ₛ❙a❭₁ₛ)❙1 m❭, m=-1,0,1 1s2s 1s 1.52 ❙Ψ❭ = 1/√2 (❙a❭₁ₛ❙b❭₁ₛ + ❙b❭₁ₛ❙a❭₁ₛ)❙0 0❭ 1s2p 3pᵒ ~1.60 ❙Ψ❭ = 1√2 1s²p 1pᵒ ~1.65