Rotational Invariance 𝐩² and 𝐫 are invariant under rotation. Consider RΜ‚(dΟ• kΜ‚) = 1 - ΞΉ/Δ§ L̂𝓏 dΟ• ❙x - ydΟ•,y + xdΟ•,z❭ = ❙x,y,z❭ + βˆ‚/βˆ‚x ❙ ❭ dΟ• + βˆ‚/βˆ‚y ❙ ❭ dΟ• = [1 - ΞΉ/Δ§ p𝓍 (-ydΟ•)][1 - ΞΉ/Δ§ pπ“Ž (xdΟ•)] ❙x,y,z❭ = [1 - ΞΉ/Δ§ (x pπ“Ž - y p𝓍)dΟ•] ❙x,y,z❭ (x pπ“Ž - y p𝓍) ≝ L̂𝓏 (angular momentum in z axis) L̂𝓏 is the z component of LΜ‚ = 𝐫×𝐩̂ Commutation: [L̂𝓏,p̂𝓏] = [x pπ“Ž - y p𝓍,p𝓏] = (xpπ“Žp𝓍 - yp𝓍p𝓍) - (p𝓍xpπ“Ž - p𝓍yp𝓍) = [x,p𝓍]pπ“Ž - [y,p𝓍]p𝓍 = [x,p𝓍]pπ“Ž = ΞΉΔ§pπ“Ž ↓ 0 [L̂𝓏,p̂𝓍] = ΞΉΔ§pΜ‚π“Ž [L̂𝓏,pΜ‚π“Ž] = -ΞΉΔ§pΜ‚π“Ž [L̂𝓏,p̂𝓏] = 0 [L̂𝓏,pΜ‚Β²] = 0 i.e. the kinetic energy commutes with the L̂𝓏, so one can measure angular momentum and kinetic energy without disturbing the other. Proof: [L̂𝓏,pΜ‚Β²] = [L̂𝓏,p̂𝓍² + pΜ‚π“ŽΒ² + p̂𝓏²] = [L̂𝓏,p̂𝓍²] + [L̂𝓏,pΜ‚π“ŽΒ²] + [L̂𝓏,p̂𝓏²] = p̂𝓍[L̂𝓏,p̂𝓍] + [L̂𝓏,p̂𝓍]p̂𝓍 + pΜ‚π“Ž[L̂𝓏,pΜ‚π“Ž] + [L̂𝓏,pΜ‚π“Ž]pΜ‚π“Ž + p̂𝓏[L̂𝓏,p̂𝓏] + [L̂𝓏,p̂𝓏]p̂𝓏 noteΒΉ = ΞΉΔ§p̂𝓍pΜ‚π“Ž + ΞΉΔ§pΜ‚π“Žp̂𝓍 - ΞΉΔ§pΜ‚π“Žp̂𝓍 - ΞΉΔ§p̂𝓍pΜ‚π“Ž = 0 [L̂𝓏,rΜ‚Β²] = 0 (homework) β†’ [L̂𝓏,1/rΒ²] = 0 β†’ [L̂𝓏,V(β”‚rβ”‚)] = 0 So, [L̂𝓏,HΜ‚] = 0. L̂𝓏 is therefore a constant of motion (time-independent) - Must do work to change? [LΜ‚Β²,HΜ‚] = 0, so LΜ‚Β² is also a constant of motion. noteΒΉ [L̂𝓏,p̂𝓍²] = [L̂𝓏,p̂𝓍 p̂𝓍] = L̂𝓏 p̂𝓍 p̂𝓍 - p̂𝓍 p̂𝓍 L̂𝓏 = ? = p̂𝓍[L̂𝓏,p̂𝓍] + [L̂𝓏,p̂𝓍]p̂𝓍 = (p̂𝓍 L̂𝓏 p̂𝓍 - p̂𝓍 p̂𝓍 L̂𝓏) + (L̂𝓏 p̂𝓍 p̂𝓍 - p̂𝓍 L̂𝓏 p̂𝓍) = L̂𝓏 p̂𝓍 p̂𝓍 - p̂𝓍 p̂𝓍 L̂𝓏 βœ“ = [L̂𝓏,p̂𝓍²] = [L̂𝓏,p̂𝓍 p̂𝓍]