diff --git a/lecture_notes/3-14/3d eigenstates b/lecture_notes/3-14/3d eigenstates index b95912e..9f1a0b5 100644 --- a/lecture_notes/3-14/3d eigenstates +++ b/lecture_notes/3-14/3d eigenstates @@ -27,3 +27,35 @@ Understanding a System: Ĥ must now include angular momentum L̂²= (r̂×p̂)(r̂×p̂) = (geometric identity) = r̂²p̂ - (r̂⋅p̂) + ιħr̂⋅p̂ + + ❬r❙r̂²p̂²❙Ψ❭ = r² ❬r❙p̂²❙Ψ❭ + + r̂² p̂² = L̂² + (r̂⋅p̂)² - ιħ r̂⋅p̂ + + ❬r❙p̂²❙Ψ❭ = 1/r² ❬r❙L̂² + (r̂⋅p̂)² - ιħ r̂⋅p̂❙Ψ❭ + + ❬r❙L̂²❙Ψ❭ + + + ❬r❙r̂²⋅p̂²❙Ψ❭ = r ⋅ ħ/ι ∇ ❬r❙Ψ❭ = ħ/ι r ∂/∂r ❬r❙Ψ❭ + + + ❬r❙(r̂⋅p̂)²❙Ψ❭ = ❬r❙(r̂⋅p̂)(r̂⋅p̂)❙Ψ❭ + = r ħ/ι ∂/∂r ❬r❙r̂⋅p̂❙Ψ❭ + = -ħ² r ∂/∂r (r ∂/∂r) ❬r❙Ψ❭ + + 1/2m ❬r❙p̂²❙Ψ❭ = -ħ/2m r/r² ∂/∂r r ∂/∂r ❬r❙Ψ❭ + 1/(2mr²) ❬r❙L²❙Ψ❭ + = -ħ²/2m (∂²/∂r² + 2/r ∂/∂r) ❬r❙Ψ❭ + 1/(2mr²) ❬r❙L̂²❙Ψ❭ + | ↓ | | ↓ | + linear energy rotational energy + + Hamiltonian can now be written + + Ĥ = -ħ²/2m (∂²/∂r² + 2/r ∂/∂r) + L̂²/(2mr²) + V(│r│) + + With the eigenvalue equation + + ❬r❙E,l,mₗ❭ = E❬r❙E,l,mₗ❭ + + +