mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-10-31 22:58:05 +00:00 
			
		
		
		
	added 3-28 lecture
This commit is contained in:
		
							parent
							
								
									5c2846e8ba
								
							
						
					
					
						commit
						ccbccc5262
					
				| @ -1 +0,0 @@ | ||||
| Developed Theory for The Hydrogen Atom | ||||
| @ -1,43 +1,17 @@ | ||||
| Theory of the Hydrogen Atom | ||||
| ━━━━━━━━━━━━━━━━━━━━━━━━━━━━ | ||||
|     V(𝐫) = -e²/r | ||||
| 
 | ||||
|     For any hydrogenic ion with nuclear charge Z | ||||
|         V(𝐫) = -Ze²/r | ||||
| 
 | ||||
|     Eigenfunctions in spherical coordinates: | ||||
| 
 | ||||
|         Ψₑ﹐ₗ﹐ₘ(r,θ,φ) = Rₑ﹐ₗ(r) Yₗ﹐ₘ(θ,φ) = Uₑ﹐ₗ/r Yₗ﹐ₘ(θ,φ) | ||||
| 
 | ||||
|     Derived from first principles the wave equation of an electron in the | ||||
|     hydrogen atom. | ||||
| 
 | ||||
|         - Start with Dirac Notation | ||||
|         - Replace with known general functions | ||||
|         - transform to eigenvalue equation in position space | ||||
|         - replace pieces with function F and find derivatives | ||||
|             F = ∑ Cₖρᵏ | ||||
| 
 | ||||
|         pic 3 first take had factors that needed to be fixed | ||||
| 
 | ||||
|         - Led to the Laguerre Polynomials | ||||
|             These are infinite, though, so | ||||
|         - Force Laguerre Polynomial solutions to truncate | ||||
| 
 | ||||
| Derivation | ||||
| ━━━━━━━━━━ | ||||
| Derivation of Electron States in Hydrogen Atom | ||||
| ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ | ||||
|     The Hydrogen atom follows the central potential development from the | ||||
|     previous lecture.  | ||||
|      | ||||
|     ❬r,θ,φ❙Ψ❭ = R(r)ₑ,ₗ yₗ﹐ₘ(θ,φ) | ||||
|     ❬r,θ,φ❙Ψ❭ = R(r)ₑ,ₗ yₗₘ(θ,φ) | ||||
| 
 | ||||
|     Rₑ﹐ₗ(r) = Uₑ﹐ₗ(r) /r | ||||
|                  | ||||
|     ρ ≡ √⎛8͟m͟ │E│⎞r | ||||
|          ⎝ ħ²   ⎠  | ||||
| 
 | ||||
|     λ = Z͟e͟² √⎛_͟m͟_͟ ⎞ | ||||
|          ħ   ⎝2│E│⎠ | ||||
|         Rₑₗ(r) = Uₑₗ(r) /r | ||||
|                      | ||||
|         ρ ≡ √⎛8͟m͟ │E│⎞r | ||||
|              ⎝ ħ²   ⎠  | ||||
|      | ||||
|         λ = Z͟e͟² √⎛_͟m͟_͟ ⎞ | ||||
|              ħ   ⎝2│E│⎠ | ||||
| 
 | ||||
|     d͟²͟ U - 1͟ l(l+1) + ⎛λ͟ - 1͟⎞U = 0 | ||||
|     dρ²    ρ²         ⎝ρ   4⎠ | ||||
| @ -56,31 +30,35 @@ Derivation | ||||
|             U(ρ) = A exp(-ρ/2) + B exp(ρ/2) = A exp(-ρ/2) | ||||
|                                 (ρ→∞, B=0) | ||||
| 
 | ||||
|             U(ρ) = ρˡ⁺¹ exp(-ρ/2) Fₑ﹐ₗ(ρ) | ||||
|             U(ρ) = ρˡ⁺¹ exp(-ρ/2) Fₑₗ(ρ) | ||||
| 
 | ||||
|             d͟ U = (l+1)ρˡ exp(-ρ/2) Fₑ﹐ₗ(ρ) | ||||
|             d͟ U =  (l+1)ρˡ exp(-ρ/2) Fₑₗ(ρ) | ||||
|             dρ | ||||
|                         -½ ρˡ⁺¹ exp(-ρ/2) Fₑ﹐ₗ(ρ) | ||||
| 
 | ||||
|                             + ρˡ⁺¹ exp(-ρ/2) d͟ Fₑ﹐ₗ(ρ) | ||||
|                                              dρ | ||||
|                    -½ ρˡ⁺¹ exp(-ρ/2) Fₑₗ(ρ) | ||||
| 
 | ||||
| 
 | ||||
|                    + ρˡ⁺¹ exp(-ρ/2) d͟ Fₑₗ(ρ) | ||||
|                                     dρ | ||||
| 
 | ||||
|             d͟ U = ⎛l͟+͟1͟ - 1͟ ⎞ U + ρˡ⁺¹ exp(-ρ/2) d͟ F(ρ) | ||||
|             dρ    ⎝ ρ    2 ⎠                    dρ | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|             d͟²͟ U = -(l͟+͟1͟) U + ⎛l͟+͟1͟ - 1͟⎞² U  | ||||
|             dρ²       ρ²      ⎝ ρ    2⎠ | ||||
|                         + 2⎛l͟+͟1͟ - 1͟⎞ρˡ⁺¹ exp(-ρ/2) d͟F͟ | ||||
|                            ⎝ ρ    2⎠               dρ | ||||
|                                + ρˡ⁺¹ exp(-ρ/2) d͟²͟ F(ρ) | ||||
|                                                 dρ² | ||||
|             d͟²͟ U =  -(l͟+͟1͟) U + ⎛l͟+͟1͟ - 1͟⎞² U  | ||||
|             dρ²        ρ²      ⎝ ρ    2⎠ | ||||
| 
 | ||||
|                     + 2⎛l͟+͟1͟ - 1͟⎞ρˡ⁺¹ exp(-ρ/2) d͟F͟ | ||||
|                        ⎝ ρ    2⎠               dρ | ||||
| 
 | ||||
|                     + ρˡ⁺¹ exp(-ρ/2) d͟²͟ F(ρ) | ||||
|                                      dρ² | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|     ⎡−͟ħ͟² d² +  l͟  (l+1)ħ² - Z͟e͟²⎤Uₑ﹐ₗ(r) = E Uₑ﹐ₗ(r) | ||||
|     ⎡−͟ħ͟² d² +  l͟  (l+1)ħ² - Z͟e͟²⎤Uₑₗ(r) = E Uₑₗ(r) | ||||
|     ⎣2m  dr²  2mr²           r ⎦ | ||||
| 
 | ||||
|     ρ = √⎛8͟m͟ │E│⎞r | ||||
|  | ||||
| @ -1 +1,32 @@ | ||||
| Developed Theory for The Hydrogen Atom | ||||
| 
 | ||||
|                       Theory of the Hydrogen Atom | ||||
| ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ | ||||
|     For any hydrogenic ion with nuclear charge Z | ||||
|         V(𝐫) = -Ze²/r | ||||
| 
 | ||||
|     V(𝐫) = -e²/r | ||||
| 
 | ||||
|     Eigenfunctions in spherical coordinates: | ||||
| 
 | ||||
|         Ψₑₗₘ(r,θ,φ) = Rₑₗ(r) Yₗₘ(θ,φ) = Uₑₗ/r Yₗₘ(θ,φ) | ||||
| 
 | ||||
|     Derived from first principles the wave equation of an electron | ||||
|     in the hydrogen atom. | ||||
| 
 | ||||
|         - Start with Dirac Notation | ||||
| 
 | ||||
|         - transform to eigenvalue equation in position space | ||||
|             Replace with known special quantities | ||||
| 
 | ||||
|         - replace pieces with function F and find derivatives | ||||
|             F = ∑ Cₖρᵏ | ||||
| 
 | ||||
|         pic 3 first take had factors that needed to be fixed | ||||
| 
 | ||||
|         - Led to the Laguerre Polynomials | ||||
|             These are infinite, though, so | ||||
|              | ||||
|         - Force Laguerre Polynomial solutions to truncate | ||||
| 
 | ||||
| 
 | ||||
|  | ||||
							
								
								
									
										2672
									
								
								lecture_notes/3-28/overview.ps
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2672
									
								
								lecture_notes/3-28/overview.ps
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										27
									
								
								lecture_notes/3-28/overview.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										27
									
								
								lecture_notes/3-28/overview.txt
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,27 @@ | ||||
| Developed Theory for The Hydrogen Atom | ||||
| 
 | ||||
|     Theory of the Hydrogen Atom | ||||
|     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━ | ||||
|         For any hydrogenic ion with nuclear charge Z | ||||
|             V(𝐫) = -Ze²/r | ||||
|      | ||||
|         V(𝐫) = -e²/r | ||||
|      | ||||
|         Eigenfunctions in spherical coordinates: | ||||
|      | ||||
|             Ψₑₗₘ(r,θ,φ) = Rₑₗ(r) Yₗₘ(θ,φ) = Uₑₗ/r Yₗₘ(θ,φ) | ||||
|      | ||||
|         Derived from first principles the wave equation of an electron in the | ||||
|         hydrogen atom. | ||||
|      | ||||
|             - Start with Dirac Notation | ||||
|             - Replace with known general functions | ||||
|             - transform to eigenvalue equation in position space | ||||
|             - replace pieces with function F and find derivatives | ||||
|                 F = ∑ Cₖρᵏ | ||||
|      | ||||
|             pic 3 first take had factors that needed to be fixed | ||||
|      | ||||
|             - Led to the Laguerre Polynomials | ||||
|                 These are infinite, though, so | ||||
|             - Force Laguerre Polynomial solutions to truncate | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user