mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-05 02:05:06 +00:00
added angular momentum operators and hydrogen atom basics
This commit is contained in:
parent
ee1d74198b
commit
890066b88f
10
HW
Normal file
10
HW
Normal file
@ -0,0 +1,10 @@
|
||||
Quantum Mechanics Assignments
|
||||
|
||||
Chap 2: 2, 3, 14, 15, 17, 22, 23
|
||||
|
||||
Chap 5: 2, 6, 8, 12, in-class assignment
|
||||
|
||||
Chap 9: 7, 11, 12, 13, 14
|
||||
|
||||
Chap 7: 7, 8, one from last class, 11
|
||||
due friday 3-18
|
@ -56,6 +56,3 @@ Understanding a System:
|
||||
With the eigenvalue equation
|
||||
|
||||
❬r❙E,l,mₗ❭ = E❬r❙E,l,mₗ❭
|
||||
|
||||
|
||||
|
||||
|
@ -1,4 +0,0 @@
|
||||
[L̂𝓏,p̂𝓏] = ιħp̂𝓎
|
||||
[L̂𝓏,p̂𝓍] = -ιħp̂𝓎
|
||||
[L̂𝓏,p̂𝓏] = 0
|
||||
[L̂𝓏,p̂²] =
|
20
lecture_notes/3-16/hydrogen atom
Normal file
20
lecture_notes/3-16/hydrogen atom
Normal file
@ -0,0 +1,20 @@
|
||||
V = E͟_͟Z͟ (?)
|
||||
r
|
||||
❬r❙E,l,mₗ❭ ≝ R(𝐫) ≝ U͟(𝐫͟)
|
||||
r
|
||||
|
||||
∂²/∂r² (u/r) + 2/r ∂/∂r U/r
|
||||
= ∂/∂r (1/r (∂/∂r u) - u/r²) + 2/r ((1/r ∂/∂r u) - u/r²)
|
||||
|
||||
= 1/r (∂²/∂r² u) - 2/r^2 ∂/∂r u + 2 u/r³ + 2/r² ∂/∂r u - 2u/r³
|
||||
|
||||
= 1/r (∂²/∂r² u)
|
||||
|
||||
|
||||
So,
|
||||
|
||||
(-ħ/2m ∂²/∂r² + Veff(│r│)) = V(│r│) + l͟(l͟+͟1͟)ħ͟²͟
|
||||
2mr²
|
||||
| ↓ |
|
||||
Centrifugal
|
||||
barrier
|
43
lecture_notes/3-18/overview
Normal file
43
lecture_notes/3-18/overview
Normal file
@ -0,0 +1,43 @@
|
||||
Vibrations and rotations of a diatomic molecule
|
||||
|
||||
atoms vibrate about an equilibrium position r₀
|
||||
|
||||
⊙~~~~~~~~~⊙
|
||||
|← r₀ →|
|
||||
|
||||
(pic MISSEd) potential, with taylor approximation
|
||||
|
||||
(pic MISSEd) A taylor series solution is appropriate to solve this diffEQ.
|
||||
|
||||
Experiments indicate vibration (E~visible light) has more energy than rotation (E~infrared), so vibrations happen much faster.
|
||||
|
||||
The Rotational eigen-value spectrum
|
||||
|
||||
L²,L̂𝓍,L̂𝓎,L̂𝓏 (Hermition operators)
|
||||
|
||||
Say
|
||||
L̂𝓏❙Ψ❭ = mₗħ❙Ψ❭
|
||||
|
||||
(pic) mₗ is bound by λ: m has value from -λ to λ
|
||||
|
||||
|
||||
Introduced raising and lower operators
|
||||
|
||||
L̂± = L̂𝓍 ± ιL̂𝓎 = (pic) proof = ±ħL±
|
||||
|
||||
L̂𝓏(L̂ ± ❙λ,mₗ❭) => (pic) proof => L̂± ❙λ,mₗ❭ = ❙λ,mₗ±1❭
|
||||
|
||||
Very important point:
|
||||
|
||||
Let m=l be the maximum value of m
|
||||
L̂₊❙λ,l❭ = 0 (required because wave function goes to 0 in a forbiddin region)
|
||||
This is also true for L̂₋❙λ,l′❭ with l′ the minimum value of m
|
||||
|
||||
(pic) L̂₋L̂₊❙λ,l❭ = ...
|
||||
gives λ = l(l+1)
|
||||
|
||||
(pic) L̂₊L̂₋❙λ,l′❭ = ...
|
||||
gives λ = l′(l′+1)
|
||||
|
||||
These show that m = -l, -l+1, 0, l
|
||||
|
88
solutions/chap7/prob7
Normal file
88
solutions/chap7/prob7
Normal file
@ -0,0 +1,88 @@
|
||||
Angular momentum system is prepared in the state
|
||||
|
||||
❙Ψ❭ = 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι1͟ ❙20❭
|
||||
√10 √10 √10 √10
|
||||
|
||||
|
||||
Possible results of 𝐋² measurement?
|
||||
|
||||
The 𝐋̂² operator was developed in lecture and in the text. The related eigenvalue equation is
|
||||
|
||||
𝐋̂²❙lm❭ = l(l+1) ħ²❙lm❭
|
||||
|
||||
The possible measurements of 𝐋̂² for this system are those associated with the initial state vector, i.e. the values lm = 11, 10, 22, 20.
|
||||
|
||||
For lm = 11 & 10, 𝐋̂² = 2ħ²
|
||||
|
||||
For lm = 22 & 20, 𝐋̂² = 6ħ².
|
||||
|
||||
Since the same 𝐋̂² is measures for two states, the sum of the probabilities of measuring those states is the probability of measuring that squared angular momentum.
|
||||
|
||||
𝓟(𝐋̂²=2ħ²) = │❬11❙Ψ❭│² + │❬10❙Ψ❭│².
|
||||
|
||||
❬11❙Ψ❭ = ❬11❙⎛ 1͟ ❙11❭ - 2͟ ❙10❭ + ι͟2͟ ❙22❭ + ι1͟ ❙20❭ ⎞
|
||||
⎝ √10 √10 √10 √10 ⎠.
|
||||
|
||||
The eigenstates for this system are LaPlace's spherical harmonic functions, which comprise an orthogonal set, I.E.:
|
||||
|
||||
❬lm❙l′m′❭ = δₗₗ′ δₘₘ′.
|
||||
|
||||
│❬11❙Ψ❭│² = │❬11❙ 1͟ ❙11❭│² = ¹/₁₀.
|
||||
│ √10 │
|
||||
|
||||
│❬10❙Ψ❭│² = │❬10❙ 2͟ ❙10❭│² = ⁴/₁₀.
|
||||
│ √10 │
|
||||
|
||||
(𝐚)
|
||||
𝓟(𝐋̂²=2ħ²) = ½.
|
||||
|
||||
No need to calculate the other set: since the vector is normalized, the probability of measuring 𝐋̂²=6ħ² is also
|
||||
|
||||
𝓟(𝐋̂²=6ħ²) = ½.
|
||||
|
||||
|
||||
For 𝐋̂𝓏 the eigenvalue equation is
|
||||
|
||||
𝐋̂𝓏❙lm❭ = mħ❙lm❭,
|
||||
|
||||
so the expected measurements are,
|
||||
|
||||
for lm = 11 & 21, 𝐋̂𝓏 = ħ.
|
||||
|
||||
for lm = 10 & 20, 𝐋̂𝓏 = 0.
|
||||
|
||||
In this case, the probabilities will be
|
||||
|
||||
𝓟(𝐋̂𝓏=ħ) = │❬11❙Ψ❭│² + │❬21❙Ψ❭│² and
|
||||
|
||||
𝓟(𝐋̂𝓏=0) = │❬10❙Ψ❭│² + │❬20❙Ψ❭│².
|
||||
|
||||
The method has already been demonstrated, so taking the probability components and summing,
|
||||
|
||||
(𝐛)
|
||||
|
||||
𝓟(𝐋̂𝓏=ħ) = ²/₁₀.
|
||||
|
||||
𝓟(𝐋̂𝓏=0) = ⁸/₁₀.
|
||||
|
||||
Histogram of probabilities:
|
||||
|
||||
|
||||
𝓟 𝓟
|
||||
╭─────────────────┬────────────────╮
|
||||
1 │ │ │ 1
|
||||
│ │ │
|
||||
.8 │ │ ▧ │ .8
|
||||
│ │ ▧ │
|
||||
│ │ ▧ │
|
||||
.5 │ ▧ ▧ │ ▧ │ .5
|
||||
│ ▧ ▧ │ ▧ │
|
||||
│ ▧ ▧ │ ▧ │
|
||||
│ ▧ ▧ │ ▧ ▧ │
|
||||
.1 │ ▧ ▧ │ ▧ ▧ │ .1
|
||||
╰─────────────────┼────────────────╯
|
||||
2ħ² 6ħ² │ 0 ħ
|
||||
𝐋̂² │ 𝐋̂𝓏
|
||||
|
||||
h
|
||||
|
3322
solutions/chap7/prob7.ps
Normal file
3322
solutions/chap7/prob7.ps
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user