mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-04 18:05:08 +00:00
lots of lectures. Class is now over.
This commit is contained in:
parent
84045a1f93
commit
86f09bcfaa
43
lecture_notes/4-13/overview
Normal file
43
lecture_notes/4-13/overview
Normal file
@ -0,0 +1,43 @@
|
||||
Exam 2 Problem 2
|
||||
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
||||
|
||||
(pic) Finished the problem using the boundary conditions
|
||||
|
||||
boundary conditions limit the number of possible spherical harmonics.
|
||||
|
||||
|
||||
|
||||
Two Similar Particles
|
||||
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
||||
|
||||
❙a,b❭ = ❙a❭⊗❙b❭
|
||||
|
||||
Exchange Operator
|
||||
──────────────────────────────────────────────────────────────────────────
|
||||
|
||||
𝓟₁₂❙a,b❭ = ❙a,b❭
|
||||
|
||||
𝓟₁₂(❙a❭⊗❙b❭) = ❙b❭⊗❙a❭
|
||||
|
||||
If particles are indistinguishable
|
||||
|
||||
𝓟₁₂❙a,b❭ = exp(iδ) ❙a,b❭ = λ ❙a,b❭
|
||||
|
||||
𝓟²₁₂❙a,b❭ = λ² ❙a,b❭ = ❙a,b❭ ⇒ λ=±1
|
||||
|
||||
|
||||
Symmetry States
|
||||
──────────────────────────────────────────────────────────────────────────
|
||||
(pic) Two cases: symmetric, antisymmetric
|
||||
|
||||
Symmetric States, λ=1
|
||||
|
||||
𝓟₁₂❙a,b❭
|
||||
|
||||
(pic) Constructed the exchange operator in matrix form, then found eigen states
|
||||
|
||||
(pic) Showed that the exchange operator leads to the Pauli Exclusion Principle
|
||||
|
||||
|
||||
|
||||
|
50
lecture_notes/4-15/Overview
Normal file
50
lecture_notes/4-15/Overview
Normal file
@ -0,0 +1,50 @@
|
||||
Two Spin-½ Particles
|
||||
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
|
||||
uncoupled basis
|
||||
───────────────
|
||||
❙s₁ s₂ m₁ m₂❭
|
||||
❙+ +❭, ❙- -❭, ❙+ -❭, ❙- +❭
|
||||
|
||||
coupled basis
|
||||
─────────────
|
||||
❙S Mₛ❭
|
||||
❙1 1❭, ❙1 -1❭, ❙1 0❭, ❙0 0❭
|
||||
|
||||
Given the state ❙1 0❭ = 1/√2(❙+ -❭ + ❙- +❭) :
|
||||
P₁₂❙1 0❭ = ❙1 0❭ (symmetric)
|
||||
|
||||
❙0 0❭ = 1/√2(❙+ -❭ - ❙- +❭) :
|
||||
P₁₂❙0 0❭ = -❙0 0❭ (antisymmetric)
|
||||
|
||||
|
||||
Spatial Representation
|
||||
──────────────────────────────────────────────────────────────────────────
|
||||
❙Ψ❭ = ❙Ψₛₚₐₜᵢₐₗ❭❙Ψₛₚᵢₙ❭
|
||||
|
||||
Symmetric:
|
||||
❙Ψ❭ˢ = ❙Ψₛₚₐₜᵢₐₗ❭ˢ❙Ψₛₚᵢₙ❭ˢ OR ❙Ψₛₚₐₜᵢₐₗ❭ᴬ❙Ψₛₚᵢₙ❭ᴬ
|
||||
|
||||
Antisymmetric:
|
||||
❙Ψ❭ᴬ = ❙Ψₛₚₐₜᵢₐₗ❭ᴬ❙Ψₛₚᵢₙ❭ˢ OR ❙Ψₛₚₐₜᵢₐₗ❭ˢ❙Ψₛₚᵢₙ❭ᴬ
|
||||
|
||||
|
||||
Helium Atom
|
||||
──────────────────────────────────────────────────────────────────────────
|
||||
Fermions, so overall must be antisymmetric
|
||||
|
||||
Configuration Term Energy
|
||||
1s² 1s 0
|
||||
❙Ψ❭ = 1/√2 (❙a❭₁ₛ❙b❭₁ₛ + ❙b❭₁ₛ❙a❭₁ₛ)❙0 0❭
|
||||
|
||||
1s²s 3s 1.46
|
||||
❙Ψ❭ = 1/√2(❙a❭₁ₛ❙b❭₁ₛ - ❙b❭₁ₛ❙a❭₁ₛ)❙1 m❭, m=-1,0,1
|
||||
|
||||
1s2s 1s 1.52
|
||||
❙Ψ❭ = 1/√2 (❙a❭₁ₛ❙b❭₁ₛ + ❙b❭₁ₛ❙a❭₁ₛ)❙0 0❭
|
||||
|
||||
1s2p 3pᵒ ~1.60
|
||||
❙Ψ❭ = 1√2
|
||||
|
||||
1s²p 1pᵒ ~1.65
|
||||
|
||||
|
6
lecture_notes/4-18
Normal file
6
lecture_notes/4-18
Normal file
@ -0,0 +1,6 @@
|
||||
∮𝐁⋅d𝐥 = B(s) sπs = μ₀[∫𝐉⋅n̂da + ε₀ d/dt ∫𝐄⋅n̂da]
|
||||
|
||||
∫𝐉⋅n̂da = 0
|
||||
|
||||
For capacitor:
|
||||
│𝐄│ = σ/ε₀ ⇒ B(s) 2πs = μ₀ ε₀ d/dt σ(t)/ε₀ πs²
|
30
solutions/chap2/prob2
Normal file
30
solutions/chap2/prob2
Normal file
@ -0,0 +1,30 @@
|
||||
S𝓍 ≐ ħ͟⎛0 1⎞
|
||||
2⎝1 0⎠
|
||||
|
||||
Diagonalize the matrix...
|
||||
|
||||
First, find the characteristic equation and solve for the eigenvalues.
|
||||
|
||||
S𝓍 ≐ ħ͟⎛0 1⎞
|
||||
2⎝1 0⎠
|
||||
|
||||
ħ͟ ⎛-λ 1⎞
|
||||
2 ⎝ 1 -λ⎠
|
||||
|
||||
λ² - ħ²/4 = 0
|
||||
λ² = ħ²/4
|
||||
|
||||
λ = ±ħ/2
|
||||
|
||||
So the eigenvalues are those expected for the measurement of a spin-1/2 component.
|
||||
|
||||
The eigenvalue equations are
|
||||
|
||||
S𝓍❙Ψ❭ = λ❙Ψ❭
|
||||
|
||||
which is represented by
|
||||
|
||||
ħ͟⎛0 1⎞⎛a⎞ = λ⎛a⎞
|
||||
2⎝1 0⎠⎝b⎠ ⎝b⎠
|
||||
|
||||
|
3
solutions/chap3/prob7
Normal file
3
solutions/chap3/prob7
Normal file
@ -0,0 +1,3 @@
|
||||
After the first Stern-Gerlach magnet, the entire wave function will be in a single state:
|
||||
|
||||
❙Ψ₁❭ = ❙S₊❭
|
Loading…
Reference in New Issue
Block a user