working on exam 1, still
10
lecture_notes/1-27/Constant of Motion
Normal file
@ -0,0 +1,10 @@
|
||||
Compatible Observables occur when commutator is equal to 0.
|
||||
|
||||
[Â,B̂] = ÂB̂ - B̂Â
|
||||
|
||||
Constant of Motion
|
||||
------------------
|
||||
if d/dt  = 0 and [Ĥ,Â] = 0, where Ĥ is the Hamiltonian operator.
|
||||
then  is a constant of motion
|
||||
|
||||
Thm: Two operators such that [Â,B̂] always have common Eigenstates
|
BIN
lecture_notes/1-27/Derivative of A Operator.jpg
Normal file
After Width: | Height: | Size: 409 KiB |
@ -1,13 +1,16 @@
|
||||
Computed Derivative (pic) d/dt <Â> (pic)
|
||||
|
||||
Discovered/Introduced Commutator
|
||||
Cpmpatible Observables occur when commutator is equal to 0.
|
||||
Computed Derivative d/dt <Â>:
|
||||
|
||||
[Ĥ,Â] = ĤÂ - ÂĤ
|
||||
d <Â> = d 〈Ψ(t)|Â|Ψ(t)〉
|
||||
dt dt
|
||||
|
||||
⎛d 〈Ψ(t)⎞ Â|Ψ(t)〉 + 〈Ψ(t)|Â ⎛d Ψ(t)〉⎞ + 〈Ψ(t)|d Â|Ψ(t)〉
|
||||
⎝dt ⎠ ⎝dt ⎠ dt
|
||||
↓
|
||||
ι 〈Ψ(t)|Ĥ Â|Ψ(t)〉 + 〈Ψ(t)|Â Ĥ -ι|Ψ(t)〉 + 〈Ψ(t)|d Â|Ψ(t)〉
|
||||
ħ ħ dt
|
||||
↓
|
||||
ι 〈Ψ(t)|Ĥ Â - Â Ĥ|Ψ(t)〉 + 〈Ψ(t)|d Â|Ψ(t)〉
|
||||
ħ dt
|
||||
|
||||
Constant of Motion
|
||||
------------------
|
||||
if d/dt  = 0 and [Ĥ,Â] = 0,
|
||||
then  is a constant of motion
|
||||
|
||||
Thm: Two operators such that [Â,B̂] always have common Eigenstates
|
||||
|
BIN
lecture_notes/1-27/IMG_20160127_131202.jpg
Normal file
After Width: | Height: | Size: 470 KiB |
BIN
lecture_notes/1-27/IMG_20160127_131402.jpg
Normal file
After Width: | Height: | Size: 395 KiB |
BIN
lecture_notes/1-27/IMG_20160127_132453.jpg
Normal file
After Width: | Height: | Size: 402 KiB |
BIN
lecture_notes/1-27/IMG_20160127_132918.jpg
Normal file
After Width: | Height: | Size: 358 KiB |
BIN
lecture_notes/1-27/IMG_20160127_133504.jpg
Normal file
After Width: | Height: | Size: 417 KiB |
BIN
lecture_notes/1-27/IMG_20160127_133506.jpg
Normal file
After Width: | Height: | Size: 403 KiB |
BIN
lecture_notes/1-27/IMG_20160127_134331.jpg
Normal file
After Width: | Height: | Size: 499 KiB |
@ -1,6 +1,23 @@
|
||||
Show that ͟d͟〈͟p͟〉͟ = -〳͟d͟V͟(͟x͟)͟〵 when a particle is subjected to a potential 〈V(x)〉.
|
||||
dt 〵 dx 〳
|
||||
|
||||
dt 〵dx 〳
|
||||
|
||||
|
||||
The time derivative of the expectation value of the momentum is a known quantity, from
|
||||
Time Dependence of Expectation Value of General Momentum Operator:
|
||||
|
||||
d〈p〉 = 1.
|
||||
dt ιħ
|
||||
|
||||
The problem is therefore reduced to finding whether -/dV(x)\ reduces to 1.
|
||||
\dx / ιħ
|
||||
|
||||
-/dV(x)\ = -〈Ψ| d V(x) |Ψ〉.
|
||||
\dx / dx
|
||||
|
||||
Viewing the expression in this form reveals a relationship between the space derivative and the operators V(x) and |Ψ〉. The chain rule allows this derivative to be computed.
|
||||
|
||||
-〈Ψ| d V(x) |Ψ〉 = -〈Ψ| ⎛d V(x)|Ψ> + d |Ψ> V(x)⎞.
|
||||
dx ⎝dx dx ⎠
|
||||
|
||||
|
||||
|
||||
|
@ -4,3 +4,5 @@
|
||||
|
||||
a)
|
||||
|
||||
🔋
|
||||
|
||||
|