mirror of
				https://asciireactor.com/otho/phy-4600.git
				synced 2025-10-31 15:48:03 +00:00 
			
		
		
		
	Leftover files added.
This commit is contained in:
		
							parent
							
								
									33bc3429a0
								
							
						
					
					
						commit
						495856ca85
					
				
							
								
								
									
										22
									
								
								lecture_notes/3-30/finite spherical well
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										22
									
								
								lecture_notes/3-30/finite spherical well
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,22 @@ | ||||
| Finite Spherical Well and Deuterium Nucleus | ||||
| 
 | ||||
|     Attractive potential exists between proton and neutron | ||||
| 
 | ||||
|     (pic) step function potential | ||||
| 
 | ||||
|     Assume l=0 then S.E. for radial function is | ||||
| 
 | ||||
|         −͟ħ͟²͟ ⎛∂͟²͟ R + 2͟ ∂͟ R⎞V R = E R | ||||
|          2m ⎝∂r²    r ∂r ⎠ | ||||
| 
 | ||||
|     K² ≡ (E͟_͟−͟_͟V͟)2m  ⇒  ∂͟²͟ R + 2͟ ∂͟ R + K² R = E R  | ||||
|             ħ²         ∂r²    r ∂r   | ||||
| 
 | ||||
|     R(r) = U(r)/r  ⇒  ∂͟²͟ U = - K² R | ||||
|                       ∂r²   | ||||
| 
 | ||||
| For r<a | ||||
| 
 | ||||
| K₀ = 2͟m͟(E+V₀) ⇒  | ||||
|      ħ² | ||||
| 
 | ||||
							
								
								
									
										41
									
								
								lecture_notes/3-30/infinite spherical well
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										41
									
								
								lecture_notes/3-30/infinite spherical well
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,41 @@ | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
|      | ||||
|     ⎧ 0   r<a | ||||
| V = ⎨ | ||||
|     ⎩ ∞   r>a | ||||
| 
 | ||||
|     for r<a | ||||
|     ─────── | ||||
|      | ||||
|     ∂͟²͟ R + 2͟ ∂͟ R -  1͟  l(l+1) K²R = 0 | ||||
|     ∂ρ²    r ∂r     2r²        | ||||
|      | ||||
|     K ≡ √⎛2͟m͟E͟⎞  ρ ≡ Kr | ||||
|          ⎝ ħ²⎠ | ||||
| 
 | ||||
|     ⇒ ∂͟²͟ R + 2͟ ∂͟ R - ⎛ 1͟ l(l+1) - 1 ⎞ R = 0 | ||||
|       ∂ρ²    ρ ∂r    ⎝ ρ²           ⎠ | ||||
| 
 | ||||
|     The solutions are Bessel functions | ||||
| 
 | ||||
| 
 | ||||
|        ⎧ jₗ(ρ) = (-ρ)ˡ ⎛1͟ d͟ ⎞ˡ⎛s͟i͟n͟ρ͟⎞ | ||||
|        ⎪               ⎝ρ dρ⎠ ⎝  ρ ⎠    (regular) | ||||
| R(ρ) = ⎨ | ||||
|        ⎪ nₗ(ρ) = -(-ρ)ˡ ⎛1͟ d͟ ⎞ˡ⎛c͟o͟s͟ρ͟⎞   ⎛ irregular or      ⎞ | ||||
|        ⎩                ⎝ρ dρ⎠ ⎝  ρ ⎠   ⎝ "Neuman function" ⎠ | ||||
| 
 | ||||
| For continuity | ||||
| 
 | ||||
|     | ||||
| ⎧ | ||||
| ⎪ A sin(K₀ a) = C e⁻ᵃ   | ||||
| ⎨ | ||||
| ⎪ K₀Acos(K₀ a) = -ᵩ  | ||||
| ⎩ | ||||
							
								
								
									
										13
									
								
								lecture_notes/3-30/nodes
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										13
									
								
								lecture_notes/3-30/nodes
									
									
									
									
									
										Executable file
									
								
							| @ -0,0 +1,13 @@ | ||||
| U(ρ) = ρˡ⁺¹ exp(-ρ/2) Fₙᵣ(ρ) | ||||
| 
 | ||||
| n ≡ nᵣ - l - 1 ⇒ l ≥ n-1  | ||||
| 
 | ||||
| n│  l  │mₗ | ||||
| ─┼─────┼─────────── | ||||
| 1│0    │0 | ||||
| 2│0,1  │-1,0,1 | ||||
| 3│0,1,2│-2,-1,0,1,2 | ||||
| 
 | ||||
| 
 | ||||
| (pic) Fₙᵣ has n roots or nodes | ||||
| 
 | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user