mirror of
https://asciireactor.com/otho/phy-4600.git
synced 2024-12-04 07:55:07 +00:00
Leftover files added.
This commit is contained in:
parent
33bc3429a0
commit
495856ca85
22
lecture_notes/3-30/finite spherical well
Executable file
22
lecture_notes/3-30/finite spherical well
Executable file
@ -0,0 +1,22 @@
|
||||
Finite Spherical Well and Deuterium Nucleus
|
||||
|
||||
Attractive potential exists between proton and neutron
|
||||
|
||||
(pic) step function potential
|
||||
|
||||
Assume l=0 then S.E. for radial function is
|
||||
|
||||
−͟ħ͟²͟ ⎛∂͟²͟ R + 2͟ ∂͟ R⎞V R = E R
|
||||
2m ⎝∂r² r ∂r ⎠
|
||||
|
||||
K² ≡ (E͟_͟−͟_͟V͟)2m ⇒ ∂͟²͟ R + 2͟ ∂͟ R + K² R = E R
|
||||
ħ² ∂r² r ∂r
|
||||
|
||||
R(r) = U(r)/r ⇒ ∂͟²͟ U = - K² R
|
||||
∂r²
|
||||
|
||||
For r<a
|
||||
|
||||
K₀ = 2͟m͟(E+V₀) ⇒
|
||||
ħ²
|
||||
|
41
lecture_notes/3-30/infinite spherical well
Executable file
41
lecture_notes/3-30/infinite spherical well
Executable file
@ -0,0 +1,41 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
⎧ 0 r<a
|
||||
V = ⎨
|
||||
⎩ ∞ r>a
|
||||
|
||||
for r<a
|
||||
───────
|
||||
|
||||
∂͟²͟ R + 2͟ ∂͟ R - 1͟ l(l+1) K²R = 0
|
||||
∂ρ² r ∂r 2r²
|
||||
|
||||
K ≡ √⎛2͟m͟E͟⎞ ρ ≡ Kr
|
||||
⎝ ħ²⎠
|
||||
|
||||
⇒ ∂͟²͟ R + 2͟ ∂͟ R - ⎛ 1͟ l(l+1) - 1 ⎞ R = 0
|
||||
∂ρ² ρ ∂r ⎝ ρ² ⎠
|
||||
|
||||
The solutions are Bessel functions
|
||||
|
||||
|
||||
⎧ jₗ(ρ) = (-ρ)ˡ ⎛1͟ d͟ ⎞ˡ⎛s͟i͟n͟ρ͟⎞
|
||||
⎪ ⎝ρ dρ⎠ ⎝ ρ ⎠ (regular)
|
||||
R(ρ) = ⎨
|
||||
⎪ nₗ(ρ) = -(-ρ)ˡ ⎛1͟ d͟ ⎞ˡ⎛c͟o͟s͟ρ͟⎞ ⎛ irregular or ⎞
|
||||
⎩ ⎝ρ dρ⎠ ⎝ ρ ⎠ ⎝ "Neuman function" ⎠
|
||||
|
||||
For continuity
|
||||
|
||||
|
||||
⎧
|
||||
⎪ A sin(K₀ a) = C e⁻ᵃ
|
||||
⎨
|
||||
⎪ K₀Acos(K₀ a) = -ᵩ
|
||||
⎩
|
13
lecture_notes/3-30/nodes
Executable file
13
lecture_notes/3-30/nodes
Executable file
@ -0,0 +1,13 @@
|
||||
U(ρ) = ρˡ⁺¹ exp(-ρ/2) Fₙᵣ(ρ)
|
||||
|
||||
n ≡ nᵣ - l - 1 ⇒ l ≥ n-1
|
||||
|
||||
n│ l │mₗ
|
||||
─┼─────┼───────────
|
||||
1│0 │0
|
||||
2│0,1 │-1,0,1
|
||||
3│0,1,2│-2,-1,0,1,2
|
||||
|
||||
|
||||
(pic) Fₙᵣ has n roots or nodes
|
||||
|
Loading…
Reference in New Issue
Block a user