phy-4600/solutions/chap5/prob2

131 lines
4.8 KiB
Plaintext
Raw Normal View History

2016-02-28 22:15:29 +00:00
A particle in an infinite square well has an initial state vector, with A a real number and ι the imaginary unit,
❙Ψ(t=0)❭ = A(❙φ₁❭ - ❙φ₂❭ + ι❙φ₃❭).
where ❙φₙ❭ are the energy eigenstates. This also means
2016-02-28 22:15:29 +00:00
❬Ψ(t=0)❙ = A(❬φ₁❙ - ❬φ₂❙ - ι❬φ₃❙)
In the energy basis,
❙φ₁❭ ≐ ⎛1⎞ ❙φ₂❭ ≐ ⎛0⎞ and ❙φ₃❭ ≐ ⎛0⎞
⎜0⎟ ⎜1⎟ ⎜0⎟
⎝0⎠, ⎝0⎠, ⎝1⎠.
So,
❙Ψ(t=0)❭ ≐ ⎛ A ⎞
⎜-A ⎟
ιA ⎠.
2016-02-28 22:15:29 +00:00
(𝐚) The state vector is normalized by taking the quotient of the magnitude.
❙Ψ′(t=0)❭ ≐ __͟A͟__ ⎛ 1 ⎞ = _͟1͟ ⎛ 1 ⎞
√(3A²) ⎜-1 ⎟ √3 ⎜-1 ⎟
ι ⎠ ⎝ ι ⎠.
When the Hamiltonian operates on ❙φₙ❭ with results according to the general eigenvalue equation, with Eₙ the measured energy of state n,
Ĥ❙φₙ❭ = Eₙ❙φₙ❭.
The measured energies for a point particle in an infinite square well are given by, with L the x-width of the well, and m the particle mass,
Eₙ = n͟²͟π͟²͟ħ͟².
2mL²
So,
Ĥ❙Ψ(t=0)❭ = _͟1͟ (E₁❙φ₁❭ - E₂❙φ₂❭ + ιE₃❙φ₃❭).
√3
(𝐛) There is an equal chance of measuring any of the three values, so 𝓟ₙ=1/3. The measured enemies are given by the previous expression.
Energy Probability
π͟²͟ħ͟². 𝓟₁=¹/₃
2mL²
2016-03-14 00:07:19 +00:00
2͟π͟²͟ħ͟². 𝓟₂=¹/₃
mL²
2016-02-28 22:15:29 +00:00
9͟π͟²͟ħ͟². 𝓟₃=¹/₃
2mL²
The average value of the energy, or the expectation value, is given by
│❬Ψ❙Ĥ❙Ψ❭│² = │_͟1͟ (❬φ₁❙ - ❬φ₂❙ - ι❬φ₃❙)_͟1͟ (E₁❙φ₁❭ - E₂❙φ₂❭ + ιE₃❙φ₃❭)│²
│√3 √3 │.
❬Ψ❙Ĥ❙Ψ❭ = _͟1͟ (❬φ₁❙ - ❬φ₂❙ - ι❬φ₃❙)_͟1͟ (E₁❙φ₁❭ - E₂❙φ₂❭ + ιE₃❙φ₃❭)
2016-03-14 00:07:19 +00:00
√3 √3
2016-02-28 22:15:29 +00:00
= ¹/₃ (❬φ₁❙ - ❬φ₂❙ - ι❬φ₃❙)(E₁❙φ₁❭ - E₂❙φ₂❭ + ιE₃❙φ₃❭)
= ¹/₃ (❬φ₁❙E₁❙φ₁❭ - ❬φ₁❙E₂❙φ₂❭ + ❬φ₁❙ιE₃❙φ₃❭) (-❬φ₂❙E₁❙φ₁❭ + ❬φ₂❙E₂❙φ₂❭ - ❬φ₂❙ιE₃❙φ₃❭)
(-ι❬φ₃❙E₁❙φ₁❭ + ι❬φ₃❙E₂❙φ₂❭ - ι❬φ₃❙ιE₃❙φ₃❭).
Orthogonality is a property of the energy eigenstates:
⎧ 0 if n≠m
❬Eₙ❙Eₘ❭ = δₙₘ, where δₙₘ = ⎨ , so
⎩ 1 if n=m
❬Ψ❙Ĥ❙Ψ❭ = ¹/₃ (❬φ₁❙E₁❙φ₁❭) (❬φ₂❙E₂❙φ₂❭) (-ι❬φ₃❙ιE₃❙φ₃❭)
= ¹/₃ E₁ E₂ E₃ = ¹/₃ π͟²͟ħ͟² 4͟π͟²͟ħ͟² 9͟π͟²͟ħ͟² = _͟3͟ ⎛π͟²͟ħ͟²⎞³
2mL² 2mL² 2mL² 2 ⎝ mL²⎠.
(𝐜) Therefore, the energy expectation value
│❬Ψ❙Ĥ❙Ψ❭│² = _͟9͟ ⎛π͟²͟ħ͟²⎞⁶
4 ⎝ mL²⎠.
Because the hamiltonian is time-independent, the state vector progresses timewise according to,
❙Ψ′(t)❭ = exp(-ι͟Ĥ͟t͟ )❙Ψ′(t=0)❭ = _͟1͟ exp(-ι͟Ĥ͟t͟ ) (❙φ₁❭ - ❙φ₂❭ + ι ❙φ₃❭).
ħ √3 ħ
2016-03-14 00:07:19 +00:00
_͟1͟ ⎛exp(-ι͟E͟₁͟t͟ )❙φ₁❭ - exp(-ι͟E͟₂͟t͟ )❙φ₂❭ + ι exp(-ι͟E͟₃͟t͟ )❙φ₃❭⎞
√3 ⎝ ħ ħ ħ ⎠
2016-02-28 22:15:29 +00:00
2016-03-14 00:07:19 +00:00
(𝐝)
= _͟1͟ ⎛exp(-ι π͟²͟ħ͟t͟ )❙φ₁❭ - exp(-ι 2͟π͟²͟ħ͟t͟ )❙φ₂❭ + ι exp(-ι 9͟π͟²͟ħ͟t͟ )❙φ₃❭⎞
√3 ⎝ 2mL² mL² 2L² ⎠.
2016-02-28 22:15:29 +00:00
2016-03-14 00:07:19 +00:00
What are the possible measurements at time t = ħ/E₁?
2016-02-28 22:15:29 +00:00
2016-03-14 00:07:19 +00:00
(𝐞) The same value of energy will be measured for each state. Since there has been no change to the coefficients besides a change in phase, and the phase term goes to 1 under the modulus, the probabilities remain the same.
❙Ψ′(t=ħ/E₁)❭ = _͟1͟ ⎛exp(-ι)❙φ₁❭ - exp(-ι E͟₂͟ )❙φ₂❭ + ι exp(-ι E͟₃͟ )❙φ₃❭⎞
√3 ⎝ E₁ E₁ ⎠
Energy Probability
π͟²͟ħ͟². 𝓟₁=¹/₃
2mL²
2͟π͟²͟ħ͟². 𝓟₂=¹/₃
mL²
9͟π͟²͟ħ͟². 𝓟₃=¹/₃
2mL²
2016-02-28 22:15:29 +00:00