mirror of
https://asciireactor.com/otho/cs-5821.git
synced 2024-11-25 05:55:04 +00:00
463 lines
12 KiB
Plaintext
463 lines
12 KiB
Plaintext
auto = read.table("auto.data",header=T,na.strings="?")
|
|
length(x=auto$mpg)
|
|
glm
|
|
glm.pred
|
|
help(rep)
|
|
glm.pred=rep(FALSE,397)
|
|
glm.pred
|
|
medium(auto$mpg)
|
|
median(auto$mpg)
|
|
glm.pred[auto$mpg>median(auto$mpg)]=T
|
|
glm.pred
|
|
contour(auto)
|
|
contour(glm.pred ~ auto$mpg)
|
|
contour(glm.pred,auto$mpg)
|
|
help(contour)
|
|
contour(auto$mpg,auto$horsepower,glm.pred)
|
|
glm.pred
|
|
length(glm.pred)
|
|
table(glm.pred,auto$mpg)
|
|
table(glm.pred,auto$mpg,auto$horsepower)
|
|
glm.pred=rep(0,397)
|
|
glm.pred[auto$mpg>median(auto$mpg)]=1
|
|
glm.pred
|
|
auto$mpg01=rep(0,397)
|
|
auto$mpg01[auto$mpg>median(auto$mpg)]=1
|
|
auto$mpg01
|
|
auto$mpg01
|
|
auto$mpg01
|
|
plots(auto)
|
|
plot(auto)
|
|
boxplot(auto)
|
|
boxplot.matrix(auto)
|
|
help(boxplot)
|
|
boxplot(auto$mpg01,auto)
|
|
boxplot(auto$mpg,auto)
|
|
boxplot(auto$mpg)
|
|
boxplot(auto)
|
|
boxplot(mpg01 ~ auto)
|
|
boxplot(mpg01 ~)
|
|
boxplot(auto$mpg01 ~ auto)
|
|
attach(auto)
|
|
boxplot(mpg01)
|
|
boxplot(mpg01 ~ auto)
|
|
boxplot(mpg01 ~ auto,auto)
|
|
boxplot(mpg01 ~ auto,data = auto)
|
|
help(plot.table)
|
|
plot.table(auto)
|
|
help(plot.table)
|
|
plot(auto)
|
|
plot(auto,t="box")
|
|
help(plot.table)
|
|
help(plot.table,plot.frame=1)
|
|
help(plot.table)
|
|
help(plot.table,frame.plot=1)
|
|
help(plot.table)
|
|
help(plot.table,frame.plot=is.num)
|
|
help(plot.table)
|
|
plot(auto,t="box",frame.plot=1)
|
|
plot(auto,frame.plot=1)
|
|
plot(auto,frame.plot=1)
|
|
plot(auto,frame.plot=is.num)
|
|
plot(auto,frame.plot=0)
|
|
plot(auto,frame.plot="0")
|
|
plot(auto,frame.plot="1")
|
|
plot(auto,frame.plot=TRUE)
|
|
plot(auto,frame.plot=FALSE)
|
|
plot(auto,frame.plot=TRUE)
|
|
plot(auto,frame.plot=T)
|
|
plot(auto,frame.plot=1)
|
|
boxplot(mpg~mpg01,auto)
|
|
boxplot(mpg01 ~ mpg,auto)
|
|
boxplot(mpg01 ~ *,auto)
|
|
boxplot(mpg01 ~ ,auto)
|
|
boxplot(mpg01 ~ auto,auto)
|
|
boxplot(mpg01,auto)
|
|
boxplot(auto)
|
|
boxplot(auto,y=mpg01)
|
|
boxplot(auto,y=mpg)
|
|
boxplot(data = auto)
|
|
boxplot(auto)
|
|
help(for)
|
|
plot(auto,frame.plot=1)
|
|
plot(auto)
|
|
names(auto)
|
|
auto$name
|
|
help(sample)
|
|
x <- 1:12
|
|
x
|
|
sample(x)
|
|
help(sample)
|
|
sample(x,replace=T)
|
|
sample(x,replace=T)
|
|
sample(x,replace=F)
|
|
c
|
|
x
|
|
sample(x,replace=T)
|
|
x
|
|
help(sample)
|
|
sample(x[x>9])
|
|
sample(x[x>8])
|
|
help(sample)
|
|
x <- 1:10
|
|
sample(x[x>8])
|
|
sample(x[x>])
|
|
help(sample)
|
|
help(sample)
|
|
help(sample)
|
|
sample(auto,size=length(mpg01)/2)
|
|
x <- length(mpg01)
|
|
sample(x,size=length(mpg01)/2)
|
|
auto[sample(x,size=length(mpg01)/2)]
|
|
auto$mpg[sample(x,size=length(mpg01)/2)]
|
|
help(data.frame)
|
|
data.frame(
|
|
help(data.frame)
|
|
auto[sample(x,size=length(mpg01)/2)]
|
|
train = sample(x,size=length(mpg01)/2)
|
|
train =
|
|
auto[train]
|
|
auto$mpg[train]
|
|
auto$mpg[train,]
|
|
auto$mpg[train]
|
|
auto$mpg[23]
|
|
auto$mpg[228]
|
|
auto$mpg[391]
|
|
auto.test=auto[!train]
|
|
auto.train=auto[train]
|
|
auto.test
|
|
summary(auto.test)
|
|
train=(mpg<15)
|
|
train
|
|
train = (sample(x,size=length(mpg01)/2))
|
|
train
|
|
head(auto)
|
|
auto[,train[
|
|
auto[,train]
|
|
train
|
|
help(contains)
|
|
auto[1,train]
|
|
train
|
|
auto[[,train]]
|
|
auto[[1,train]]
|
|
autoi
|
|
head(auto)
|
|
head(auto[sample(nrow(auto),397/2)])
|
|
head(auto[sample(nrow(auto),3)])
|
|
data = data.frame(auto)
|
|
data
|
|
head(data[sample(nrow(data),3)])
|
|
nrow(data)
|
|
head(data[sample(ncol(data),3)])
|
|
head(data[sample(ncol(data),397/2)])
|
|
head(data[sample(ncol(data),3)])
|
|
head(data[sample(ncol(data),3)])
|
|
head(data[sample(ncol(data),3)])
|
|
head(data[sample(ncol(data),3)])
|
|
head(data[,sample(ncol(data),3)])
|
|
head(data[,sample(ncol(data),3)])
|
|
head(data[,sample(ncol(data),3)])
|
|
head(data[,sample(ncol(data),3)])
|
|
head(data[,sample(ncol(data),3)])
|
|
head(data[sample(ncol(data),3),])
|
|
head(data[sample(ncol(data),3),])
|
|
head(data[sample(ncol(data),3),])
|
|
head(data[sample(nrow(data),3),])
|
|
head(data[sample(nrow(data),397/2),])
|
|
head(data[sample(nrow(data),397/2),])
|
|
head(data[sample(nrow(data),397/2),])
|
|
head(data[sample(nrow(data),397/2),])
|
|
head(data[sample(nrow(data),397/2),])
|
|
head(auto[sample(nrow(auto),397/2),])
|
|
head(auto[sample(nrow(auto),397/2),])
|
|
head(auto[sample(nrow(auto),397/2),])
|
|
head(auto[sample(nrow(auto),397/2),])
|
|
head(auto[sample(nrow(auto),397/2),])
|
|
head(auto[sample(nrow(auto),397/2),])
|
|
head(auto[sample(nrow(auto),397/2),])
|
|
train = auto[sample(nrow(auto),397/2),]
|
|
[sample(nrow(auto),397/2),]
|
|
sample(nrow(auto),397/2)
|
|
train sample(nrow(auto),397/2)
|
|
train = sample(nrow(auto),397/2)
|
|
autp[train,]
|
|
auto[train,]
|
|
train = sample(nrow(auto),397/2)
|
|
head(auto[train,])
|
|
head(auto[!train,])
|
|
traindata = auto[train,]
|
|
testdata = auto[!train,]
|
|
testdata
|
|
traindata
|
|
length(traindata)
|
|
length(traindata$mpg)
|
|
198*2
|
|
summary(testdata)
|
|
testdata = auto[!train]
|
|
testdata
|
|
testdata = auto[!train,]
|
|
train
|
|
summary(train)
|
|
names(train)
|
|
head(traindata)
|
|
testdata = auto[!train,]
|
|
testdata
|
|
!train
|
|
train
|
|
?sample
|
|
sort(train)
|
|
train_vals = train
|
|
train = rep(false,397)
|
|
train = rep(F,397)
|
|
train
|
|
help for
|
|
?for
|
|
?for
|
|
help)for)
|
|
help(for)
|
|
help(for)
|
|
help lapply()
|
|
?lapply
|
|
sapply(train,
|
|
?sapply
|
|
sapply(train,
|
|
?sapply
|
|
train[train_vals]=T
|
|
train
|
|
traindata = auto[train,]
|
|
traindata
|
|
length(auto)
|
|
length(traindata)
|
|
length(traindata$mpg)
|
|
testdata=auto[!train,]
|
|
length(testdate$mpg)
|
|
length(testdata$mpg)
|
|
training_indices = sample(nrow(auto),397/2)
|
|
train_bools = rep(F,length(auto$mpg))
|
|
train_bools[training_indices]=T
|
|
head(train_bools)
|
|
length(train_bools)
|
|
train_data = auto[train_bools,]
|
|
test_data = auto[!train_bools,]
|
|
summary(train_data)
|
|
summary(test_data)
|
|
lda.fit
|
|
library(MASS)
|
|
lda.fit
|
|
lda()
|
|
detach(auto)
|
|
mpg01
|
|
mpg
|
|
attach(test_data)
|
|
mpg01
|
|
names()
|
|
names(test_data)
|
|
ldf.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data)
|
|
detach(test_data)
|
|
ldf.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data)
|
|
lda.fit
|
|
lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data)
|
|
lda.fit
|
|
summary(lda.fit)
|
|
coefficients(lda.fit)
|
|
plot(lda.fit)
|
|
lda.pred=predict(lda.fit,test_data)
|
|
lda.pred=predict(lda.fit, !training_bools)
|
|
lda.pred=predict(lda.fit, !training_indices)
|
|
test_data
|
|
lda.pred=predict(lda.fit, test_data)
|
|
lda.pred
|
|
plot(lda.pred)
|
|
names(lda.pred)
|
|
lda.class=lda.pres$class
|
|
lda.class=lda.pred$class
|
|
table(lda.class,testdata)
|
|
table(lda.class,test_data)
|
|
length(lda.class)
|
|
length(test_data)
|
|
table(lda.class,test_data$mpg01)
|
|
mean(lda.class==test_data$mpg01)
|
|
sum(lda.pred$posterior[,1]>=.5)
|
|
sum(lda.pred$posterior[,1]<.5)
|
|
lda.pred$posterior[,1]
|
|
sum(lda.pred$posterior<.5)
|
|
lda.pred$posterior
|
|
lda.pred$posterior<5
|
|
lda.pred$posterior<.5
|
|
sum(lda.pred$posterior<.5)
|
|
sum(lda.pred$posterior<.5[,1])
|
|
sum(lda.pred$posterior<.5[1])
|
|
sum(lda.pred$posterior<.5[2])
|
|
lda.pred$posterior<.5[2]
|
|
lda.pred$posterior<.5
|
|
lda.pred$posterior
|
|
lda.pred$posterior[,1]
|
|
lda.pred$posterior[1,]
|
|
lda.pred$posterior[,2]
|
|
lda.pred$posterior[,1]
|
|
lda.pred$posterior[,1]>.5
|
|
sum(lda.pred$posterior[,1]>.5)
|
|
sum.bool(lda.pred$posterior[,1]>.5)
|
|
?sum
|
|
sum.bool(lda.pred$posterior[,1]>.5,na.rm=T)
|
|
sum(lda.pred$posterior[,1]>.5,na.rm=T)
|
|
sum(lda.pred$posterior[,1]>.5)
|
|
sum(lda.pred$posterior[,1]>.5,na.rm=T)
|
|
sum(lda.pred$posterior[,1]>=.5,na.rm=T)
|
|
sum(lda.pred$posterior[,1]<.5,na.rm=T)
|
|
mean(lda.pred$[,1]==test_data,na.rm=T)
|
|
lda.pred
|
|
lda.pred$class
|
|
lda.pred$class==test_data$mpg01
|
|
mean(lda.pred$class==test_data$mpg01,na.rm=T)
|
|
mean(lda.pred$class!=test_data$mpg01,na.rm=T)
|
|
lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data)
|
|
lda.fit
|
|
mean(lda.pred$class==test_data$mpg01,na.rm=T)
|
|
lda.pred=predict(lda.fit, test_data)
|
|
mean(lda.pred$class==test_data$mpg01,na.rm=T)
|
|
mean(lda.pred$class!=test_data$mpg01,na.rm=T)
|
|
train_data == test_data
|
|
train_data$mpg01 == test_data$mpg01
|
|
lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data)
|
|
lda.pred=predict(lda.fit, test_data)
|
|
mean(lda.pred$class!=test_data$mpg01,na.rm=T)
|
|
lda.pred
|
|
lda.pred$posterior[,1]
|
|
summary(lda.fit)
|
|
lda.fit
|
|
lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data)
|
|
lda.fit
|
|
mean(lda.pred$class!=test_data$mpg01,na.rm=T)
|
|
lda.pred=predict(lda.fit, test_data)
|
|
mean(lda.pred$class!=test_data$mpg01,na.rm=T)
|
|
head(lda.pred)
|
|
lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data)
|
|
lda.pred=predict(lda.fit, test_data)
|
|
head(lda.pred)
|
|
mean(lda.pred$class!=test_data$mpg01,na.rm=T)
|
|
qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data)
|
|
qda.fit
|
|
qda.class=predict(qda.fit,test_data)$class
|
|
qda.class=predict(qda.fit,test_data,na.rm=T)$class
|
|
qda.class=predict(qda.fit,test_data)$class
|
|
qda.class
|
|
mean(qda.pred$class!=test_data$mpg01,na.rm=T)
|
|
qda.pred=predict(qda.fit,test_data)
|
|
qda.pred=predict(qda.fit,test_data,na.rm=T)
|
|
mean(qda.pred$class!=test_data$mpg01,na.rm=T)
|
|
glm.fit=glm(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data,family=binomial)
|
|
glm.probs=predict(glm.fit,test_data,type="response")
|
|
glm.pred=rep(0,199)
|
|
glm.pred[glm.probs>.5]=1
|
|
table(glm.pred,test_data$mpg01)
|
|
mean(glm.pred!=test_data$mpg01)
|
|
library(class)
|
|
?cbind
|
|
?knn
|
|
knn.fit = knn(train_data,test_data,auto$mpg01[training_indices])
|
|
knn.fit = knn(train_data,test_data,auto$mpg01[training_indices],k=1)
|
|
knn.fit = knn(train_data,test_data,auto$mpg01[training_indices],k=1)
|
|
?knn
|
|
training_indices
|
|
train_bools
|
|
knn.fit = knn(train_data,test_data,auto$mpg01[train_bools],k=1)
|
|
sdf = (mpg01<1)
|
|
sdf = (auto$mpg01<1)
|
|
sdf
|
|
train_bools
|
|
cbind(horsepower,displacement)
|
|
cbind(train_data$horsepower,displacement)
|
|
cbind(train_data$horsepower,train_data$displacement)
|
|
cbind(auto$horsepower,auto$displacement)[train_bools]
|
|
cbind(auto$horsepower,auto$displacement)[train_bools,]
|
|
cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
|
|
cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
|
|
train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
|
|
test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
|
|
train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
|
|
test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
|
|
train.mpg01 = auto[train_bools]
|
|
train.mpg01 = auto$mpg01[train_bools]
|
|
test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
|
|
train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
|
|
test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
|
|
train.mpg01 = auto$mpg01[train_bools]
|
|
set.seed(56)
|
|
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
|
|
?cbind
|
|
?Knn
|
|
?knn
|
|
train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
|
|
test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
|
|
train.mpg01 = auto$mpg01[train_bools]
|
|
train.X = train.X[!is.na(train.X)]
|
|
test.X = data.frame(test.X,
|
|
train.mpg01 = train.mpg01[!is.na(train.mpg01)]
|
|
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
|
|
length(train.mpg01)
|
|
length(test.X)
|
|
text.X
|
|
test.X
|
|
test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
|
|
length(test.X)
|
|
test.X
|
|
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
|
|
train.X
|
|
train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
|
|
train.X
|
|
test.X
|
|
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
|
|
?knn
|
|
length(train.X)
|
|
length(train.X[1,])
|
|
length(train.X[,1])
|
|
?knn
|
|
plot(auto)
|
|
train.X = cbind(auto$horsepower,auto$displacement)[train_bools,]
|
|
test.X = cbind(auto$horsepower,auto$displacement)[!train_bools,]
|
|
train.mpg01 = auto$mpg01[train_bools]
|
|
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
|
|
train.X
|
|
test.X
|
|
train.mpg01
|
|
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
|
|
q()
|
|
train
|
|
train.X
|
|
train.X
|
|
test.X
|
|
p1 = seq(1:1))
|
|
p1 = 1:10
|
|
p1
|
|
p1 = ,1:10
|
|
p2 = 10:20
|
|
p2
|
|
cbind(p1,p2)
|
|
p3=c(1,2,3,4,5,7,9,8,10)
|
|
p4=c(10,11,12,13,14,15,16,17,18,29,20)
|
|
px = cbind(p1,p2)
|
|
py = cbind(p3,p4)
|
|
py
|
|
?formula
|
|
test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
|
|
train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
|
|
train.mpg01 = auto$mpg01[train_bools]
|
|
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
|
|
import(library)
|
|
library(MASS)
|
|
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
|
|
library(library)
|
|
library(class)
|
|
knn.pred = knn(train.X,test.X,train.mpg01,k=1)
|
|
knn.pred
|
|
summary(test_data)
|
|
summary(train_data)
|
|
fix(train_data)
|
|
?fix
|
|
fix(test_data)
|
|
test_data.fix
|
|
test_data.fix()
|
|
fix(test_data)
|
|
q()
|