mirror of
				https://asciireactor.com/otho/cs-5821.git
				synced 2025-10-31 17:48:04 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			463 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			463 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| auto = read.table("auto.data",header=T,na.strings="?")
 | |
| length(x=auto$mpg)
 | |
| glm
 | |
| glm.pred
 | |
| help(rep)
 | |
| glm.pred=rep(FALSE,397)
 | |
| glm.pred
 | |
| medium(auto$mpg)
 | |
| median(auto$mpg)
 | |
| glm.pred[auto$mpg>median(auto$mpg)]=T
 | |
| glm.pred
 | |
| contour(auto)
 | |
| contour(glm.pred ~ auto$mpg)
 | |
| contour(glm.pred,auto$mpg)
 | |
| help(contour)
 | |
| contour(auto$mpg,auto$horsepower,glm.pred)
 | |
| glm.pred
 | |
| length(glm.pred)
 | |
| table(glm.pred,auto$mpg)
 | |
| table(glm.pred,auto$mpg,auto$horsepower)
 | |
| glm.pred=rep(0,397)
 | |
| glm.pred[auto$mpg>median(auto$mpg)]=1
 | |
| glm.pred
 | |
| auto$mpg01=rep(0,397)
 | |
| auto$mpg01[auto$mpg>median(auto$mpg)]=1
 | |
| auto$mpg01
 | |
| auto$mpg01
 | |
| auto$mpg01
 | |
| plots(auto)
 | |
| plot(auto)
 | |
| boxplot(auto)
 | |
| boxplot.matrix(auto)
 | |
| help(boxplot)
 | |
| boxplot(auto$mpg01,auto)
 | |
| boxplot(auto$mpg,auto)
 | |
| boxplot(auto$mpg)
 | |
| boxplot(auto)
 | |
| boxplot(mpg01 ~ auto)
 | |
| boxplot(mpg01 ~)
 | |
| boxplot(auto$mpg01 ~ auto)
 | |
| attach(auto)
 | |
| boxplot(mpg01)
 | |
| boxplot(mpg01 ~ auto)
 | |
| boxplot(mpg01 ~ auto,auto)
 | |
| boxplot(mpg01 ~ auto,data = auto)
 | |
| help(plot.table)
 | |
| plot.table(auto)
 | |
| help(plot.table)
 | |
| plot(auto)
 | |
| plot(auto,t="box")
 | |
| help(plot.table)
 | |
| help(plot.table,plot.frame=1)
 | |
| help(plot.table)
 | |
| help(plot.table,frame.plot=1)
 | |
| help(plot.table)
 | |
| help(plot.table,frame.plot=is.num)
 | |
| help(plot.table)
 | |
| plot(auto,t="box",frame.plot=1)
 | |
| plot(auto,frame.plot=1)
 | |
| plot(auto,frame.plot=1)
 | |
| plot(auto,frame.plot=is.num)
 | |
| plot(auto,frame.plot=0)
 | |
| plot(auto,frame.plot="0")
 | |
| plot(auto,frame.plot="1")
 | |
| plot(auto,frame.plot=TRUE)
 | |
| plot(auto,frame.plot=FALSE)
 | |
| plot(auto,frame.plot=TRUE)
 | |
| plot(auto,frame.plot=T)
 | |
| plot(auto,frame.plot=1)
 | |
| boxplot(mpg~mpg01,auto)
 | |
| boxplot(mpg01 ~ mpg,auto)
 | |
| boxplot(mpg01 ~ *,auto)
 | |
| boxplot(mpg01 ~ ,auto)
 | |
| boxplot(mpg01 ~ auto,auto)
 | |
| boxplot(mpg01,auto)
 | |
| boxplot(auto)
 | |
| boxplot(auto,y=mpg01)
 | |
| boxplot(auto,y=mpg)
 | |
| boxplot(data = auto)
 | |
| boxplot(auto)
 | |
| help(for)
 | |
| plot(auto,frame.plot=1)
 | |
| plot(auto)
 | |
| names(auto)
 | |
| auto$name
 | |
| help(sample)
 | |
| x <- 1:12
 | |
| x
 | |
| sample(x)
 | |
| help(sample)
 | |
| sample(x,replace=T)
 | |
| sample(x,replace=T)
 | |
| sample(x,replace=F)
 | |
| c
 | |
| x
 | |
| sample(x,replace=T)
 | |
| x
 | |
| help(sample)
 | |
| sample(x[x>9])
 | |
| sample(x[x>8])
 | |
| help(sample)
 | |
| x <- 1:10
 | |
| sample(x[x>8])
 | |
| sample(x[x>])
 | |
| help(sample)
 | |
| help(sample)
 | |
| help(sample)
 | |
| sample(auto,size=length(mpg01)/2)
 | |
| x <- length(mpg01)
 | |
| sample(x,size=length(mpg01)/2)
 | |
| auto[sample(x,size=length(mpg01)/2)]
 | |
| auto$mpg[sample(x,size=length(mpg01)/2)]
 | |
| help(data.frame)
 | |
| data.frame(
 | |
| help(data.frame)
 | |
| auto[sample(x,size=length(mpg01)/2)]
 | |
| train = sample(x,size=length(mpg01)/2)
 | |
| train = 
 | |
| auto[train]
 | |
| auto$mpg[train]
 | |
| auto$mpg[train,]
 | |
| auto$mpg[train]
 | |
| auto$mpg[23]
 | |
| auto$mpg[228]
 | |
| auto$mpg[391]
 | |
| auto.test=auto[!train]
 | |
| auto.train=auto[train]
 | |
| auto.test
 | |
| summary(auto.test)
 | |
| train=(mpg<15)
 | |
| train
 | |
| train = (sample(x,size=length(mpg01)/2))
 | |
| train
 | |
| head(auto)
 | |
| auto[,train[
 | |
| auto[,train]
 | |
| train
 | |
| help(contains)
 | |
| auto[1,train]
 | |
| train
 | |
| auto[[,train]]
 | |
| auto[[1,train]]
 | |
| autoi
 | |
| head(auto)
 | |
| head(auto[sample(nrow(auto),397/2)])
 | |
| head(auto[sample(nrow(auto),3)])
 | |
| data = data.frame(auto)
 | |
| data
 | |
| head(data[sample(nrow(data),3)])
 | |
| nrow(data)
 | |
| head(data[sample(ncol(data),3)])
 | |
| head(data[sample(ncol(data),397/2)])
 | |
| head(data[sample(ncol(data),3)])
 | |
| head(data[sample(ncol(data),3)])
 | |
| head(data[sample(ncol(data),3)])
 | |
| head(data[sample(ncol(data),3)])
 | |
| head(data[,sample(ncol(data),3)])
 | |
| head(data[,sample(ncol(data),3)])
 | |
| head(data[,sample(ncol(data),3)])
 | |
| head(data[,sample(ncol(data),3)])
 | |
| head(data[,sample(ncol(data),3)])
 | |
| head(data[sample(ncol(data),3),])
 | |
| head(data[sample(ncol(data),3),])
 | |
| head(data[sample(ncol(data),3),])
 | |
| head(data[sample(nrow(data),3),])
 | |
| head(data[sample(nrow(data),397/2),])
 | |
| head(data[sample(nrow(data),397/2),])
 | |
| head(data[sample(nrow(data),397/2),])
 | |
| head(data[sample(nrow(data),397/2),])
 | |
| head(data[sample(nrow(data),397/2),])
 | |
| head(auto[sample(nrow(auto),397/2),])
 | |
| head(auto[sample(nrow(auto),397/2),])
 | |
| head(auto[sample(nrow(auto),397/2),])
 | |
| head(auto[sample(nrow(auto),397/2),])
 | |
| head(auto[sample(nrow(auto),397/2),])
 | |
| head(auto[sample(nrow(auto),397/2),])
 | |
| head(auto[sample(nrow(auto),397/2),])
 | |
| train = auto[sample(nrow(auto),397/2),]
 | |
| [sample(nrow(auto),397/2),]
 | |
| sample(nrow(auto),397/2)
 | |
| train sample(nrow(auto),397/2)
 | |
| train = sample(nrow(auto),397/2)
 | |
| autp[train,]
 | |
| auto[train,]
 | |
| train = sample(nrow(auto),397/2)
 | |
| head(auto[train,])
 | |
| head(auto[!train,])
 | |
| traindata = auto[train,]
 | |
| testdata = auto[!train,]
 | |
| testdata
 | |
| traindata
 | |
| length(traindata)
 | |
| length(traindata$mpg)
 | |
| 198*2
 | |
| summary(testdata)
 | |
| testdata = auto[!train]
 | |
| testdata
 | |
| testdata = auto[!train,]
 | |
| train
 | |
| summary(train)
 | |
| names(train)
 | |
| head(traindata)
 | |
| testdata = auto[!train,]
 | |
| testdata
 | |
| !train
 | |
| train
 | |
| ?sample
 | |
| sort(train)
 | |
| train_vals = train
 | |
| train = rep(false,397)
 | |
| train = rep(F,397)
 | |
| train
 | |
| help for
 | |
| ?for
 | |
| ?for
 | |
| help)for)
 | |
| help(for)
 | |
| help(for)
 | |
| help lapply()
 | |
| ?lapply
 | |
| sapply(train,
 | |
| ?sapply
 | |
| sapply(train,
 | |
| ?sapply
 | |
| train[train_vals]=T
 | |
| train
 | |
| traindata = auto[train,]
 | |
| traindata
 | |
| length(auto)
 | |
| length(traindata)
 | |
| length(traindata$mpg)
 | |
| testdata=auto[!train,]
 | |
| length(testdate$mpg)
 | |
| length(testdata$mpg)
 | |
| training_indices = sample(nrow(auto),397/2)
 | |
| train_bools = rep(F,length(auto$mpg))
 | |
| train_bools[training_indices]=T
 | |
| head(train_bools)
 | |
| length(train_bools)
 | |
| train_data = auto[train_bools,]
 | |
| test_data = auto[!train_bools,]
 | |
| summary(train_data)
 | |
| summary(test_data)
 | |
| lda.fit
 | |
| library(MASS)
 | |
| lda.fit
 | |
| lda()
 | |
| detach(auto)
 | |
| mpg01
 | |
| mpg
 | |
| attach(test_data)
 | |
| mpg01
 | |
| names()
 | |
| names(test_data)
 | |
| ldf.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data)
 | |
| detach(test_data)
 | |
| ldf.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data)
 | |
| lda.fit
 | |
| lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data)
 | |
| lda.fit
 | |
| summary(lda.fit)
 | |
| coefficients(lda.fit)
 | |
| plot(lda.fit)
 | |
| lda.pred=predict(lda.fit,test_data)
 | |
| lda.pred=predict(lda.fit, !training_bools)
 | |
| lda.pred=predict(lda.fit, !training_indices)
 | |
| test_data
 | |
| lda.pred=predict(lda.fit, test_data)
 | |
| lda.pred
 | |
| plot(lda.pred)
 | |
| names(lda.pred)
 | |
| lda.class=lda.pres$class
 | |
| lda.class=lda.pred$class
 | |
| table(lda.class,testdata)
 | |
| table(lda.class,test_data)
 | |
| length(lda.class)
 | |
| length(test_data)
 | |
| table(lda.class,test_data$mpg01)
 | |
| mean(lda.class==test_data$mpg01)
 | |
| sum(lda.pred$posterior[,1]>=.5)
 | |
| sum(lda.pred$posterior[,1]<.5)
 | |
| lda.pred$posterior[,1]
 | |
| sum(lda.pred$posterior<.5)
 | |
| lda.pred$posterior
 | |
| lda.pred$posterior<5
 | |
| lda.pred$posterior<.5
 | |
| sum(lda.pred$posterior<.5)
 | |
| sum(lda.pred$posterior<.5[,1])
 | |
| sum(lda.pred$posterior<.5[1])
 | |
| sum(lda.pred$posterior<.5[2])
 | |
| lda.pred$posterior<.5[2]
 | |
| lda.pred$posterior<.5
 | |
| lda.pred$posterior
 | |
| lda.pred$posterior[,1]
 | |
| lda.pred$posterior[1,]
 | |
| lda.pred$posterior[,2]
 | |
| lda.pred$posterior[,1]
 | |
| lda.pred$posterior[,1]>.5
 | |
| sum(lda.pred$posterior[,1]>.5)
 | |
| sum.bool(lda.pred$posterior[,1]>.5)
 | |
| ?sum
 | |
| sum.bool(lda.pred$posterior[,1]>.5,na.rm=T)
 | |
| sum(lda.pred$posterior[,1]>.5,na.rm=T)
 | |
| sum(lda.pred$posterior[,1]>.5)
 | |
| sum(lda.pred$posterior[,1]>.5,na.rm=T)
 | |
| sum(lda.pred$posterior[,1]>=.5,na.rm=T)
 | |
| sum(lda.pred$posterior[,1]<.5,na.rm=T)
 | |
| mean(lda.pred$[,1]==test_data,na.rm=T)
 | |
| lda.pred
 | |
| lda.pred$class
 | |
| lda.pred$class==test_data$mpg01
 | |
| mean(lda.pred$class==test_data$mpg01,na.rm=T)
 | |
| mean(lda.pred$class!=test_data$mpg01,na.rm=T)
 | |
| lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data)
 | |
| lda.fit
 | |
| mean(lda.pred$class==test_data$mpg01,na.rm=T)
 | |
| lda.pred=predict(lda.fit, test_data)
 | |
| mean(lda.pred$class==test_data$mpg01,na.rm=T)
 | |
| mean(lda.pred$class!=test_data$mpg01,na.rm=T)
 | |
| train_data == test_data
 | |
| train_data$mpg01 == test_data$mpg01
 | |
| lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data)
 | |
| lda.pred=predict(lda.fit, test_data)
 | |
| mean(lda.pred$class!=test_data$mpg01,na.rm=T)
 | |
| lda.pred
 | |
| lda.pred$posterior[,1]
 | |
| summary(lda.fit)
 | |
| lda.fit
 | |
| lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data)
 | |
| lda.fit
 | |
| mean(lda.pred$class!=test_data$mpg01,na.rm=T)
 | |
| lda.pred=predict(lda.fit, test_data)
 | |
| mean(lda.pred$class!=test_data$mpg01,na.rm=T)
 | |
| head(lda.pred)
 | |
| lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data)
 | |
| lda.pred=predict(lda.fit, test_data)
 | |
| head(lda.pred)
 | |
| mean(lda.pred$class!=test_data$mpg01,na.rm=T)
 | |
| qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data)
 | |
| qda.fit
 | |
| qda.class=predict(qda.fit,test_data)$class
 | |
| qda.class=predict(qda.fit,test_data,na.rm=T)$class
 | |
| qda.class=predict(qda.fit,test_data)$class
 | |
| qda.class
 | |
| mean(qda.pred$class!=test_data$mpg01,na.rm=T)
 | |
| qda.pred=predict(qda.fit,test_data)
 | |
| qda.pred=predict(qda.fit,test_data,na.rm=T)
 | |
| mean(qda.pred$class!=test_data$mpg01,na.rm=T)
 | |
| glm.fit=glm(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data,family=binomial)
 | |
| glm.probs=predict(glm.fit,test_data,type="response")
 | |
| glm.pred=rep(0,199)
 | |
| glm.pred[glm.probs>.5]=1
 | |
| table(glm.pred,test_data$mpg01)
 | |
| mean(glm.pred!=test_data$mpg01)
 | |
| library(class)
 | |
| ?cbind
 | |
| ?knn
 | |
| knn.fit = knn(train_data,test_data,auto$mpg01[training_indices])
 | |
| knn.fit = knn(train_data,test_data,auto$mpg01[training_indices],k=1)
 | |
| knn.fit = knn(train_data,test_data,auto$mpg01[training_indices],k=1)
 | |
| ?knn
 | |
| training_indices
 | |
| train_bools
 | |
| knn.fit = knn(train_data,test_data,auto$mpg01[train_bools],k=1)
 | |
| sdf = (mpg01<1)
 | |
| sdf = (auto$mpg01<1)
 | |
| sdf
 | |
| train_bools
 | |
| cbind(horsepower,displacement)
 | |
| cbind(train_data$horsepower,displacement)
 | |
| cbind(train_data$horsepower,train_data$displacement)
 | |
| cbind(auto$horsepower,auto$displacement)[train_bools]
 | |
| cbind(auto$horsepower,auto$displacement)[train_bools,]
 | |
| cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
 | |
| cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
 | |
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
 | |
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
 | |
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
 | |
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
 | |
| train.mpg01 = auto[train_bools]
 | |
| train.mpg01 = auto$mpg01[train_bools]
 | |
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
 | |
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
 | |
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
 | |
| train.mpg01 = auto$mpg01[train_bools]
 | |
| set.seed(56)
 | |
| knn.pred = knn(train.X,test.X,train.mpg01,k=1)
 | |
| ?cbind
 | |
| ?Knn
 | |
| ?knn
 | |
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
 | |
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
 | |
| train.mpg01 = auto$mpg01[train_bools]
 | |
| train.X = train.X[!is.na(train.X)]
 | |
| test.X = data.frame(test.X,
 | |
| train.mpg01 = train.mpg01[!is.na(train.mpg01)]
 | |
| knn.pred = knn(train.X,test.X,train.mpg01,k=1)
 | |
| length(train.mpg01)
 | |
| length(test.X)
 | |
| text.X
 | |
| test.X
 | |
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
 | |
| length(test.X)
 | |
| test.X
 | |
| knn.pred = knn(train.X,test.X,train.mpg01,k=1)
 | |
| train.X
 | |
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
 | |
| train.X
 | |
| test.X
 | |
| knn.pred = knn(train.X,test.X,train.mpg01,k=1)
 | |
| ?knn
 | |
| length(train.X)
 | |
| length(train.X[1,])
 | |
| length(train.X[,1])
 | |
| ?knn
 | |
| plot(auto)
 | |
| train.X = cbind(auto$horsepower,auto$displacement)[train_bools,]
 | |
| test.X = cbind(auto$horsepower,auto$displacement)[!train_bools,]
 | |
| train.mpg01 = auto$mpg01[train_bools]
 | |
| knn.pred = knn(train.X,test.X,train.mpg01,k=1)
 | |
| train.X
 | |
| test.X
 | |
| train.mpg01
 | |
| knn.pred = knn(train.X,test.X,train.mpg01,k=1)
 | |
| q()
 | |
| train
 | |
| train.X
 | |
| train.X
 | |
| test.X
 | |
| p1 = seq(1:1))
 | |
| p1 = 1:10
 | |
| p1
 | |
| p1 = ,1:10
 | |
| p2 = 10:20
 | |
| p2
 | |
| cbind(p1,p2)
 | |
| p3=c(1,2,3,4,5,7,9,8,10)
 | |
| p4=c(10,11,12,13,14,15,16,17,18,29,20)
 | |
| px = cbind(p1,p2)
 | |
| py = cbind(p3,p4)
 | |
| py
 | |
| ?formula
 | |
| test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,]
 | |
| train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,]
 | |
| train.mpg01 = auto$mpg01[train_bools]
 | |
| knn.pred = knn(train.X,test.X,train.mpg01,k=1)
 | |
| import(library)
 | |
| library(MASS)
 | |
| knn.pred = knn(train.X,test.X,train.mpg01,k=1)
 | |
| library(library)
 | |
| library(class)
 | |
| knn.pred = knn(train.X,test.X,train.mpg01,k=1)
 | |
| knn.pred
 | |
| summary(test_data)
 | |
| summary(train_data)
 | |
| fix(train_data)
 | |
| ?fix
 | |
| fix(test_data)
 | |
| test_data.fix
 | |
| test_data.fix()
 | |
| fix(test_data)
 | |
| q()
 |