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ABSTRACT
We describe SPINN (Straightforward Pulsar Identification using Neural Networks), a high-
performance machine learning solution developed to process increasingly large data outputs
from pulsar surveys. SPINN has been cross-validated on candidates from the southern High
Time Resolution Universe (HTRU) survey and shown to identify every known pulsar found in
the survey data while maintaining a false positive rate of 0.64 per cent. Furthermore, it ranks
99 per cent of pulsars among the top 0.11 per cent of candidates, and 95 per cent among the
top 0.01 per cent. In conjunction with the PEASOUP pipeline, it has already discovered four new
pulsars in a re-processing of the intermediate Galactic latitude area of HTRU, three of which
have spin periods shorter than 5 ms. SPINN’s ability to reduce the amount of candidates to
visually inspect by up to four orders of magnitude makes it a very promising tool for future
large-scale pulsar surveys. In an effort to provide a common testing ground for pulsar candidate
selection tools and stimulate interest in their development, we also make publicly available
the set of candidates on which SPINN was cross-validated.
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1 IN T RO D U C T I O N

Discovering pulsars typically involves identifying periodic signals
in observational data, then reducing each of them into a set of diag-
nostic values and graphical representations referred to as a candi-
date. A modern all-sky pulsar survey such as High Time Resolution
Universe(HTRU; Keith et al. 2010) produces several million such
candidates, the overwhelming majority of which are either the re-
sult of human-made radio-frequency interference (RFI), or due to
various forms of noise. The selection of promising candidates to
be observed again for confirmation remains up to this day heavily
dependent on human inspection, a very time-consuming process be-
coming increasingly unmanageable as surveys continue to evolve
into ever larger scale operations over time. Next generation instru-
ments such as the Square Kilometre Array, can be expected to find
20 000 pulsars (Smits et al. 2009), but not before an estimated
200 million candidates are properly classified, if we are to conser-
vatively assume that the fraction of pulsars to be found among them
(one in ten thousand at most) is comparable to current surveys (Lyon
et al. 2013). This implies that, among other challenges, the problem
of automated candidate selection must be decisively solved.

� E-mail: vmorello@gmail.com

Supervised Machine Learning (ML) classifiers offer great
promise in this area, and were first introduced into the field by
Eatough et al. (2010). They are general purpose methods that can
be used to classify instances of multiclass data, by operating on a
well-chosen set of their numerical properties called features. They
first build an internal model of the underlying statistical distributions
of these features for each data class through the process of training.
In the context of supervised learning, this requires a labelled data set
carefully prepared by a human expert, or training set. Once learned,
that internal representation enables the classifier to subsequently
label previously unseen data. Supervised ML algorithms are well
suited to classification problems where no reliable and simple rules
are available to perform the task. In this work, we use such a class of
algorithms, namely Artificial Neural Networks (ANN), and attempt
to exceed the performance of previous automated candidate selec-
tion tools, aiming in particular to correctly label pulsars with a 100
per cent success rate. To achieve that goal, we used a larger training
data set that included 1196 pulsar observations from 542 distinct
pulsars, wrote a custom ANN implementation for increased control
over its training process and designed new features to describe the
nature of a pulsar candidate.

This paper first outlines the problem of candidate selection by
visual inspection, and offers a review of existing methods to ei-
ther reduce the workload or automate the process. In Section 3,
we present a detailed introduction to ANN. Section 4 details the
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Figure 1. Candidate information for the known pulsar J1017−7156, showing a number of physical diagnostics and six graphical representations describing
the periodic signal it emits. See Section 2.1 for an explanation of the graphs.

features, we use to capture candidate characteristics, and the ratio-
nale for their design. In Section 5, our ANN implementation is eval-
uated on a set of candidates from the intermediate Galactic latitude
area of the HTRU survey (HTRU-medlat). Its efficiency when used
on new data is shown in Section 6. We conclude with a discussion of
the reasons of SPINN’s (Straightforward Pulsar Identification using
Neural Networks) success, its current limitations, possible future
improvements, and how future pulsar surveys should be run with
ML classifiers in mind, if human intervention in classification is to
be eventually reduced to a bare minimum.

2 PU L S A R C A N D I DAT E S E L E C T I O N

Identifying new pulsar signals in observational radio data can be
done either via single pulse searches (McLaughlin & Cordes 2003),
or periodicity searches which we briefly summarize here. The first
computational step, the so-called de-dispersion or DM Search, con-
sists in correcting for the dispersive properties of the interstellar
medium, which induce a delay in the observed arrival time of pulses
that is both dependent on the observational frequency and the a pri-
ori unknown free-electron density integrated along the line of sight,
a parameter called dispersion measure (DM). Discovering pulsars
in binary systems may also require the application of methods to
compensate for the effect of orbital motion of the radio source, as
its change of velocity along the line of sight causes its apparent
pulse period to vary over the course of an observation, as a result
of the Doppler effect. One of these methods is time domain resam-
pling (Johnston & Kulkarni 1991), also referred to as Acceleration
Search, working under the assumption that orbital motion during an
observation sufficiently shorter than the orbital period of the source
is well approximated by a constant acceleration.

A thorough processing of the radio data therefore involves a grid
search in both DM and acceleration, and for each trial [postulated

(DM, Acceleration) pair], the time series is transformed accordingly,
and periodic signals are identified using a fast Fourier transform.
Finally, the transformed time series can be ‘folded’ modulo the pe-
riod of every significant periodic signal found, coherently stacking
and summing the train of pulses of a potential pulsar. The folding
process returns the final product of a pulsar survey: candidates with
their set of diagnostic information, described shortly after. More
detailed information about modern pulsar searching methods can
be found in the standard references (Lorimer & Kramer 2005; Lyne
& Graham-Smith 2006).

2.1 Visual inspection of candidates

Fig. 1 shows the diagnostic information for a known pulsar that
exhibits all the typical characteristics. The plots in the left-hand
column describe, from top to bottom, the pulse in different bands
of observed frequencies (sub-bands plot), the evolution of the pulse
during the observation (sub-integrations plot), and the ‘folded pro-
file’ which is the pulse averaged across all the observed frequencies
for the entire observation. A pulsar is expected to emit in a broad
range of wavelengths, with its signal remaining visible for most of
the observation with a stable pulse shape. Most pulsars also display
a folded profile made of a single narrow peak, although wide and/or
multipeak profiles are not uncommon. The right-hand column of
plots contains from top to bottom: the Period–DM plane, which
represents the evolution of the signal-to-noise ratio (S/N) of the
signal as it is folded with slightly different values of period and
DM. Darker colours denote a brighter signal. Below, the DM–S/N
and Acceleration–S/N curves summarize the results of earlier DM
and Acceleration trials, before the time series was folded, associ-
ating the S/N of the candidate in the Fourier domain with DM and
Acceleration trial values. These plots are used to determine that the
signal of a prospective pulsar is associated with well-defined and
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unique values of acceleration, period and DM. For the latter, an
unambiguously non-zero value strongly indicates an extraterrestrial
origin for the source.

2.2 Existing automated methods

Visual inspection of every candidate produced by a modern sur-
vey is no longer a reasonable option. As an example, our latest
processing of the HTRU intermediate latitude survey (Barr et al.
in preparation) returned 4.3 million candidates, which, at a very
optimistic rate of one candidate per second, would require approxi-
mately 1200 person hours to classify. That proposition can be made
even less economically interesting in the case of re-processing
of data analysed one or more times before, in which the number
of expected new discoveries is much lower. The repetitive nature of
the work also leads to errors during long inspection sessions. As a
consequence, techniques to reduce the required amount of human
intervention have been used for more than a decade.

Graphical selection tools such as REAPER (Faulkner et al. 2004)
and JREAPER (Keith et al. 2009) enable the user to project up to
several thousand candidates at once in scatter plots, representing
one of their features versus another, leading to rejection en masse
of candidates not exhibiting the desired properties, for example
excessively faint candidates, or ones found too close to narrow
frequency bands polluted by RFI. Scoring algorithms such as PEACE

(Lee et al. 2013) have also been developed, combining six numerical
candidate quality factors into one formula that produces a subjective
ranking where pulsars are expected to be found close to the top. ML
solutions have also been proposed, first by Eatough et al. (2010),
who used an artificial neural network to classify outputs from the
Parkes Multibeam Pulsar Survey (PMPS) survey, operating on 8–12
numerical features extracted from candidate diagnostic information.
Bates et al. (2012) applied the same technique on the HTRU survey,
extending the number of features to 22. More recently, Zhu et al.
(2014) combined a variety of ML algorithms that perform pattern
recognition directly on candidate plots such as those shown in Fig. 1,
instead of first attempting to reduce them into features. In this work,
we present here, we use an approach most similar to Eatough et al.
(2010).

3 A N N F O R BI NA RY C L A S S I F I C AT I O N

3.1 Supervised learning

Supervised learning is the task of inferring a real-valued function
from a set of labelled data points called training examples. A training
example consists of a pair (x, y) where x ∈ R

n is the input or
feature vector, and y the target value or desired output (typically
y ∈ R) chosen by human experts or gathered from experimental
measurements. Supervised learning can be used to solve regression
problems, where the goal is to predict a continuous variable from a
set of inputs, and classification problems, where one tries to assign
a discrete class label to new unlabelled data points. In the context
of binary classification, the two possible class labels are encoded in
the target value, which may be set for example to 1 for members of
the ‘positive’ class, and to 0 for members of the ‘negative’ class.

A wide range of supervised learning algorithms is available, in-
cluding ANN. One of the valuable features of ANNs that motivated
us to choose them is that they naturally produce a real-valued con-
tinuous output, the activation value. While it can be easily converted
to a binary class label by applying a threshold, the activation value
also represents a level of confidence in the class label obtained. In

the context of pulsar candidate classification, this can be used as a
way to prioritize inspection and confirmation of candidates as we
will see later. In this section, we only present an introduction to
ANNs geared more specifically towards their use as binary classi-
fiers. For a more advanced and general overview, see e.g. Bishop
(1995) or Rojas (1996).

3.2 Mathematical model

An artificial neuron is a computational model (see Fig. 2) inspired
by its biological counterpart, which constitutes the basic building
block of a network. It is parametrized by a vector of weights w of
pre-determined dimension, a scalar bias term b, and an activation
function f. For a given feature vector x, it outputs an activation
value a given by

a = f (w · x + b). (1)

Common choices for the activation function are sigmoid shaped
non-linear functions such as the hyperbolic tangent or the logistic
sigmoid function, the expression of the latter being

f (z) = 1

1 + exp (−z)
, (2)

which takes values between 0 and 1 (see Fig. 3).

Figure 2. General model of an artificial neuron with m inputs. The bias
term b can be seen as a weight operating on an extra constant input equal
to one. The activation function f usually chosen is the logistic sigmoid or
similar.

Figure 3. The logistic sigmoid activation function.
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Figure 4. Illustration of the operation of neural networks on 2D toy data
sets. Top panel: a single neuron defines a splitting hyperplane in feature
space, the harshness of the split increases with the norm of the weights vector.
Bottom panel: combining neurons into layered networks allows complex
decision boundaries to be carved. Here, the three linear separations defined
by the first layer of neurons are readily visible. Bias terms are not represented
in network diagrams for clarity.

A very useful geometric interpretation is to visualize a single
artificial neuron as defining a separating hyperplane in feature space
(Fig. 4, top panel), with a normal vector w defining its orientation,
and the bias term b defining its altitude at the origin. Note that
the norm of the weights vector ‖w‖ is a meaningful parameter on
its own, despite not having any effect on the orientation of the
hyperplane: it defines its ‘sharpness’.

Unsurprisingly, an individual neuron performs poorly on non-
linearly separable data, but any number of them can be connected
into layered networks capable of carving boundaries of arbitrarily
high complexity in feature space (Fig. 4, bottom panel)

3.3 Training

Training is the process of finding an adequate set of weights for
the given classification problem. This is posed as an optimization
problem, where a cost function or loss function, which measures the
discrepancy between target values and actual outputs of the network
on the training set, must be minimized with respect to the weights
and biases of the whole network. A common choice of cost function
is the mean squared error

E
(
w

(l)
ij , b

(l)
j

)
= 1

m

m∑
k=1

(ak − yk)2, (3)

where w
(l)
ij and b

(l)
j are respectively the weights and bias term of the

jth neuron in layer number l, yk and ak are, respectively, the target
value and activation value for training example number k, and m
the total number of training examples. The cost function is mini-
mized using gradient descent, starting from a random initialization

and going through iterations where the following three steps are
performed in succession.

(i) Compute the activation values of the network on the data set,
and the differences with the target values.

(ii) Compute the derivative of the cost function with respect to
the network parameters (weights and biases), using the backpropa-
gation algorithm (see below).

(iii) Correct every network parameter ξ with the following update
rule, where η is the learning rate:

ξ : = ξ − η
∂E

∂ξ
. (4)

The backpropagation algorithm (see e.g. Rojas 1996, for a de-
scription and proof) is a very computationally efficient way to com-
pute the gradient of the cost function with respect to the weights and
biases of the network, that historically made the training of large
networks tractable.

3.4 Regularization

The training process only yields the best network weights and biases
to properly label the training set, which does not necessarily im-
ply optimal classification performance on unseen data. The model
learned may capture not only legitimate patterns in the data, but
also fit irregularities specific to the training set (due for example to
its limited size), a situation referred to as overfitting. Regularization
consists in limiting the complexity of a model to improve its ability
to generalize to new data. One such method that we used is L2
weight decay, where a penalty term is introduced into the neural
network cost function (3) usually written as

E
(
w

(l)
ij , b

(l)
j

)
= 1

m

m∑
k=1

(ak − yk)2 + λ
∑

w
(l)2
ij , (5)

with λ being the weight decay parameter. The net effect is to prevent
the weights of the network from growing excessively large during
training, therefore simplifying the decision boundary shape in fea-
ture space. The optimal value of λ, along with the optimal number
of neurons to use, is found through grid search and cross-validation,
described in Section 5.

4 FE AT U R E D E S I G N

4.1 Design choices

Features are the properties of an unlabelled data instance upon which
an ML algorithm decides to which class it is most likely to belong.
The main part of the present work consisted in reducing pulsar
candidates into maximally relevant features, i.e. that take values as
different as possible for pulsars and non-pulsars, and ensure that
these features capture a wide range of information and domain
knowledge of a human classifier. To ensure maximum classification
performance, particularly with respect to the identification of faint
pulsars, we obeyed the following set of guidelines.

(1) Reduce selection effects against faint or more exotic pulsars,
especially Millisecond pulsars (MSPs) or the ones with large duty
cycles, which have been the most difficult to identify in the past
(Eatough et al. 2010; Bates et al. 2012). As an example, the number
of DM trials or Acceleration trials above a certain S/N threshold
were found to introduce a strong and unjustified bias against short-
period candidates, regardless of their brightness. That feature was
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used in the past (Eatough et al. 2010; Bates et al. 2012) but not in
our own work.

(2) Ensure complete robustness to noisy data. As a result, no
curve fitting to folded profiles or DM search graphs was attempted,
as the results are very difficult to exploit properly in the low-S/N
regime, in which we are most interested.

(3) Limit the number of features to a set of very relevant ones, as
the very limited sample of pulsar observations is unlikely to suffi-
ciently cover all the degrees of freedom of a large feature space. An
excessive number of features induces a reduction in classification
performance. This is a facet of the ‘curse of dimensionality’ prob-
lem in ML known as the Hughes effect (Hughes 1968). This also
implies avoiding the use of correlated features, as any extra feature
must capture additional information.

4.2 Features used

(1) S/N of the folded profile (log-scale). S/N is a measure of
signal significance, which can be defined in various ways. We use
the definition (see e.g. Lorimer & Kramer 2005) given by equation
(6). For a given contiguous pulse window W,

S/N = 1

σ
√

w

∑
pi∈W

(pi − b), (6)

where pi is the amplitude of the ith bin of the folded profile, w

is the width of the pulse region W measured in bins, b and σ

are, respectively, the mean value and the standard deviation of the
folded profile in the off-pulse region. The position and width of the
pulse are determined by an exhaustive search that maximizes S/N.
Once determined, the indices of the bins corresponding to pulse and
baseline regions are retained in memory for further data processing.
We also compute the equivalent width of the profile weq for further
processing, defined by

weq max
pi∈W

pi =
∑
pi∈W

(pi − b), (7)

which, in other words, would be the width of a top-hat pulse window
that would have the same area and peak height as the original pulse.
Since the values of S/N can span a wide range across candidates, we

use its logarithm as a feature. Past a certain level, an increase of S/N
does not make a candidate any more significant to a human expert
on its own. All other things equal, two candidates with extremely
significant S/N of 50 and 500 can be considered equally likely to
be legitimate pulsars.

(2) Intrinsic equivalent duty cycle of the pulse profile. The duty
cycle of a pulsar is the ratio of its pulse width w expressed in
seconds to its spin period. Most folded profiles of pulsars show a
narrow pulse with a duty cycle typically below 5 per cent, while a
significant amount of terrestrial signals reach much higher values
up to 50 per cent. This can often be due to the significant amount
of phase drift exhibited by artificial sources during an observation,
leading to apparent smearing of their folded profiles. That being
said, some pulsars, especially among the millisecond population,
can have legitimately large duty cycles, which can be further in-
creased by dispersive smearing. To avoid penalizing such objects,
and further increase the usefulness of the duty cycle feature for clas-
sification, we remove the effect of dispersive smearing by defining
the intrinsic equivalent duty cycle of a candidate as

Deq = weq − �τ

P
, (8)

where P is the period of the candidate, weq its equivalent width
defined in (7) expressed in units of time, and �τ the dispersive
smearing time across a frequency channel. A first-order approxima-
tion of �τ is given by

�τ = 8.3μs

(
�f

MHz

) (
fc

GHz

)−3 (
DM

cm−3pc

)
, (9)

where �f is the width of an observational frequency channel, fc

the centre observation frequency, and DM the dispersion measure
of the candidate. Negative intrinsic equivalent duty cycle values
are possible, if the dispersive smearing time exceeds the equivalent
width. Strongly negative values of Deq are not expected for a genuine
astronomical signal, and this constitutes an extra selection pattern
that can be learned by an ML algorithm.

(3) Ratio between barycentric period and dispersion measure
(log-scale). As far as the HTRU data are concerned, the most pulsar-
like RFI candidates (bright and persistent in time) tend to appear at
periods longer than one second, and at dispersion measures close to
zero. A way to combine these two selection criteria into one is by
considering the ratio between period and DM. As we did for S/N,
since the values of this ratio span a large range across the pulsar and
RFI population, we actually use the logarithm of the ratio between
period and DM as a feature. As shown in Fig. 5, the combination
of log (P/DM) and intrinsic equivalent duty cycle offers a powerful
selection tool that is fully independent from S/N, splitting clearly the
data into three distinct clusters: pulsars, noise candidates (faint), and
RFI (bright). Note that the usefulness of this feature is dependent
on the RFI landscape at the place and even time of observation, and
its portability to other surveys is unknown.

(4) Validity of optimized dispersion measure. Pulsars can have a
wide variety of dispersion measures while their RFI counterparts
usually exhibit DM values very close to zero, but no other truly
selective pattern based solely on DM can be found. Therefore, we
define the validity of dispersion measure as

VDM = tanh(DM − DMmin). (10)

The purpose of this feature is to ensure that the classifier learns to
very strongly reject candidates with a DM below a certain threshold,
below which no pulsars are ever found. We used DMmin = 2 for
HTRU-medlat data.

(5) Persistence of signal through the time domain. A genuine
pulsar is expected to be consistently visible during most of an ob-
servation, and this provides a selection criterion against impulsive
man-made signals. Refining an interesting idea proposed by Lee
et al. (2013), we attribute a ‘score’ to every sub-integration of the
candidate, based on its S/N (see equation 6) measured with respect
to the pulse window and baseline region defined by the folded pro-
file. Note that negative S/N values are possible if signal is found
outside the expected window, a common property of RFI. The scor-
ing function (see Fig. 6) is defined as

χ (s) =
{

1 − exp(− s
b
) if s ≥ 0

s
b

otherwise
(11)

where s is the S/N of the candidate in a sub-integration, measured
as described above, and b the benchmark S/N which is a user-
defined parameter. The average of the scores obtained through all
sub-integrations constitutes the persistence of the candidate through
the time domain. Note that b should be chosen low enough to filter
out signals visible only for a small fraction of the observation,
but not so much as to excessively penalize the class of ‘nulling’
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Figure 5. HTRU-Medlat training data represented in the plane log(P/DM) and intrinsic equivalent duty cycle, showing three main clusters. MSPs are defined
as having periods shorter than 50 ms for the purpose of this plot. RFI and noise candidates are represented with a size proportional to their S/N. For readability,
RFI and noise candidates with S/N lower than seven or negative intrinsic duty cycles are not shown. This shows the existence of a good pulsar selection criterion
independent from S/N, which is very valuable, and learnable by any ML algorithm.

Figure 6. An instance of the sub-integrations scoring function. Over an
entire observation, persistent signals, even faint, can score higher than bright
and impulsive ones.

pulsars (Backer 1970) that can become invisible for a part of the
observation. We found a sensible, albeit arbitrary choice to be

b = 2Smin√
nsub

, (12)

with Smin being an estimation of the overall S/N of the faintest
pulsars still clearly visible to the trained eye, and nsub the total
number of sub-integrations. We set Smin = 8, also in accordance
with the fact that no pulsar discovered with an S/N below 9.5 was
ever confirmed over the course of the HTRU-medlat survey.

(6) Root-mean-square distance between the folded profile and
the sub-integrations. The ‘persistence through time’ feature is in-
sufficient on its own to capture the information that RFI signals tend
to show some amount of drift in phase or even shape changes during
an observation, enough to easily betray their non-astronomical na-
ture even to a moderately well-trained human eye. To alleviate this
problem, we define a measure of the variability of the pulse shape
though the observation. To compute it, we first normalize the folded
profile to values between 0 and 1, and also normalize individually
every sub-integration in the same fashion. Let pi be the value of the
ith bin of the folded pulse profile, and sij be the value of the ith bin
of the jth sub-integration. Let W be once more the set of bin indexes
that constitute the pulse window in the folded profile, and w the
pulse window width. We then simply define the root mean square
distance between the folded profile of the candidate and each of its
sub-integrations as

DRMS =
√

1

wnsub

∑
i∈W

∑
j

(pi − sij )2. (13)

This feature helps characterize persistent RFI in the medium to high
S/N regime.
As a final word, a ‘Persistence of signal through the frequency

domain’ similarly defined as its time domain counterpart was tried
and initially believed to provide a very useful selection criterion
to separate broad-band pulsar signals from all the others. It was
eventually removed from the feature set, as its addition proved
slightly detrimental to classification performance on HTRU-medlat
data. We attributed this effect to the relative absence of candidates
that arise from narrowband RFI, but it might be useful for other
surveys facing different RFI populations. Computing persistence
features as defined earlier relies on comparing the brightness of the
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signal versus a benchmark, which is constant in the time domain.
For surveys with large fractional bandwidths, correcting for the
average spectral index of pulsars when computing that benchmark
in the frequency domain could be beneficial.

5 C L A S S I F I C AT I O N P E R F O R M A N C E O N
HTRU -MEDLAT DATA

5.1 Training set

Training examples were gathered from the outputs of a new pro-
cessing of HTRU-medlat data, performed as a test run of the
new high-performance GPU-based PEASOUP pipeline (Barr et al.
in preparation), with acceleration searching enabled. DMs from 0
to 400 cm−3 pc, and accelerations from −50 to +50 m s−2 were
searched, yielding in excess of a thousand candidates in each of
the 95 725 beams. Signal periods simultaneously found in three
beams or more of the same pointing were ignored, and the result-
ing 50 brightest candidates in every beam were folded, with the
exception that any signal with a Fourier-domain S/N in excess of
nine was automatically folded as well. This processing strategy
returned 4.34 million folded candidates. Each of them was indi-
vidually matched against the ATNF pulsar catalogue (Manchester
et al. 2005) to label all known pulsars (and their harmonics) that
were found by the pipeline. A total of 1196 observations of 542 dis-
tinct known pulsars were identified after being carefully reviewed
by eye to confirm their nature. They constituted the positive class
of the ANN training set, to which we added 90 000 non-pulsar ob-
servations picked at random as a negative class, to obtain a varied
and representative sample of the population of spurious folded can-
didates. We assumed that none of these were undiscovered pulsars:
in past HTRU-medlat processings, approximately 100 new pulsars
were found in 10 million folded candidates, a discovery rate of
1:100 000. In our re-processing set of candidates, it is expected to
be significantly lower.

The training set contains pulsars with varied spin periods, duty
cycles, and S/N. Among them, 77 have periods shorter than 50 ms
and 46 have duty cycles larger than 20 per cent. A total of 78 obser-
vations of pulsars have folded S/N below 10, down to a minimum
of 7.3. For the sake of comparison, no pulsar discovered with a
folded S/N below 9.5 was ever confirmed over the entire course of
the HTRU survey. Low S/N pulsars are difficult to distinguish from
noise fluctuations even by eye, and the limited observation time
available imposes a conservative S/N selection threshold (a consen-
sual value is 10) on the folded candidates to confirm. Despite these
limitations, fainter pulsar observations were kept in the training set
to ensure maximum sensitivity.

5.2 Implementation details

To obtain fine control over the training process, a custom ANN
implementation was written. We followed some practical recom-
mendations detailed at length in LeCun et al. (1998), which we
enumerate here.

(1) Feature scaling was performed before training, ensuring that
every individual feature has zero mean and unit standard deviation
over the entire training set.

(2) The hyperbolic tangent activation function was used instead
of the logistic sigmoid, yielding activation values ranging from −1
to +1.

(3) The ANN was trained using ‘mini-batches’, whereby during
each training epoch the network is presented only with a small,
changing subset of the training set. This is not only a much faster
process than standard ‘batch’ training, but also its noisy nature can
help to avoid local minima of the network cost function.

To overcome the large class imbalance of the training set, we over-
sampled the pulsars to obtain a 4:1 ratio of non-pulsars to pulsars,
so that pulsar candidates were ‘seen’ much more often by the ANN
during training, while preserving the variety of non-pulsars.

5.3 Choice of performance metrics

Obviously, the goal of an automated classifier is to identify the
largest possible fraction of pulsars while returning a minimal
amount of mislabelled noise or RFI (false positives). The two natu-
ral performance metrics for this problem, measured on a test sample
of labelled data, are therefore

Recall = True Positives

True Positives + False Negatives
, (14)

False positive rate = False Positives

True Negatives + False Positives
. (15)

The true positives are the positive examples correctly labelled
as such, and false negatives are the positive examples incorrectly
labelled as negatives. Recall is therefore the fraction of positives
properly labelled. Likewise, the false positive rate is the fraction
of negatives mislabelled as positives. Other common metrics such
as Accuracy or F-Score depend explicitly on class imbalance (the
ratio of positive to negative examples in the test data), and as such
are not suitable if we are to compare classifier performances across
different test samples or even different pulsar surveys. Since pulsars
remain arguably rare objects up to this day, missing any of them
carries a heavy cost, and emphasis must be put on maximizing
recall above all else. The amount of visual inspection required to
select folded candidates for confirmation is proportional to the false
positive rate of the classifier, for which low values are desirable.

5.4 Cross-validation

We performed a fivefold cross-validation procedure, to choose an
optimal network architecture and weight decay, and evaluate classi-
fication performance. This consists in randomly partitioning all of
the labelled data into five equally sized subsets, each of them being
successively held out as a test set, while only the remaining four
are used to train the ANN upon. This ensures that performance is
always evaluated on data unseen during training, and that over the
five iterations (‘folds’) of this procedure every candidate ends up in
the test set exactly once, at which point its ANN activation value
or ‘score’ (that takes continuous values between −1 and +1) was
recorded. We repeated the entire process 20 times, with different
random data partitions, obtaining a representative average score for
every candidate from our labelled sample that does not depend on
a specific training/test set split.

The resulting list of scores allowed us to determine, for every
score decision threshold between −1 and +1, what were the asso-
ciated Recalls and False positive rates, i.e. how many pulsars were
below that decision threshold, and how many RFI or noise candi-
dates were above. When later deploying the ANN on new data, this
gives an estimate of how far down the score ladder candidates should
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Figure 7. Results of 20 iterations of fivefold cross-validation. Every time a candidate was in the test set, and therefore not trained upon, its ANN activation
value, that we also refer to as score, was recorded. Left: histograms of average ANN scores obtained by every candidate from our labelled data. Right: expected
error rates on new data as a function of the score decision threshold chosen, whereby candidates scoring above that threshold are classified as pulsars.

be inspected by eye, where the tradeoff between Recall and False
positive rate is left to the user’s discretion. Furthermore, examining
consistently low-scoring pulsars gave insight into which ones the
ANN was biased against, which we will discuss later. Finally, by
repeating this whole procedure with various network architectures
and weight decay values, we were able to settle on an optimal ANN
configuration. It was chosen so as to minimize the number of non-
pulsars scoring better than the worst-scoring pulsar, that is minimize
the false positive rate at 100 per cent Recall. A simple two-layered
8:1 network (8 hidden units, one output unit) was found to yield the
best results, with performance progressively degrading with more
units.

5.5 Classification performance

Fig. 7 shows the distribution of scores obtained by all candidates
in our labelled sample during cross-validation, and illustrates the
Recall / False positive rate tradeoff. Table 1 summarizes expected
classification performance for various score decision thresholds.
The score distribution of pulsars shows a long tail where no more
than a dozen low-scoring pulsars are responsible for the major part
of the false positive rate. Their close inspection reveals that they
always share at least two of the following characteristics, making
them similar to noise or RFI candidates with respect to the fea-
ture space we used: large duty cycles in excess of 20 per cent, low
S/N (below 9), high value of log(P/DM). A few other low-scoring
pulsar observations were found to exhibit abnormally low persis-
tence through time, being rendered invisible during a part of the
observation by short bursts of RFI.

6 D EPLOYMENT O N H TRU-MEDLAT DATA
A N D D I S C OV E R I E S

A fully trained ANN was deployed on all 4.34 million candidates
returned by the processing previously described in Section 5.1,

Table 1. Classification performance during cross-
validation, summarizing some key values from Fig. 7.

Recall Score threshold False positive rate

100 per cent −0.65 0.64 per cent
99 per cent +0.20 0.11 per cent
98 per cent +0.52 0.05 per cent
95 per cent +0.86 0.01 per cent

a process that takes only 400 CPU-hours, despite being severely
limited in speed by a large amount of small file I/O operations.
Using 64 CPUs on Swinburne University’s gSTAR cluster, this can
be done overnight. Candidates were sorted by decreasing score, and
known pulsars and their harmonics were removed from the list. In
light of the cross-validation results (see Fig. 7 and Table 1), one
can reasonably expect to find all potential discoveries above a score
threshold of −0.65, which left approximately 27 000 candidates to
review.

So far all 2400 candidates that scored above +0.5 returned by
SPINN have been inspected, a process that will continue as observa-
tion time to confirm possible discoveries becomes available. Table 2
summarizes the attributes of the most promising candidates found
among them. It shows that SPINN is very sensitive to pulsar-like
signals down to S/N = 8, and that it can also highly rank broad pulses
(duty cycles in excess of 20 per cent) and potential MSPs, which
is a known blind spot of some previous ML solutions (Eatough
et al. 2010; Bates et al. 2012). It should be noted that a consider-
able amount of the reviewed candidates were RFI signals with very
specific periods. Fig. 8 presents the distribution in log(Period) of all
previously unknown 7094 candidates that obtained a positive score.
One per cent of the bins account for 50 per cent of these candidates.
One could either postpone or skip the inspection of heavily polluted
period intervals, or adjust a posteriori all ANN scores via Bayesian
Inference, using the period distribution of high-scoring candidates
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Table 2. Credible new pulsar candidates identified after visual inspection of the best 2400 returned
by SPINN, after having been deployed on the entire HTRU-medlat survey (4.34 million candidates).
SPINN is sensitive to short-period signals with large duty cycles, and can identify interesting
candidates at low S/N, below the consensual confirmation threshold of 10. Four of these candidates
have already been re-observed at Parkes Observatory and confirmed as genuine pulsars. See Fig. 9
for their candidate plots.

Rank Score S/N Period (ms) DM (cm−3 pc) Duty cycle (per cent) Confirmed

9 +0.99 16.3 2.480 23 57.4 6.2 Yes
164 +0.96 9.5 267.267 63 104.8 3.1 –
261 +0.94 17.6 1623.725 22 132.6 14.1 Yes
755 +0.83 11.1 1.492 69 232.4 28.1 Yes
789 +0.82 8.4 8.471 48 18.6 4.7 –
801 +0.82 8.2 593.585 67 160.9 9.4 –
826 +0.81 10.8 89.670 77 158.0 20.3 –

1254 +0.72 11.3 1220.157 40 87.7 9.4 –
1287 +0.71 9.0 406.729 94 43.3 9.4 –
1388 +0.69 11.0 527.344 34 40.4 14.1 –
1482 +0.67 10.6 568.016 02 75.4 29.7 –
1779 +0.61 8.3 20.261 31 94.5 12.5 –
1926 +0.58 9.6 7.391 51 34.0 14.1 –
2367 +0.51 9.9 4.410 80 70.2 15.6 Yes

Figure 8. Distribution in log (Period) of all previously unknown 7094 can-
didates that obtained a positive score during the evaluation of the entire
HTRU-medlat survey. Periods are expressed in seconds. One per cent of
the 4000 bins of the histogram presented here contain 50 per cent of these
candidates. The fact that most pulsar-like RFI are concentrated within a very
limited number of bins can be used a posteriori to rank candidates shortlisted
for inspection in a more sensible way, further increasing the discovery rate.

and that of known pulsars (Zhu et al. 2014). We intend to implement
such a scheme in the future.

The candidates of Table 2 with an S/N above 9.5 have been re-
observed at the Parkes Observatory and four were confirmed as
new pulsars, three of which have spin periods shorter than 5 ms.
Fig. 9 shows their candidate plots exactly as they were evaluated by
SPINN. The details of these four new discoveries will be discussed
in a future paper (Barr et al. in preparation) once their long-term co-
herent timing solutions have been obtained from currently ongoing
observations.

7 D I S C U S S I O N A N D C O N C L U S I O N

We have described SPINN, an automated pulsar candidate classi-
fier designed with maximum recall in mind. Being essentially an
artificial neural network that produces a real-valued and continuous
output instead of a binary class label, it can also produce a subjective
ranking of candidates that can be used to prioritize visual inspec-
tion. SPINN was cross-validated on a data set containing all known

pulsars found by the PEASOUP pipeline in a re-processing of HTRU-
medlat and 90 000 non-pulsar candidates chosen at random. Its
expected recall and false positive rates were evaluated (see Table 1)
and it was found to be capable of reducing the survey’s outputs by a
factor of approximately 150 while identifying all potential pulsars.
Reduction factors of several thousand can be achieved at the cost
of postponing a small fraction of new discoveries, an interesting
prospect for future surveys. SPINN was deployed on all candidates
produced during re-processing and four new pulsars were discov-
ered in the 2400 candidates it ranked most highly (less than 0.06
per cent of the survey’s output). Three of them are MSPs, one of
which was found with a S/N below 10.

7.1 The need for public training and test data for unbiased
performance comparisons

While SPINN seems to be a significant step forward compared to
previous solutions, the performance of automated candidate classi-
fiers depends very significantly on the properties of the data they
are evaluated upon. The amount of bright spurious candidates to be
sifted through will be affected by the RFI landscape at the observa-
tion site, and RFI mitigation techniques used during early stages of
observational data processing. The available quantity and variety of
known pulsar candidates to train ML algorithms upon also plays a
role, and the absence of even a handful of pulsars difficult to detect
even by visual inspection in test data can skew the results heavily.
Fig. 7 illustrates this fact, as the removal of ten ‘well-chosen’ pulsars
from our training data could have unjustifiably reduced the reported
false positive rate by an order of magnitude, while obviously reduc-
ing SPINN’s sensitivity. Comparisons between automated solutions
are therefore limited at best, unless they are made on a common data
set. To address this issue, we have made publicly available the set of
candidates on which SPINN was cross-validated (see Appendix A).
This will allow other authors of classifiers to evaluate their own
solutions, and hopefully stimulate interest in the pulsar candidate
classification problem, even from ML enthusiasts not necessarily
acquainted with astronomy. A summary of reported performance of
existing automated candidate classifiers is provided in Table 3 with
all the previous caveats in mind.
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Figure 9. Discovery plots of the four new pulsars found with the help of SPINN in HTRU-medlat observations. They were all ranked in the top 0.06 per cent
of all 4.34 million candidates, and three of them within the top 0.02 per cent. These pulsars will be detailed in a future paper.

7.2 The need for optimal feature sets and appropriately
complex models

ML algorithms operate on numerical features that carry no label or
context, and unlike human classifiers, cannot rely on any domain
knowledge associated with these features. Therefore, the statistical
distributions of these features for different classes (pulsars and non-
pulsars) should overlap as little as possible, so that these classes
are more easily separated in feature space (see Fig. 4 for a visual
interpretation on a toy example). Different features were tried and

discarded in the context of this work and the best subset of them,
reported in Section 4, selected through cross-validation with maxi-
mum recall in mind.

Also, while this may appear counter-intuitive, ML algorithms do
not always perform better with more features. For a given amount
of training data, larger feature spaces will be more sparsely sam-
pled, and the data distributions more difficult to infer accurately.
The decision boundaries separating these distributions must be of
appropriate complexity, which, in the case of ANN, increases with
the number of layers and neurons in the network. We attribute part
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Table 3. Reported performance of existing automated candidate classifiers on various test data sets. Comparisons must
be undertaken cautiously as classification performance is affected by the time and location where observational data are
acquired, the RFI mitigation techniques used in data processing, and most importantly the composition of test data.

Classifier Type Recall False positive rate Test data origin Comments

Bates et al. (2012) ANN 85 per cent 1 per cent HTRUa-Medlat

Eatough et al. 93 per cent 1 per cent 12:2 Network
ANN PMPSb

(2010) 92 per cent 0.5 per cent 8:2 Network

100 per cent 3.7 per cent
PEACE Scoring

95 per cent 0.34 per cent GBNCCc
Lee et al. (2013) algorithm

68 per cent 0.17 per cent

92 per cent 1 per cent PALFAd

PICS Committee of 100 per cent 3.8 per cent GBNCCc Trained on PALFA data
Zhu et al. (2014) ML algorithms 100 per cent♣ 1.1 per cent♣ GBNCCc Trained on PALFA data

68 per cent 0.16 per cent GBNCCc Trained on PALFA data

100 per cent 0.64 per cent
SPINN ANN 99 per cent 0.11 per cent HTRUa-Medlat

95 per cent 0.01 per cent

a Keith et al. (2010).
b Manchester et al. (2001).
c Lynch et al. (2013).
d Lazarus (2013).
♣ Candidates found in RFI-polluted frequency bins had their final score reduced.

of SPINN’s success to its relatively simple internal model of a pul-
sar candidate. The low number of features and neurons used are in
accordance with the limited amount of pulsar observations avail-
able. This can be quantitatively supported by the fact that the PICS
(without score adjustment) and PEACE classifiers show almost iden-
tical performance on candidates taken from GBNCC data, as shown
in Table 3. PICS makes use of a committee of ML classifiers, in-
cluding deep neural networks containing in excess of 8000 neurons,
while PEACE relies on a linear function of six numerical features. In
this case, the large increase in model complexity did not translate
into a significant improvement of classification performance.

7.3 Limitations

SPINN’s limitations are closely related to the features it relies upon.
The log(P/DM) feature has provided a very simple and efficient
selection criterion against artificial signals on HTRU-medlat data
partly because a large majority of RFI appears at periods in excess
of one second (Fig. 8), a rule not guaranteed to hold true in other
surveys. Cross-validation also indicated that SPINN carries a bias
against pulsar signals showing a large duty cycle, and scores them
even lower if they also exhibit a high log(P/DM) value, as any pul-
sar signal with these two properties becomes difficult to distinguish
from spurious ones in SPINN’s feature space (Fig. 5). Characteri-
zation of RFI is therefore largely incomplete, which was confirmed
by the visual inspection of high-scoring candidates (see section 6
and Table 2). With the known pulsars and their harmonics ignored,
the remaining shortlist was dominated by artificial signals that had
pulsar-like properties with respect to SPINN’s feature space, yet
their nature was often recognizable to the eye. Some signals were
found to drift erratically over time, or to emit only in a set of narrow
frequency bands. While SPINN has been successful in finding new
pulsars, its false positive rate would have to be further reduced by
about two orders of magnitude for it to be a match for the human eye
in terms of accuracy, and while this is an ambitious goal, it leaves the
problem of automated pulsar candidate classification largely open.

7.4 Perspectives and future work

We have previously suggested that SPINN’s success comes from
its low-complexity model of a pulsar candidate, relying on a lower
number of features and neurons than what has been previously used,
a consequence of the limited number of known pulsars observable
from any given site on Earth. This would have two main implications
for any present or future ML solutions.

First, collecting as many pulsar observations as possible for train-
ing should be a top priority. Observing known sources multiple
times could be a viable option, purposely not pointing exactly at
them to simulate a blind all-sky search, or purposely processing
only a part of such an observation to reduce the S/N of the output
candidate. Artificially generating credible pulsar candidates is an-
other possibility previously proposed several times (Eatough et al.
2010; Bates et al. 2012; Zhu et al. 2014). This would come with
the challenges associated with realistically simulating the varying
properties of pulsar signals and all forms of noise or interference
that affect them.

Secondly, additional efforts should be undertaken to improve the
quality of the folded data if we are to increasingly rely on ML for pul-
sar candidate selection. Dealing with candidates folded with wrong
periods, dispersion measures or accelerations vastly increases the
number of degrees of freedom of the classification problem by per-
turbating the candidate plots in various ways. While such mistakes
can be easily spotted by eye with domain knowledge and the wealth
of information available in candidate plots, ML algorithms would
require more features to achieve the same, and enough training data
to properly sample the space of possible processing errors. Instead,
extra features that can be afforded would find better use in improv-
ing RFI characterization, which will be the main focus of our future
efforts to further increase classification performance.
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APPENDI X A : TRAI NI NG DATA SET

The entire training data set that was used to cross-validate SPINN in
this work is available at http://astronomy.swin.edu.au/∼vmorello/.

Candidates are provided in the PulsarHunter Candidate XML
format (PHCX).
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