auto = read.table("auto.data",header=T,na.strings="?") auto$mpg01=rep(0,397) auto$mpg01[auto$mpg>median(auto$mpg)]=1 library(ISLR) library(MASS) library(class) train_bools <- (auto$year %% 2 == 0) train_data = auto[train_bools,] test_data = auto[!train_bools,] help(knn) help(knn) train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3]) test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3]) train test ?knn cl <- factor(c(rep("s",25), rep("c",25), rep("v",25))) cl length(cl) length(train) nrows(train) nrow(train) train.X train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] train.X test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] test.X train.X train.mpg01 = auto$mpg01[train_bools] train.mpg01 length(train.mpg01) nrow(train.X) knn(train.X,train.Y,train.mpg01,K=1) knn(train.X,train.Y,train.mpg01,k=1) knn(train.X,test.X,train.mpg01,k=1) train.X na.omit(train.X) ?na.omit na.omit(train.X) na.omit(train.X) knn(na.omit(train.X),test.X,train.mpg01,k=1) knn(na.omit(train.X),test.X,na.omit(train.mpg01),k=1) knn(na.omit(train.X),na.omit(test.X),na.omit(train.mpg01),k=1) train.mpg012 = na.omit(auto$mpg01)[train_bools] train.mpg012 train.mpg01 nrow(train) na.omit(auto) auto na.omit(auto) summary(auto) summary(na.omit(auto)) Auto = na.omit(auto) auto = na.omit(auto) ncol(auto) nrow(auto) auto <- na.omit(auto) train_bools <- (auto$year %% 2 == 0) train_data = auto[train_bools,] test_data = auto[!train_bools,] train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] train.mpg01 = auto$mpg01[train_bools] knn.pred = knn(train.X,test.X,train.mpg01,k=1) mean(knn.pred != auto$mpg01) mean(knn.pred != test_data$mpg01) knn.pred = knn(train.X,test.X,train.mpg01,k=2) mean(knn.pred != test_data$mpg01) knn.pred = knn(train.X,test.X,train.mpg01,k=3) mean(knn.pred != test_data$mpg01) knn.pred = knn(train.X,test.X,train.mpg01,k=4) mean(knn.pred != test_data$mpg0) knn.pred length(knn.pred) dim(knn.pred) length(test_data) ncol(test_data) nrow(test_data) q()