library(ISLR) library(MASS) library(class) auto = read.table("auto.data",header=T,na.strings="?") auto$mpg01=rep(0,397) auto$mpg01[auto$mpg>median(auto$mpg)]=1 sample(auto,size=length(mpg01)/2) train_bools <- (auto$year %% 2 == 0) train_data = auto[train_bools,] test_data = auto[!train_bools,] lda.fit=lda(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data) lda.pred=predict(lda.fit, test_data) mean(lda.pred$class!=test_data$mpg01,na.rm=T) qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) qda.pred=predict(qda.fit,test_data,na.rm=T) mean(qda.pred$class!=test_data$mpg01,na.rm=T) glm.fit=glm(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data,family=binomial) glm.probs=predict(glm.fit,test_data,type="response") glm.pred=rep(0,199) glm.pred[glm.probs>.5]=1 mean(glm.pred!=test_data$mpg01) set.seed(1) auto <- na.omit(auto) train_bools <- (auto$year %% 2 == 0) train_data = auto[train_bools,] test_data = auto[!train_bools,] train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] train.mpg01 = auto$mpg01[train_bools] knn.pred = knn(train.X,test.X,train.mpg01,k=1)