From 7d230c0b3038424bf5d0301981cbadf2697bafae Mon Sep 17 00:00:00 2001 From: caes Date: Thu, 9 Feb 2017 22:59:23 -0500 Subject: [PATCH] finished hw3 --- hw3/.RData | Bin 75239 -> 27709 bytes hw3/.Rhistory | 477 +++++++------------------------------------------- hw3/answers | 113 +++++++++--- 3 files changed, 152 insertions(+), 438 deletions(-) diff --git a/hw3/.RData b/hw3/.RData index d058cb34828be5c408726e05563cbfe77235af7e..75b0d6ac764417f1f1e8b836c49c6942207a6545 100644 GIT binary patch literal 27709 zcmb5VWmFu&)98(c5CS9+An4+5A-KD1fZ!H_I|N@A0!awLJ=o&z?w;VVxVzgTyDYH4 z!p;AAuD$o$J0JQ?*Qx5M>Z#K+)Abub7rJ7R-3=$MWmR}&e#6}t%F-!tG`K$Mg46wTicgz3 zfqN8%8~>(!4{pege)nY=81;-@`1ysQf^R~e?r#P2?O_YSR$LrR0{u7?TXm7x$4l?L z&_wiNeyqKm2Vo zwrer8Q(6Y5&{Yc1u&X&PMpQ#PwdWEg_voZp&^*B^29U5SKttqp14j(yvjXZpwh}}E zqMQy1&Y>OL^UFNrvQIR&#a89z4$M0o;t+#Vh ztCqRu)mL{)Qp0Y~M+9EDf6LQ4oZtFE8@!{J2Glk`0O0p}Xra9fl<8tAc?_WTIB}DE z7uQT12$q;(aMXe{Z zJwMP)kFrQyaY(m|M?w4xGc%utOR_P7wEUN*)1G%m;}kr7a2*lA_SC`+qq)s$8<^LU zeNySsLM!OZ#1fA7K@%o{2|r%qlLA>@^$^ol~kI~ zp#R^NnJJzJWB1Gp?B8xzJ6?EiPOtdUJ)?>xSOe3aN&SBI@FuB$GtyK2Z%2!N->ok1 z1ny?+iQ!x5u$C~oSiX5~DsivWfj`x9tW4U&%$dF29n$6n?YRX@NkCP<=^!iFiq;I` zg{BU)uT0!L8389-NnDr5E-v>;B78{emfQ9H_BHDUc5GRt>0l7fX;91=B=$LHicRhQ zsyy*H)nzrytewH)-s}RUV(;XCl^hY1(ioIZGreNB%@Rc8BWTy29wsq$S+)Pg4i462 zAYOC!ZWm)oyXt(uUO%Po)-KkzOacfjbA!!;ga&3{pQnS{qEERAsq4p7ifVoAG^QFN zAOoXkRhWUFc&O{IAVmkAX5l`Ac9O%Q%^X2c0<-%rw)lf#i%j5VsTMBOvWE;9)LAh~p?s??JM)LP) zJC)_)V%cX0Wl871g~cIe3HM4jUQ>m8)`M#V-%uIMbYtD}yn!f#h><-tC% zu=CLW09das#v~O0QV9pvc7wwsLy8|+gB?7y&jjzD6$F`%J#OUyIaAq1cP&N*+L?xM zpz14Z(A0pubwt3{em~wwzeh>zQi&AVtq8u1vWNrWEalN>xUQ_w(=VxIxeD(CSZ!C6 zFl#DU>o{@m6BC3?JBAeJ^3>NuOm&l|H7yCZuRoTZoF4Hio}&b1UMJ&J4? zOS&ipnB@YQDtqg|fKG5LC?xaTOC~txSjc4fFLH>PY;Ws=q#{I;zXo+mSM#v zgK$|2`q=0G3gTbXwOG}%*vBV*9JVL2wJDr#0gc_w2DT#{mEz6=zE`g~(k*z!1e(ja z17Sj1QxW{3n!>D7xnQYdy5+auCctk1oQZ&@$P&K2;w+t~E1~186ZRty5LNcSscCg+ zPU@G4MVpRA1jU>fdN{>d96Uw$-Ys#-JWk-_40-|CK_za`U{}e>7?>_#mhhmK@l8^= z=ggz<`LY}LwGTn#L#7l=Nu+LAPO_1z4X`CX)PGNo&lNeOv@3%yWr$mjPbmX z{L+??cqQ<(Ycl!{fIyBSl(?> zkZ7x((F(`WvHt>G4mC}qQvDJovXL3QmJJ6<9|Ny0;cI^4(Mo|iZ8f@6;k6z|H-gY8*5v@UM`IK_6iCStd%8F#$WMupM{PiSVv$UBI#h;(QEGJD6>x;ptPQ4Y# z>H(R66o>E$8WSG^h+_Mvs8pz=A2@V39Ihyi3Sg#1Y!3WOzrvu&bHnp9Cw!UKfBA`U z1);BWEXa!8tZMn|8OhD-O8Nq{cXSE3V%vjjg4AARyO?L1_xE1jKJ<9&!vEe+IFx|| z55Z0+5|1&9hR&B6AeXHlsc6}lz?Htrr#g2Nv7{;2l~PjIBd4taG8xD-)$c+p0P!tv zCBqh&DBi+i&+Nsq2C3i*A#7{F7BBVn#xD>61JvJFBs%NXc(ESVqZQnfAJR>)+>8s& zV4r*v972jo4>dm;NjGc+kRQ(HiK9=}Uvx$Ct}k$P0PYOMUIE>3Bra;t$~UdKZ`-MB zp1-Pr9qKK;>LoGUj`sxLIstt3!h!su$u1W-6_@XgC-^7rEgCVqgc zA>@(|@7>1p)+*U{_!J?qDlDife0^RP+~_My5Y-NRcV~eq{N{_&rw$V?Qxx$K;{6cv zE$zY03af9}>ia1gxECb5N9fAy#{KF(`ujL*^;eK!40ERi-K;0v0)?RS|SWq zQTMfO%O=i?WMJu~*t*_JtJV1myUvep7ne|RFJ6L&mLoH~bHBbm5<6+`!`9ai z{Jm8Me{+ku>;X;gL1Eu1#bm(HIO3gEJpbk?8dvo7XMeso_nbF{JlftK*fyBlV@8D` z&BBpR56$1lYYqhB^2vdf19$UZaBqXLuWV%rS-zg-+Q%X-@Pc#J1gxoz74Ol4s))x8 zH`05Qh#x#o=%u5&_p)d~D7{0x6PR&D{|WEoizc zQ7QF<3V#x3-*@J3Pybo-c2_OpbB_V~(^n7aV1b9Y$99SU$8SM`+g(ih1haL>4pVlbw76|aCH+t?V&a^0do{U#5gvQajL`t&p z4IvBGlIITC7MXU0Fe{q$Poz~CfbuOjr&CNTKc@L%fyqJ9#hqiaupP0$P>G7}R}Y`M z<~Jp4Xl}mZ$9du1F1@^8hf$2wY`A36;mk*COcF!AM6T+oPPWz#7ouQ_QSI0#^Zyb( zq*Gw;tJ`7V-*HwUoFo37t`-WH6yI9JZ zpW&T*@|$z5aV&=a9*UiiV%K{(?x0I41;7S7&LwKlM|gC;4>LIEj!ru|QuTkGc+v_`W8 znuGYOL!r}ZXv&_<3n}%jMk-OQBt*WxgwHf79|(PlAW5nHeYu$ z0`jOo?<7L;-T;=RmcZA4F2B&w90^PCW34zyE%*<&Q6ITydBGR}pRr(?zZdw4kd&eu z&Tp6TWl+jVYoa4ShMsq0#4aZV z>7HC)V%epP0gd_QXBO;Q`x;Gg-?#$CoP%hV-y@una+5PR1EEJ0A z_s<2{3x)AMzWU3uLZYoTQoS042aE$u01yXYLWvywAI$Yt2 zK_cmh=L|IDpC=U;T)04IuOupgT|mU9G+As1WyRBcF$60$p)>1=VHJ3XXmVWW$GMC z5df(m-rqf!AI;fgUGLCaG?!u*qENuBJMwPL6|IFMoI}x__nuj;+12%u)(cBGo9V59 zYNLCk=mDBpht_SNe}-GP88TlVY+I0ceXbb9()*0cMWTwwh=_ujkl*P7+BjT%B*ayFZNDc<@(#7 zH#Wv<1=!SII!kspTc316-^}iuRXkPg>zuG9avoh*JaxZs9~T^$xEG$la>))h&=Y41ly}{chon7iz|IgKyzxym8GGmTMc4%l4IP-+v;NP?d*rai-@5<{n<;sj8>YVK?@& zkgNgMzUZdPQidg+R2%5mi}I-C|c? z2#&j6h$u+b+ahgUU}x_Z{C`6#Yl!7$05;rPI{SJUB=d3$+cWiJ2s3zatqJn*o_(J? z)I)tq=y6LWXF~M0R~^#^f7Q0iU<_g7W#;0(eV@Vmn6`P4S|mPZs+bK1GNyX$GTe-V zgS6<}l6JZB7fY~ANKDc?tJ5U6#ctA0%)L-krc(S1i7AlXx1VN+HU(Eq>lD@EVmq9W zMWtl-sW)mc+Xn*O6c0vL$M3D0*P(%be10jADO!Ibkw~n!sSQ^sQh%$s(H+NO=C1t1Dz0tG{!4=UpenLt zeEOJ8!&9Xs7AMM4`iBpCY3%T_B}<=je_NaVk91Y*;N+OmD+=C)kHyLQjq!#BT#`Ne z@f2ET7&J-qB}L1(G7gM1JI>VcwR~?P^->jtN37CT;*KQ09v2SahkL9Yg3HRPjNUqo z##x4eQs-@QJ*t|lp9|_~|2Cf2(@)=(_@E!@=s41%?fv>HLE8ZYmKDxEaeN)|x+)^= z>urMk*kZ=2g`?`w;uZlQGUY8x34y-CD1EJ=V-umv4E^hf*5$7*jwg3R!k z*gP7UZwikO^L7)6tBtnj`xvI3$|j)@R+xepk{U9QsP>Y<}gbZo27 z!%tNUW>jw8Fze}?REfooQr7DEa(~GpRI!rXYg@8ksBn8hT=sJ|`D2p2YU}4~<#IJ$ z;)o~@`Jdz~&)!d11r+iQq>>tZR7jdo{Sc~a$HcJAE|*@2b&PY`@tXXWC2e`}ke^S$ zW^YQH(e(^sd$d1RY`wBNK%iLJD)dndTBLoZQW7XSJ#}VXTSzkCm_N5SU~j6=V?aU% z>>a`=mNd~J-U(AXe={&d&Qo4qsxW?lAut&NLpCt$=a;Qs71bP>OE-9swz6S!b-2|C z@{Wb5d&`Wf2(pesMsS?I}{y^eoGlgse*_U@ST ze&%ReWBOZ*SUH7wU#3F6^2lfRFOp$!26iwkCz>L>zB1#H`^N^6ydTf0aeFp=XP>8M z$W=1*jmvoV*_+djhYk-J`LBV@5`XB&cA{3NOIpzQ^meb_NE4>O-~ISpm0{pU^R%j= zhA97~Czjf%pA7pi-O(kAyyuZ#|5(V=uF{~R(i#}j zcwAmyQq3JXpvJzY^>KwiXNtz5q@fgQs*~0sR&Uq*iz2^IyMP~x<6iy6wB(Bwn?!?B z4*fvJWG|_iaqFZ+)3v%BIhm$}I`+kn%A|zAVgqa-tu$wJmK?7 zj1&Jc=lIj*<=^jYe?El0)#YXW$t%H@Dkp3JO_Rm`n6pliU3aUe5t2bVm|8hz&E zr-(iD1)%u&zqsl1>8MC{If)QLW^2}egY^03@T?uY<0o4@uF=<96^$d)%VuM<(J88N zr1&epPRRkmtDzgn!YJsirjB0-Fw4??*AJhO)VB9gx@i{>iji**0)e;U2OsfzsQYhXpA zUhcTINx;!ec4J%J+z+rYc6(^3`T2<^{n#q?n|x5jR`ib($5C~cV|}n3M6DBf43J)4 z`P}#Lvci=?wXTcLJKU3G{`HJ~(QYa4&CkNpR2+))`7XJYS-rw>&keyw@51jc1AJ=U zHh&}t3ojy+EB)mw9Qx(xKadGX`K+nMqPsYS;$7+(Q5KktZIK%@8?FBk@W)U3 zgyfATB*;#m`z}zcEWWJhO-g{Rp@pjblTig}$P(&%ChGWPEYum~KKWIq^v5DGxw^*8-w?XUhmCK2k1$n}HseZZCQwHr!~y`PmI?YP)_L9xuVva0O+& zUuU^y$_KY|!qRf14-Ao2Q{nYr!SWQr90FPZ{ta{rz%TuYaMqG0=RQt0gdYd; zBjgM3*W|uqQ4(|b_Wy1ti`xi!l}-FPC_`t)d$ye0+{i-TOqoIs4be;fFTHk8Bn#w~9?BMmBkZq-@b271kpE zWw5}dd_$9M{Qc#!gHA(TM<`;AzHnd2j~`6)cFszLf7^KB567t4A6p!&h*NS+7>opB zR>r_Eeomj8JZ7(~$g6e*(=Qr7+E2Hs`mj>kKNwfZ@ULLC3mLseVp}6OWN&O%9)!MA zODunI&|?3bE2p7f_{S@_z$kKolR_oAh-L3xX?|F$=&Uxz8q+JGQd!8e72kSPf(p3= zZwVHU+V*!WT(!75EGo5-TCA^XJr`(@XSb@GU06P9Iki|uYG{E&^)lB)4V<{oh{U;i z=ZIRkdtq|olsPFi$!J+^`W%C4?&j-@XsqbHBL=349*?c-y=SkLMlNlq5;x@S%sR~bc zNf&`m<|pWGoIvsUh7UJ1H78I-knP$zr|F-Qv~5_oYO;}7l4=*tr!a#frmz#Hc!o4i z+6c;o2io3;MsvP+dUAChI2$py3R_)yCYG8S?>!NO`I9pJH%577`cSM=AwR((lq2L> zh+1d};~! zLjQDwZ=$>J2R4Fs&bt`Dkq6%}r703MNBu9+rEmAVX@aoL!r@)*145n?^-w>scRzlqgzS+?P) z4*_A4?D{wjvbQC^$?D^T5otZv4QrG%w^Ekf>6&Z!R&1ZhW3ymtIy@hdK{lEzS3i%t zbEuC_VAnm9DeFur*G4SB+FW{*R(GvK`*d9^aYjmyY!ewW9=)a3G*<$@hVDiJPoTmA zX4f-!3)ki)$0{2x&CmTXXb;l9AjA*vWZLbu+P7P*q?dKTp~hOq-4qGuxGy|SV+N5l z#mh&0_YO}}Cz|FdbxmGtn$>c%lzRo@%iV_apdrt%#}*}buVZvj{rIHE2-WJ~tHg&N zIi>*_gYRCndAHCFZ3yc#1CkbyN^HEyv=rJYP$JSEhB$uluj96jldfSHSqsT`hh?pwC;O8R_8>tXlH-#H|w4 z%dyxX&H?hsJ9=lg0e^~dDDD&(u5q6Se$m`)@8COU}zRucEBDF11=L2QC!AS(v6wGg`Vji(2g56Cvju`Dje zjk6Yq$}G+B-}drv7Ux8vxU;Bq-|@JDc^}_Id12h{h>|J>!iY6{CQ1wr_v9}i{xsp& z*4oTZ4Pwh_AW#~{(ES2#8Tf>E;oZpJ>zOZ|p}KnQHSDnlHmHZc*9Ag4y+>u#dziuI z$Ik4@cf9MZ)*HwbGui9%7)mE1m*ZuQ+s~7*=23<9kUzM z*IJxQiy2kCGIR!;oEjBpNgG(s5>S|7mZaoqZznj7==?G^EtLVj@u6O(&PFnxtX5q$ zihY6J7s-QJg3sQ1(l}*baPHRLs5P7TDb#*X70NMn+WNFf21VQ{QgH`AR z*GaC|Lja`~a!?ynPj^6-WS0w!N$96;kAkgkk9j6^?PmkUL_!Y4>pRbc%IOxtcSTuo z+y{d)uybr=die>-`cfeo=gH-eZxeFrS~YMAK7q7N^HBv|JtPnyKLtw=ihullm;WGs zo$T2>B}5C|`E*T)vuE9^H%0ekT=fr4khHg3)^zBeCH_}f!24HC)~1P(3mQ|Dh@}J1 zy!w`ucrD!-uPG?S^aWmhn=kRl*q0k{;uIO?d4w#GG~)gU1ETNQd%S{x$eOYCW*=pr z_S=*?-Nlb@FdDS3UXGkReD@3w_4Mjwk~;Vv_GPW3;qzHFLJ1`-x<%Xlceh@ERR}7e z3Ni`Pz868ZKL?KgBfq?W$N3+l)dF_2;gx$cJ_QRTBL>qHoF~Ysle80@A*3YP)jOT zl;Gv4_=iNdW^?Fsm|68jqY2k;z=VhYDeoXlF#JuHGQ;7wFxZLpfJpGHT*JHPSrTlL zhRjmVWI8q@T4MQ+M{cuX3;NSL55kg^p>duwu596fH0T9@lY6R#cQn45psXjMXD4>e zSV%D;Dk{ij>1}RT<5MeAT5LosNLwmXiRQhQ|G$u9;Z>;pPi_a=qY$Lmpl|c3DGjW2 zZxZ$VK!#==QsQ=}Hq3qN=`%|~1qguOiiMs8k`Hh=;L1+#z=trB4#Kz*1~GT6NAZvp z%XYX)XicSS2l?yccy}HWv|!lZkZkk^5oa7_R03d`e8B~l56yIEzL*t)o>I-Nqhgdg!FHXR zHDepNRN)Z0;;&~$s@(Vvga_eaUswr|xgcB-z-<0bJzc#xXX2ScnVARc5ZPWHh?OiD z0KfSSaxLgSMuhwH-D3q?Wd5k@ik-Hwa1VHR zFM`NL=|4?$pdnK8)bDu){3fb8EIU&oVZz-C5-6cQ&+_jb-3qg}6BB5y+|%pN?ZU%Q zi{=}Hxc{gRC@Ue|Wrv$%aAxV96VfbL-v_>hJz6k`v`X_iJgv1kxNvUZ81P#<3p-#_ z1_`_UnW?tJ_(15o>h5m3jDw0noOR8=N;26vFg)KUs~HdEYVd-fl9ZAKK1=L*-JlCd z?oGm4?r~O{u`ZYP{~ifYQN=;%?YO|2=gusGGN2X zgBP=)_e}B}`)M!-C{8<)L3_}NIZ5!~90qREz%je1#lEd<2xsBy!0~C=$Hz0^3a6Ru zK60P*N89_@&@ay4MWB2~9s02L{_QKMkcG=u&?Liw-AeCaFvD)!3+RNB)I}@7bt_GP z*Wl^~t_bfL?C)VP{-*XMb;PA>qdP*2b^$_rU>%aV;g-LO?+K9)9D_&%V{A-9*7~Q; zg-8YSJD%Mwp#|H6UhF(k-#LB*CQgDdmv3H<)Q>zH`H?C!q5szI{i&bsJ6dQE*6xo^ zw{m&%$EHSH*jTUd#ZHkgSH})6oJ7dZfO2|vF?@PU3eYrs@*biQij=6d+*vk>KNPY%VrYSrYo4syZ(Xj}|dMxwoYOz{o9Md;@8RE#>+ z5>)r!a9T`AU`D}2OXx^N_V+?pQWdh$yHes5@yVG_1){JI~QPeixC ze!v+(N6lTx-JLrgmcG7T`gyPjfaxmt(Q;U=f+LMz<@ESkn?S2kO&{D!87THlu0`ve&42ApK|1xTM0j&7Z zU0F-`Z7bQ3WkDKnVi{X*@iON86!*I3QT8GdX&iRn6R?USC_TZo`R@(|jykdSgPOg6 zP#Fpd%4jt}_9h{o72&@57Vk$W-<^?Gn4D;LqhHS_;dJGmlL+OnQWeZZ-ETV%wZ6D> za_+qii9YPc0L?^Q&Pzj_$UZ$F-vX{a_Di-@Rp(LnnNwOFl$(U@DK0LI5X%5gdID}2 z_|}X65ftWVQiS<{V*@Mm49o2D+tnZUR`0Kx(|0NxF1Uxhh0ch51uVtI$vn&{=wjhK zi)0HC$t@ex=jk<7mETbO1~^EgScL7`$DyzTt}0zh%kYNs#yBr)x5=+Tfa+ogz_WC>PdGiuDax}}~QSa!NY-UBsz?z*4dplrnt zs{e?N_?wU4qi1Janohlx>JQky^!*mZ3GW-kB*0*Ngoj|Fr=|Kt^__S=zYzXzMGcWjnxz#0}KtM?gz(}u}~!xs&~Ql(jLURC_`w14^>xJ*1a zc@ngKUY1Dhi|mD+SvFZqjPy^sz8R52S1K1T5}yP_UC*|gZfd$$qonGj>bqs>g6 zN?3He^>E;|t|x)8kZzZiI3iSdlF2kUj(zwbWvul}5*iJcM%jyz7cTFyiLhEclK0lR zDs{09D%;@nFPS4_O~QrU>>)l1V=SM+B=EbWbzy>o?{~RtFZ*ug-efx)NK3GFd){ze z$bf`{XR`w(?VsNf?~Md=u>z1(_@ZOs*6aKB6J)5^EA680mV3H`h)3ziWb^PGYJ_z6 z7ubi55gy^E+2VS#Ne+ys{y9HWmQ_&(4tjzI!t}1v5|lyGzOI%XSXg5raPFw(HkP=js91?>DdY7TTRm z0=OG1js#mc%xn{RRyv&gg9K~^$s4H8qNz{S0qNn_<|g;I1qOnYkbQWdSku{xri{ed z#J{DDrV-3HoZt$%dlIW(akf5Zbcv^`oPU+KD>2xLEj11B(vFS+OiJvq1rY4)QCyI@zZpQzI z5Gnju*r#F_EB(>ATa`3?x6nJN3OSQtweH53{D!kchfo8rk=IAs`G%m1?R>eCvt*kC zeGDK>=AH*?{@_G24jUn@CBz3Go8+v2gAT3Z-?@Fgj-J&2XVILTCAa5q=)+86>OX_b7!lNGb$@dHmFR70JW1WF_+>MB#(!2MlAe> zvj8@BnoBN%t-2+^njk@!iO(Z!PY)kg-8%f z7%3VaUemJqf4PrDvyZWeQ`c_afMII&#JY$Mu~WlgkAqN)v|`tfinYzV6Zx>Ox;|Mb z`co@jzx(H&e|hJ*CXu+CYG3Hw$cqAovs4qsmPV9Jm);pj-T^`{xiv4D+B2DbzXZ_) z1Wner1GM0$RULIR)u&OEb-J0WX4gcEA;87d*p9mT%8tEco>#C-ZAod>SGmBJq>a^R zbI(EjCESlb9vWvu9Kea2)0pZ!!U))#mB1dgv$6D5gn^_x2))g3xn2xk>TD^?=I?(2 zASI{j9HPXcL>0Q*ODNXQz+5K4G_lXvuBjT&%uv09B1+iog#IMYvMN$1GeUly_Ogl=z}@P9hJMEp$FBZHeVA0aA6 zkDE(ozI)C6$>24AV+`Qu)D2(g!?0_!ibPgeTeYlaJfy;?4%5|BXdBL(ZDPezr&e+L zfkS*GQ#GeA;LsQtkdnGuXy`MnaRz+&ZwAE3XGY_UzJmb7JEL}1m9dJrC4rnR0~=FU z^$mQKG-HC9Z;^#|zT*OS>SvN%J3~rm84~wk*>%=o6UAB`+$Q!WzR?&+9fO;v(q5oM z`}^9{l!t=7_aZ+Q8?ai&uTQJiiFO&zjk}JReDO8U%(>hK&My+gu92H^n9ge?fg)8p}MMNp7<<;_gBo4{D*mTr!d(T=dC@!rp$@Tyr10Mm1&R* z{iVuj_~ErtLk>P4X#~%6M?z&CA8quC=Z@6|4h0o_q>)J!)NeWXQ)`QH7Mg4n^s&7Ptyd!Opm0p<=D) zdZrj-hi?F;i00h?AG|}<*VZLK!^Z5+|ILwrWmTmnN4X=z8SMl=Fl3xT0KAGV&RVIX z(MT0V88IkqqV&1q1a@k4KwzWuIs;oYGsGI(JPbnvjz zmp`gtWD@rN$d^~iS74-?1L~QejQ<*(P#PVr$)KzIkp^F3d;ifn#dQKG+BEKRYB`%8 zXx%vD`eG0Kt*w}W8Y)R@Vr*3*Xl&*hHK331)c5Emi{f-Yt|t+A=SvgtB7b5ZWt#Jh zLR&I>zQ8d_Oiv6y;|yD#(k?#Z!(`w6GbhacmqU7F4VjKm<`zNj~DS^I1ibwxVN;@kqIuzS7wQs}R;chYK?_^Rsh@yd)8k zz@7|aKzN^_Yt4<9r&N=h|lIUdAnZZtml4MdSG`93Q#xwfsY=VuWWFsg>V`WI(Z zdUzi;x=vYCqkP$D7G2?1ltR*G$w&Xxlwqx=D!2GVvMOX79PHHL|tqiglu2aVez`=MaNyKEL{O@-C z<8?jCN}kyHS@L|&>5?gex%c=aw~bkSv6|l!&Xr_+2o7bPd6}zOWjHGY&|l`f zanUs~FkZCftk*M8T!m}D$o@H-uJk8eP@Iw8TL*5v(0TQCvWdCn6(G4$rtL2kI9H$E z_|sYPo{M4Pf;3wS;mqykMX8aQA#voNd>1{tsb0d&k=kEZ%JN%ykzgSr)woZw zehs1@0EqyaquI8?NpI741U@YuXE(2P^5yob%q-}wr#^VOykGGQ%`i&&HZMTad zOV_4`^|ZA^53nl1ZcJ5Gc9F@~wz-xHUC8e*De+d{+!ZvkjX(&aQa|dGs^}GfEDH3; zV&_}$y*BuP`Wk7g6L9$ZS9rWj-5Lt+OJbrXK^OaL#V+;g`VrG3e$hxP*?P5Vz83Xvavl2A&g}nwYK2Aq%KOI~>*Qme<4xA(lnk|gBFj@O7qtGh3dwXO zC3#hQ)2Hwo2X(RdcXl>?F#2wpUtW4Nh?-unEbvCXygnTQl(j4N{|EG_P1Wn*t-a2z zw|J_{a;Q4Fxr(}6qxN;X4_*$wzZ*k9jyI|%TAnIK;12M_=*P2TYYSw5SAv(t65Q@D z&9%?k^4ep2UVSy9j-z`;_wL?lU6R8G=CE}6n0_9FXl@6dakMX61P6)|X3qySH~V0AXCR_2>FBWS2Ry~q6r=fr%1Z_my5TB+mg5=^hbO-yL_P^Kc)fr7q=)Zkwn2@@MYu znFxyEW*p%*R7636x));OTx;x<1s(?vavs^ zY<8xdRcV*l`&DN%L0UX{iW{r?-naLPPW!RFKTgHW-H`**eK*yMFG{IXdwglF;g1#K zih68ry16jztICUQdmn4Z2-CEV*24+Y>gl`EHZ#)hsz|A(wW)5#zedt(xcS@8)sk-C+2cbC-6e@#YLB)nq-|H(yuSA7JaW7x{ zJ3CFSl2FyIoVM$jIX&$o%~nS~8+pYdWojeKG_UR03-z>JN89DZ97+3MWeDlYtlObd zYFW3zQXyGSU^ctctl+o^J#(wH6Kd_2d!^K3%=aD*i_rUJnHH{QZoT)q+9&fZL+YyM zw+s>KzDMzr2)l|DtHY6m_0vJ=kUSGLsjcll-Xv{r0<>-WY`f*@AJw*fFV!Y41;za# z&`7t68ruZ3xtex9%BCmfE#x=Ip(r((bsK8qlxC%5^DgB!#O7d{nygK2iq#IOk6BjR zY<{HvP_-$tIWF2&)2`eem*A!6a(>G~`U}ZI-z~BK;1jkpaes3d{|!_8-{i$VhZDrG z1TpLG{{IK2VH0!)N>#wI)FZtY5QBoI0bUDRyHE2+z^$`&iR&5J`7B zZswUuT!5H0JzuAAr61kCY^3wCT**ZtIn(Qo5;~JcocPvCKgV;z z8YBOp>*Rw64bycR=dl{1v&_<*=wc5zyTe{6=q?B)xUEK2i)eDdlFus>#f);Er=a5lG7t&aWGUDmk$|Z_i zc^#YSr?9~1CByz)j0l+gmZ~^Og>;`JMiPyKZkZR4A1zqj_cGZR(?T6u?<0A##~;B= zc`wFPgJtR&iI|_9V*H^|Zkt1~J7(=ea@{};IB-TYtCTzjUhxV@QhaRHoq*b3F6>VZ zz_LNs9@Uow*MtoDA%*XBqI`4R>CRWS}gEoM4o%ub{oKbugnJhx577|5G+h z$DK0|C~ugXJ&pEr37YhZh9L~@wu&0gtj)A0gb4(%&_hU8Pc{;W4FCR0*=a~WAF}qm z)gH&lX`4sGf_Xl4q|&GnWg*LUGDkFw$E^`|Cdfd@&jW~mu@>{T=?@ceL)03xz!ptW z6gAg+NWjhiB5N{2t1l)hO^W(-m>5V0_PxX;bZRyfW(fP4kBk+?X-91*L} zL<}|*)p&FE#U_|t-}uq{&XEcw_b5amILjX|zxqxz ztSKPF(Vjv5Tc;W6_`I-Rud2}9qUFR!Lb)eYG}`aab7)=c{H&}Lc#m=_tC8NS;O&MG ztq1NK_T#ks!It=4?} zoFZ~tV-*%;B9AY?YrZZ#Z+D&mFW3Q0qJ=Y}PlDxKJLfR%x+o5MRn&B#f7J-bD_YWE z)-HVgiItl~%e|KX|&^PjM z9)Xdq#4#zp#x6b9ysItY~m}#VjD0uX(j5@4N>^(OMvzRz8T{oP+QNYyCyZ}@R za$Q_+pqf;yyjN0&S5kTv(Wd=paBGX7#*+@sV>!H5WoZ3ynJ$%XX2#4xT?Cav))WW_ zJprpTg>o!Nd3xkK-^idL%rJaCei*D|wk}W(=X5hc_Zsyfw5on0r|&xsJI~Zrcxl{4 z9j0i0NpK~jAz$WFK}jC^v&NSA+Q18f0|91%=HKyGBWh|EWF?UyG)`;7#wr7SD*AoY zHE|zB3CvEk7DcW$eXhA$mK*rc8~sbxWMVx>8bz$xBFQ2VpyqZ`fzu6Ekdgw(iL4N>%d)&x} zQ3e9`=VN(Dh~TNV+hl`Djdx!s47g9ZZewDsGmj+OFqbHt^<2ykXLka#(a{jWfpoJY zv<1KSj;Q*mmT!5k2=4dJbbkR27hr}p30cusj`~EWG$XOoFl?i>R`kQ>Q&{pNg%&f% zVU~h--7e_#i2m^_Y##!XgpAP8qs1ssz&!dxv0yVcX~_F3hB2zYEq`>GsLL1`!bbXR|P-=T-Q@&nbE#&G{aaF#VD#jK2{bH z5=^Df>fRxCxX}r6l2CRTuhj#GC84O%rcv|>vK}O2tmp>XG}w_d5L4JVt!PMR+K?c; zo}Bg0ZDkF@R}@g9R${oZVD%+&*Rt_O{tH+gW?F%zW58Mr7{oPh000r9Uop-1GWo%y zYqB~erS%cbuh0|1gn<1x=3Ilqon&`6$W5UFDg%ZMBg7vgLYPS}b)q9EgQly|_lNq8 z%U>|ScY2!Y7lfs)fXwm}n0w@%-k#AB-yJ3Jf_}*a)0)NjF9qXD9&2kp8lky{sGGyDMHf9tGii>>QLIK18fnC*2ZW76`u+Mv zwR}vbvY;-)e+~!AU#sT#dXwOxjIlyzoRBDs<1gTGtllEbD`cX5J+pi)v=tIO^+;i6 z_9CHrt_RnOpD=5jDVD|cQEJAcpd!L&9DU;0sVoy$-KCzFLwTsic~ooTh)@GwEUdOg z_t}xNJVfXMEYc&wu{qPBm}SaQg{_sM0O!0$KW7EN7IA}L9v#M?ETI@tGkemNP9lP5 zhkI_V&AYkTM?dQ52(y>IrB9L!_FvSSdnGGcN+HcyU-7J%mAsJ*KTA_^BS9MqBAdDt zqaRtDIqNO`l0+@>P~=A8$YPJ|S79mhnWn$dM!u)0j@?N~aE}5fWF`PLPaL6tt0r?5 zg*!#I_#VUcPK^TsA>8rmstaJ|gKd&gC7rH(RVl=qSBMm?Wdwhfudksn#eSuoB6>{2qup8o-O5; z=x4&C>RIVj)33sWeq#b*en?p{)M;jgi4WsV<%P2#Mqzw6q%mkAE(^NGYQl&xj5pfdZW`h@Ae@ZbS05~GSD~qI%v=Z`jkHk)pT_YD}q(o(P5^PZmt|}TW#t+7jEzv@JoEB+c;g0M zB(-tla&YTOAM_1@t{GiF8W!!<-;vO0N~$l@M?;nhsY$$L7X|-_8CjeH4K_aqucaw!`8neyh{~^Wr z1;V&|5(1g`adAK8tG5D!v7nG&PSuf~NO}evob2IbMcAc$X z@akRx-^@maE0vkmcLfED!wC@?=Nje6Uy#Sg8QWIgbE_0veK7jB0W-gZkEZ~V{OKta zfaAd5tMrWNYt6ZJ9KQK}_=%QZAzTSq_Dp9ri9Po!>L$bbV^p8wrp8+^wGL~EN(7{m z=^*vva&adENATxc!t1o>|oYn&Hy& zK+>oV7(QkE`OLWDmXRCPJ8?rJ*f!1oV89z;H;mM$cxK*HPKfoOzhji>CPcxLdL$CSu#>2BFD<(9DcJ%FRw ziTn)8q1+lunT5nbb7f7HI{dN0WQDo;sE?F4VWXC)gc9Z9M}6VKxTqPhrU@wqTI_|I zGBK!gw>}{`%(HZ$4moE?evCp3QxShEmn^b6`;aMQ* z@e=fw@Gsq6;2eSWiWfBcr;gw?`S=jYH-x}_%}g@m1xNQW5KXb=QOt)xu^!|)&-nUw ze%xGAaCrP|DvC^-ua+HamwS$Aueq;l?5gl0zUPp<7LwYbTNoM>3|gk3pU=Y0UE@uz|O zhB!IhQ(Q`p9{T5 z1D^N+)OSTqg)bj=14s!pHUl=Na8rr(4CMJ&op=ry+Pc4|DB-H{r*RJt%1gAzuh|jG8|`oq zLiZOn`x#yjs#ia<&vfPT@v?nFqFGj#G?*rrboN%n>5dzS_%A8(=cZNeMn`{+x4kv# z<+X)^d+y_WAl@vmSdP!y#K(LBfiWe(7!QW@KazNHqhWO9x1v1rZP@$ubgm)hy@CloDrk(SC>0Jf{iulmHS zFRSbj)eJlYcH-G9Tcam;a5*6}rf z6yFhs-V^{-i$~v9LjNex?_&KEJClemjcs@>+6L_WPThAR;X7$h3UBY?^nu=3vrOdQ z=<7x`^YQsEN8Obu`DN#Z*md9^Ld`=YkKR+UCWlA}s!Q#GC<51eac9){rbs=HT_!6q z@_{EB5{*09vWXJh&!_G4iG#hMV+)0WyV%d*`sO;H0Z$=C64)}_Zdxqz+*&MSEmrzI z`e)T+-Hqz`a~Z_1kKI6Rvc@BEobfHjt}-G|nfiJKL9WB(^FZ`BouLA##KvfbB&VXM zv{rt8K?T0Bl!AvA?Lsw~l$BVT@;}JWmYQ`py%FcWG`9(R&SN&u9#NRX?cs(-neFr$ z>AcKVXAuA3xk;Jo|7JgBaW3e=rgOK@L*HQfBT|pKK%UXYv*d5?=qk88z-hY5915Fq zS^sbLQiynqkI>Na-9AL7?$n}VF-l0E@S70_g(1HqT3}RnWm8obb$>?etjrCuB4Kz! zXUPG$RoXmibtUNAtP{)>r6qfv?X?40tTM0SvHV)_3FTE{$_WiR899pJk|MY~*`*3o zMpM|B|8wOfAAf5j{-gzWb=RZwtmv)8%?7}XSP;6ts?uR0JPFcJ4C0wbDC4WJl2y1F zeEVyriRO5;{`FaDYhw`czP+IcXh;@_*g1=y%e-!(35qv>XNSJ+sh%W~Y?PnV^FS2R zE9NQUXZ~5X4QgY;@Oa*;9b&p?5!6)N`OD0f=ZksDvk0>*#J+={(*F|uOb^^_U(>h* zf$Vh&C5G)-UT0c?a`tBEzJ^16`ha8ev?SIn=OdCszbrdo_>RZn_ecbKE(pz<&xB{* zUDaxza7n{dsRe^<7JAaU;OaTXw*T)FhSUEZ+I#e$>*s><{>LS{A>IGFPf^yimJKyV zBJ|+!s*pmis$;T<#ohQ-#DlNJ0@(rLs`$q`kO@T_F5&0QTTc8a!N@YEuZX8ge2{pN zGMvB|HF%&d*#G73twEv5FWbE;fKClx!n9&`I?9vDB)@Q!oQo?SorIc(J{T@mt{(k_ zN?#e!4=N|rVFM?#U{^NNQHTq%ve=TgX$C=ya z@k2HG7>fUXpm>pCa#^OY+b>+gNW7D_5j;*?(QNr}04Q~MT9dCs*E#YHpQ9HUxIF}UpW~X=CoXTG9whLfP}6v(x2TJSh!mPJ_6{Wa_|aDCGbVg<{aa;xIeA-~?ug9I z6cF``Dc;u+H1fXZnj`a4-CQgPw?k=qNJbrO@sh8l8lGhvn&x zZj3(tK`+(I3^nbHqmBl;o8qtWG!`r1X5-h8QdyKlgPF*d95+yb9QQOOn|y=}*5uvA z)&z$Sy6bIGiA-^8|gH%PWW9*pwx9;RQa^%bAdlTNOR@Yye|_@*>!bHAQP_v zS9~ecIVReuty2~(S$-Yn_u`+BjM9wu?WO>n$lKO8P_j3S%dI`{Mg2eqJ<>qEXT$Ud`ET@MByh4d*Q1CcWXC^$T{Ql^h34rA=T)VT?yl6!wYNI1x#JwAQ@fTd;{xW z+&R0c_2W7_%t86Ou_r?TwLBW|_9=uM>6+vWT6Ji+c@qop7sGTa5zloP}rGcD~Kssu&pH7MVS8F`Va1X@Z zDkq@_v0ZqvP;hIi_0AEcAh(cbr}~K(y&;Y7=e>Rmh-^+Byjlp|RQwK^C)cJgv$6Ag zYlitj*cNtnBKK3i7{1=helbN?>&;6NY6P2|(D}DJ`b4QWU`MMZj6!nUw4@=feUGu6 znx5U}J*e~iezL^l)|=MPm7c{Th>hca8hBI}LZDJHBNj*3tMbCXDrV zR7@QU{QEk7H227)5k@!H)LX(pSs#jJ^9k~R(Tx%Yu9!Qx!N^_;F{V8A=MFmjnjm0C zJv_p?`fviX>|$SfMZL)wso}S^>Gw`UzN}->_+qiAgKt67Me!$fp)a}l;F*#X%Avu| zj{`e;K_NLwM?)N%@55BbPQOh4FIDsL1m>qXH__~F$or&c1HX!jtfOmBSPdpSRQlRC zh76#Rw)li771G;>-NpLgKyi`~PS{)2eBVcrQd)S&W8nSF@H&b;WiXfEFqOD~6dRO& z@0zhHiaq+{OCS5i?TRZfFM<%A-+c;V1_@Y?pka}m> z&z}b~H}?T<-8);F1RadHIG6^tdUH~a^jd7Ww8>J^H`>tsFw5O(z>EELi~gCL4Mj#J z2qwPtgYPwKc}KG>pI>|9j2>nOE#LPdBtP~nj8DugR=TgRUO&~jggIwmwz0C_Xod4S z=xJlSJ56aAyY&RQv?gf4+9nxN^T#-xxL5pQQNNO10>mOBDNhiAR7LQ6lNSmbEnb7Q zm+e_k1rGv@6jJ%*(jQ{8uyj|4t!eEdB;yl^B$pu}s7-R5beUEGc3B+t=qRY#8mgyS zl{x}F&P5iEkxNy(i)$n^t9(-7+v-5){%Gw_q2(*f^!;++X25C=JJV-}qIFIv&mT4I zsh{1KLYAoFhA`juSjh{8jANQrt6(<>u0bO@RihS~>_KAn^B^sU!{T^B>h$9RQT1iR1hdVMf| za`GoD*C>@L;<9pW(t4yT{Q}I)ZVUdak0q@zSnR`IBYo~CopwSlh}IrpsAb?c(#*UJ`Jsw$P| za{pVhd;XLdwtubd%zcaf(Z?#CayR9K_B(CEr1(@&4rL@uTIIN$Wyzd3wyFxS%xu!L znnh_n^?X9Sj5U2QZQ9Gq)z@;5*GjHlB*uMYy=lAi;HlD0!ZyR*(!}jt@@_laJ#l0> z%C)UD?*{V%G(w&YjQ=R?ZfhBF+SOM2eox9i7u(;xVo$VQ49f73B>ksWsxhMC@z%;6 zhf}2ownKAM;9qyRoYve!!5!UYqEdy-J&m&Kb=U)*z-U=ivaS_dD*s`E{Ycc_o}`p>whaBYNG0O zZ&DJrmm;Jqh>R2#;^uovyv5jseU)}MW0D86Md#X%yS!LI{q6yG4gcK(jbNhtZL#a?Y+bkEezl5JF9KJ*6_@T01<>dpr123)#1kSzddt;Ij#dtSsyRrzR2 zUuVQwR%WyV5q~;rXT2ZTtyLA>_|V>v!7?Lw!sL#WElcfms`qs1YV?&dsej*`y!g1_F=ZL*m-4Y1NH%9Uqs_fZqsP0<5yJr+3s_XRI7FT0+Rkc@*Xp7X!gWll8a3d@SE_VnY*46&R*iW zc3&vj%JQ*Nc3DO;Cz!rTcrjK6S5K?w-0%2KB@`u`scM*rYKc6b<8pp$34oF!oLQSn z-|*1O>f2Y9Id=C=OaLisK)KbCxylU|s>%vdXA><%fm5>)W5+1{OxAVcqhhg3)BJ5M%S-`0e$ z>NEjgt4lm(e}s0%!t=_+9qob}(%ileNRTXD7!Q*5&62xP`RX%2C5zxZ9K}@e8(qB^ z=0y<8O`!MP)^C-Y4_Sy%Q?p@fYB(*iRHJw)-S|t#&L??Y>N?lEj;PC?#*G9gz&lsp zx5FJ?BhnK-0v1O-{MBh!pjN{X?TXj1WYc=v&sMwJlFIGDVb-Iq-3$aMyyi`oBu&CI z%>9j=+|lBO=jmBnj;8b5B7zq%XTx0C|O4wH*|EY z=0C@eRQlQ-1DfC-Ec=wtVXi{WC&gmQYrEAJ&3ZCoWnKnAdX8zv2PYs&G61|H6k*Ia z31>&Ht_AD-y`oP{lm6H9zfaU%SY7+QZlBltAA>=Qx&OXV|1?Q25dsiWDAPm8jS3Qe zO!ZeicYM&R4IEX=DGt5G1kG10n$A0Cu`-21qeKX7$r~t$?rX*aP6{SeS9o$XYI=XW z;;PU_CLHup$5O>O;uEDrt>{|Qm$V%;-)v9)jr4>Vr9+k$9cov;B!etlxsiHm4i*yX z?!Hez%?)aE_7=pX4d1pr-;U#)jJ+Q;IFWmgAJQA%uOnZQwW~V)@kPTISDGm5R#%#) z>>0kHXH=q`qzj{MQAU2t%( zdzu70I@m^g`q%9=XEiS538QsIjX5x47cO9ds86Tnaaih3{r|Do{hx!d0SlA* z!BkuJyBsjFs~-5MytB(k$z2eKNhI(X3u)InE-bkEma8wgJ}mF-4voh&-q-d%))-Or zWgl_mMZn4r{jeDYP1zW zaD#>#vf{7-q9FSbQGmISlBeMt-npC^)|r;S69W?TjpJb$@X)G&@)>-yhKT_?F9fYl zR*T28%0*~Z5px~8q5{^*dxSsh2RMdSJi#T^NL2qN-dL0VF3flp)!`@k(97TW+Rotd z7+1CwTB2Jq?+Fy+y-%x4F>ljI8V0sH@<%UK-Z#rwPj!26>+!n_|2+3H^2aj|&rj40 z99*b*Un9Pct>5^(c#CmME@=F^1k`B!I;o~`Ti2uQ9q{oaBLh!=D keSq;pPQ$?KFV#WxbcKAA{g+DTtwqYcTIb!Fid#1QA2;YnH2?qr literal 75239 zcmcfIRa6{Nv?gHOp>d}h2~O|;!5xAG3+@msNC$#jLvRm)pus&MI0Ws6puyb<1PN}9 zH%&9#J8SM;Gf(p}Q;+quSJgi2>{H)gpaeX$|GY4dx^PVlUfoDA#+&H&{COdEq%P1B z*Hz6F#4aD^%$$X#Yi#U&+;xKyZ^HGlYkl!>`Tk%zsJErX5Z1Q(!NV)2Z!W~|CIs>b z$aj*+7IAu=D{|bjzgium1_j=|70&)Kn#^G?g_!x1foe=$8iB*<9GVn()0U`;U;*tP zo1Ei+DP>$$yvL3W5Dz=i3UKG0oFib$y}{h;9lF3V0ollep|oTm<&1}hwuOY<8bs?j zM4-rgqa#)61DCPT$T{@+x6Jcu9i~udVrUYrI+|E=+Hypw%|isT6Ro&F7vy>z;oBj2 zS#6oG6*6zNJ-D0{IBS3AEPjaFl(yqKM&gQcI;{70TMZHkx2`TQjYTZjGY_i-ES`iCG35>h zy2;rMvWW8ri2X5@^tDiYEXs2RtV{?_T&s-+30}!$2jYcfA>t*_%@|;l0*ltGTcy5p z*d{T5Q*;?Kw@MLrLIJaw$5i*PzP|BL3M0sVa~h}>;ww!y_*a7a?Y)R1#*V~mG4#C@ zc#?isUDp(7@sG&~73Uo0v6uY;i?Z~gfG0}vfi|S?oat=ymXjdP|rn|60WGxP_5kym~fzc3UXCJc5@2i zY#cJQfQwKqED)c($M{3DeXH1JY|fH$yiE*W3j?k&Y!NqOgV;B47;G)VH&^ush5?RDy4bWm3<{0Ko<>LhKd!FoXO9PFO82=~fwC zcR4LCT5gz(-6Mu<=mxG%`XTEE1BNxmjsa69nHI4s}Un8KN}eoa1QfVqNY zFK&yzC1tbWjR5wd%H;Y+t*Q;61qPbDmj@nq`}f`2FNi0hZ+6aq;vPJw8x(H>?B_P@ z5V?&`a%XkQr8zA)sizxF_7)>_x1FSFQ#cz^e3SY||PTc;g& z&o*-0yY8F2HQnQ^J@SC(fnuhcz02>M{^5QI)I?@ZoP4W-cv(=HS=`kCO#S{uag!6i?qTdhX69{-L~Nv zNFfrq9tI=P?V{F31?dK9c6tq9qc;gH97ewv$W>Y=KD3X0*%ek(plBwCvo{HxC)ut@ zOgosugpsn)8$A{<91+~-B z1z|j2NkE!D=z*t5y6uD5WXx*~zNP~olFvT|*XJq6B1TFBuWUx>I%x}pUGl%g1e&{o z#5{yN7JUb=2c!ph4|-b!;0j%JvMVHA=qV_r`v}Z3U#AOk`NR}i6Kj@cz(o%cXclx& z=V~3M_YE+>z)(v&xF>KaClwld%$l|wGvMe;kkM3ud<0u^#%4QRZL0Fv!)Mb}YU);mN2BE0n$j>l7|XX+AAX z;^pU=%VPs7#!>0Di~Oo1SEi3e5M^0{Drk7+E^*Zw?N6TBn`p|02d1k-;y`S)J_*&k zy%a80ez?*@eV6I|qJ-TbO_RW0wCF?&K&mG03e7Ia4;{6Z6^Nc_xd@y;QVgmKAuG0W zu8?>Xx->~Xjt^CqbUh9~Pw`yWWa+n;DuI3C7t{@7L7M_)otA$Zw!Lz=XFEs?uJS&j?wW3Hj=N(?+gAK1 zF?0{oBF74?(E0{IU_V5L_FfZz);v~%*jU&}*F99F936hTirC{E0J{1XJz(Kg@J1^L1O72lKNk7EOPCan876=bAR0Ct0$hn|?6)(N z37QAXcV(b;U@#55obSDQv8e}gTR_(Z@@K*wZWD*LA9t-h;zcTB0;*#IF4G9Mu}8{$ zqcI?tnA3lu_&0=nkR$O*(6y#TiVs$39$HK0tNlp<37v=T#sArq^U3JCpoN~r{KfH2 zY5aghHqTB>>1$9E<_g8Jd{_HOX>k9Yk)x^g(XNInIMHB=pJQU+Iox3-&mD9rFu)Ec z3`Z>fSwy*oxZRxS^0yGq_Ije9I~U-b{Xko%+ea&g=z$VN7$@{VuII^hY_n=G`_3Zi zQi_{L-SHN2DGwXq4FwnOg0_1YIA}nY+Rnn;SpCkXqfmCwDRPm2Pe*S;V&vKecz5l% zhq0sIHOYSoSdO}PS^ZgmsCo4Bs5Sch;|0!%(z1Mho^|~?mLQ@IMYC`rTm^L&hbx8j z`6@_}f}EDD=E2V5^Asx-J0ggpH3@-YC@pL;RASslW;MoswFQ$4QBbv>`U3wOsZsO~}v5pi65glOVSzlo6^fG`hHY-w;jcRE%K>I)^@S%iGa zg0aYd-Azvn78*y}Y>hpS7L;fC5p#JIoct+oB9-J=A=dw^+!AUrwQ6EnVBQIC7c^8F z@YJLc0f|aNz$EG-2^cdJa}xKXg`*YazNf|Bu>34wh3tHBLJC6}7K`92g$r5Lf$Z8O zCi;aCXdqt{rldg!=BTeF(O%yJ`f~raY3$C^B9jw@PXXuoJ*^Z1ODMr*Yg#Bn^_{;6 zj6nkh{!f7l`J7u{z1H{hD$^^=#xD zPvIl?)BafvBt%@I$?RfWV&H|EHR**BqQU%|(K260BMP06c0&Rg!rKGA<32e#2jgbYd83NcfKKE56PzvZ^2m* zW*x_w4|YH!Rx6xq(Ffybm5_ABPj>qvVvQ*rxa_pXG|7N$EESvW;OSN#;tYq(E5g*J ziQom{u+1JQjywqS{qxxm8OzPTRKgN^{!lRsP;I_sCuJT8VX6ad$|?~D>_PVNZH&b~ zVLnKrBi24XU|7skA7MfUBV_SO*Ll4+YDEi;@!o5HMN4Dq&Nr|T7%~O;I@wr^Vs)Oq z&u1k@Sks^BM1|%Mcz^eeV07M{n@m235ekxRO5z`>V|5w*^3R+ET*9!Ck{>}i= z_#5k4Hf&@D5(}I;^~ec&VB^dWBgK;9R^GcK?(=reiZGMQgR zsxxAxc~@eQSX(A|Qs#ptYu*ExgiHg%nLIZD&g<#2VKJ>bF#*rIUUqk&6+|#@z{nA7 z*IQpUD*R(7{Ihm5di*ocu74njPztgH+-r7iq9AMYcB+ zxOKt>!>EC)!lR+!dU+E@aPh31tF47K=5gBz&R*0pALe}_6S*jc1$tn0Br4+>A0^d@ zZKoCnq&nK)B0z!1I*~Ir=0%shwR7#WEWmtsa2@rL7G{V(3v}j00k|p723SPjQYE;> z-}=CP>%^THqgiOhx}B!rL7!;;y(sv3pZQ0IJz|uV7!y2BUp7uqt_DlWIP7sVi5X-g zJ!_5gz(Kan9$sMFBLVY88^R6cWs!YvVIA&?cTNxRgu; z8|}}5n{UrwPP%f=;f4y_$cIoL4F5N)%=n~F|4 zHxsjZbmQET(DhVzql4SZ6Qj?MfHdWfo=EPRsm=^dCJW(17Z^NP!eQV++<^MlKU+I6 zY3Q`K=vSjFaBa!0qYA!e;v6k0(3J}wL@)TFCVN{G@uJJ*!7|G$@}zG2O@H+6dCpMt81IITpdyenM$H0b+-isuS+5EH6$|LG6*<$K#B zrN_AQ#K5Aw(GDjcx`5{J*NlTuWO1UMTHq);ZYz!gmffqh@) zEQcuA=d1)Ej1xf{yV%z@olmD={$$YREe5hP><`5X;cXG<6CfFMQV1Ggo2OX+(SP07 z+V2_Z;&fR-d%7q<8`PMjxgp>QRDl&qS5M3;K_wtI5c!urMNrV59`PVUlR>3`NZ0+s zChU_LYNToo_SNh$r9$k{4)GV3zKlvK^?meu_b8VkiKNjVd{jKRv{ui1)WqK<$%SPd z@ol?5FRh((2tacFwkXfbmi^~dy?^mTtifya?r}{lB;oX^deVG)%E;03=jq(q=UR8Z z4d}x9I=#JHP{Vc3;AX+yOisxBa(?qdbgIi3ju`c$24CNF_`prVdhx3z_tdE5``0Nf^7#v-rKxq%@jk#z-Vs5DvHg$lnQ^5=|=I$J7pR zd8akQoAYm~DWcp!G_S}7Z)ZeKOKBlk45|HXgi_Lg_B9J+A^P!Pn0(_A!(Rs-Lg(^L zenu#}&hd{j#l%Pw2P!-}CSC1C&hX?qlDJn#^jy5AL(c-A09Su#{XGx1*qOC-&MS(? z>oH)??RR!0u?fl+Kh)iVWO++SJ83ld)x$djZ12R9edCJDYCdbq_wLFv* z7a4(t)ZVrfJvUCclcGmzzd{XgJd(0Ol+xEr24~uvphs*`Z*Z4bCqJN#NrlPXR%qSb zu4r9QaesZPa;r(;b`wuqGUs~g(u$*x9b%sgTSC0y2v+;J+bhRN`HTYE+%vKpa4vpw z^>MVi1PZicJsM5t}{I+1=NX*=z5|k z4&odK^Bli1fP(LTH(d9Nc~F*5_sNy^k8Fd5JMcos8+JIfk;HDHDd!a0!LWZIE<{wh zpW^)zC6=5|bVI!jCm6)k;kHN1Zmwov>^$KeOEElC&ad5>9GnXWs8$yRFr106|CE|) zibDOf&x8q0tiOR0x>sTah=P^w;}RkA&Mz)wk}2W#b~xHUoe|mPdX$4HnAXl3=$6aj z9=k43YVFyd!YEZ~ffQJ(tR;uVe|#@FH|D?d-vM0`P#$G!7y8_WHieg8iLRB$mFyQ5 zx@Hi`LhoV@F`PFC-BIXlDEcuXv+)~j)G{TcIRt&|!s`~dA!BORg5$xrCPI~}WcrM3 z^Xr@!MoXkHt4U2Fp8mnrFzJuiz|tAjm?&Ph!d5{8M)IUfXlSb`4OZF~;z`XI90j-RL8Tdr2yg^ojs@mvX z=@&zK!#ahE^dNu#k%*Ejoad?*_*@GN={R4cjp)jgM0YLUaLrd<4m0Ns+Zno3x`Uc! z1D%_sl~ukND0pHQnN$!Myo-!2s;6Np`)pkC4#&k+ov92Y@yvowN{~UnWR^HR5b&w9 zv5ce}qw0nLn^$R;K1nzW5vIzLq@1W-FJBv9B&T~S-80OUXI3+i!AHed6F=o*NdFBY zv0m|lhklygN4JTKB|%sN9Sua4SMRWQ&i6;sW&WC8LX`#BogIqwehM+^?jNNe}f8@zRFORM5C`cB*v z&LfZlWCi&8*^}B8jBqkv`Y4kxW3;mb5+{j=hECxW*_Ekus!}OSDU?bpQWeiSYyGg4 zW{9$?BGdf-miL9TJ=+dJsA!z%B>KcCBSnR}q1*hYk{J@R!Cwvk%HS+!Yx0IIbc;gD zE|Y3%!)r3iH#@kL{d=Cb0ye+q$Wre}xe=v>_-rY$1opi5ZF6+PM%R?QG=jFDL>tvgGjz@4bNx@j=Jj0mh>A@ubvZKW#2g_BWG^ z+;DzYn}}YQ*>9}9&Xch!QGKjTDL3!0NY^+ionN%R=XU$0E9Jw2<4&2Lo|+zpn1*;+*H60TRO(vip?MKoZ99L5Yf>#8MhZRY&Z!}j-D@q$xvNU)M!0&e!INy0j z(S9?ccV4(5P_$L=873uW-r5SndQwL%nrBZh@M>@futT#i z*!OqUBRTC5SLOTu=h4yIkET03A%eBv)LPlAjjOpn4Mw+j+`S?LZss(Fg%ys_g=#1b zzWU@PFr`E8?SoqVM4vIDSh5e-`P!5fNH(lqKSH4LF4TcXC0peExZ)HQ2UE%$l)gqzFzg`dOoc3p07Tp9VB9Urp(Usl`?>t9%K50lFyp0xiU6%fPP`yOw z`VX+6Pc!_b$B|(}@t;J%do96hUCvkGIGikM=uFkgWSKw49l4gHv=g}T^S?QGdD&jD zz5;y`6fvj>3rm@vN;1GB;T!k%8jJ6>*^lO_4O<|-7G;Unk4%Y4p;T}!wq#X2`Zmsy z{uYa8bW@uQ%#*se^=!i@Lgv|)oviYLLMpa$Vy(26z_7voM?)5#kUVC?ZQZt*%*8^t zxB~MQNq9B6j<^d`=nb#iA8DwA2?eIj3oolB>l)?0Q|1 zXI^!CoSc0cahk%;MxU$b^Txb;B;05mCjVh(a6u}0c!Fb-o8NTDC(!SzH(Tk%utU>k zx?&bXshV?0Ln6i0$H3?%#K@Ld)k=+ux3wXZjq+SphV^~yu6N_hrpx5EqQnn)U$6=2 zU2w`)Cv;4@6D)fZ6&Y-ok?D5l)n}WIShIk3-OvL{niKXh4g1+93t)B0b9NH5fW{in z*85y)8B;t-^Xz}+T!!9R8m@&3`~Ah8D(Q`M8VxIAf4i>W)rV|eMZ|T4Ea54+nZVSj zVo@d5J!Zz&nO&0Z)m30BO2WNgqO2N}{C0QyDxD3+CVj?)$>k5TGlXM&9^Y7q@DY2= z-xzReOz0IgwKL($-j(~q#;@@8vpBB28ECV|(yP6iU82beBa@v6X5Q*Z$Xn&|y8902%3(GL#8OwmL<-jf}w>VX? zEjOyZ^mv0ENV~QZhiuBi56HQFov0^#o$6WFQ^t(QqR0fW2$|0M-5syV+Z@9xWhqHE zI7to$-5916)r<6|tZK!z*r$#BUOaIHy&!niLyHPp^I37EU*zWctm(o^7O( zEM&S6@Wo5U%X_+t^~)4}=$7sHa~QsRH(9S<-(B22n{vQNuX1~F>}=)7{Z+2)>x;cF z!^~|kn8do0tQKS01%|4!#H6QERRVQFqgVO&8*HLw7PHXFG8CzOH(hEI40~n{HyX@M zEwE6jMC_<-NQ&`8zv%mY1rPQ2AnatzJX+z-i?d>UWci z8CFDG{Lhi`f@btR)~D2i8k~HyRhNOyt)~hx>TzTv6VddZ{PH2}s_B1IrI!JzK-Y!miTOHI>x0371-9QA&Kp5yk2#YISl#9^k0L zq7l;S0guat}9M*N?R;_Qxr6GiE5rSU$uI zb(1D{*k6%7h|FgkD z{{q5ERJ-~Qpm$gzI&5PYsnKbZDPZw^=6i8d{U*l(i%}T~;UFA2Y}0ORygv#mYycJO z$IqJONooZ*%;X#6&z0n~wuwmY&bioI>VZ+e->pa>PDe5)0>dXy613XaHVY{A+M^Hr zp{C~i+)^mntnUhC;*;N0v}7C9#2Uc1BL>@u&z41Qn@4wM%yE#f#FEoyv9I8W92`)m>LTCeS?jx6Lb%_Aq~?e`a3Z)}(kq5>NW{Os@S{tLXVk#02d z(!c0e=2#32J=7~1EwjYKGc!rz&a(Ii)P2R<6g+y4R~1p5X%&^ zTD`sG@3g<@iT@DeTP))y*DJjO5<2afy?J}Ua%p?OyNTuOj#Px%Kzb&o3oVa!e+AQW zC69ROKOnQD55lkGAD+GD`N<+5rS;8Erd(DkKX&W=*C$1zV+r?S|oV$?qCnx z^IJL=q(ur%uq=+8RHQG8wh#%L z7wuHjN@l540}_w+oD)9o)*2= zdKMW6WoR9E2nOUF-cir>4Q3!{sDz0&g%)yzC>N6dx3w?7*Gsg`kT=!-{YIvpdLTf}#5<7%55!0wr+ z=MgVnx>?^+TR&t2*AKz7Vyj|>%uK{on&C`OfVB6l+(&9 zBr4{GHKaBXHVr|gd7e%L-#ibFay1MTr+dsiR`=`D3iI!~m^8p(q~_`dZ83w`yL-Y? z#;`&O&`DBX?Vs%#OCN|Z-hL0SiBTj7iuh_JzfQP!HuSa{gz4=JaK(ii47|G9Ll3x) zb^W18P`|pIy2AxH9`uUz-xeQsy1T)Y2C7h_UHe7^a}N1A9+9PxtNbtQ?q}=xPwj40 z8?f(s?WrGlDHRm?vLy{q50d?+7U=def@aHrW2_Ob3wAy39e6%KymGSmCu`7OC1mkh zMYfV=-f0CrWk~t4=)pgdWjSwb9Zg6UVG|NHD?5rS608e3a;gqNSFMtz1-o_HF_ysk z*fzlGSEMT{9LA6Bo+k|T z6*8-tKmZ=t;Ckv;#L6;Y_2YroezuLJ^O)n)N^9^WFB1p}ygvI5cSyE@PwJ+!*e2Ke0oPe3fQ2*uMAXfpWvNE^uaw2I_d^O~=_ zZwFfkOGL?1juTOe?cMU|(P+vL8(_+|%FAk~8$|gjQQ+A*oPNMGwox*T9lIqt+|MSW zCwo9Me5N;m35uExz238Mle>)Iu_EaAx4Z0?K8Wzv;7GZ)|624|4=Y;tv``6Mlr7Hp z)Q|PGUoB>GgQ$hn%QapA4-&TMf%^%Fge`^6CTX-Cg_pqav1BPOYeuG zOF{(xL-cWi8c#{c9w1RO5w}I|Dm8?uA(Zr?Z_$2?e>SZ-;zx`i@u0*WxgiwdqJlce8%qRKr=4brV;@2-)L z@l3vYAClxhi@V~3mL4-w7ECA0CVcnUmgyw*i|N7yaIwcpHAI-9c}#?j+QTjF4WT%p zF+nYYb>)sSTY-moNJ(@zfwbu&>-YJH@OqlNMnuV8)F9#&3j_u%XtE|>7YfIM(k9HQUFw)AD z`9a@Pk{!Dac^O6;(v)i#v~_~Byi^iq1kF{CMDID{RXz17o|Iz9rPKh!u#%+bBVflZ zsBsJDpQl{7*ZZ|uoZA+sBYTzs6~Cx-KnvkPM5t=)@kbQpRbrzX;9n{j98HqasrLUy zy*Kr)iyyNQUD?ub`z^HNUSFF*A4c4WP3+iE(tD|8>`VXB&gRf=D{G}if?J*wi)F!eBpmf=@D_j- zU}y2Wbf?iJ_x%VhD>p#4XbQ3}L@>pZYoKI`m2#J+&kqeD|7m12fmJ4%(2_0|VJpQ7 zybn+d+oRC~MZJ+7AiP%MquFhfPz7!Djzi>~-uZH-9wc{)Q1$Nn2QN_zxdMUFb2COQYTTk_|hwuB($!o^cyvwO*5Vi=bH( z2tFjCiMX)mXBoW-`%M#8aP}#K)o_uP+bEN21AdO7MGpLISgl27Q~Z9$S{gx} zBKx`%{R)L9VHk#w!=*#Bfmkinc@?&UE~hmtj=o3n3%m7*=`5T08ihl8WbuKKc~%pI zg)CvV1{7+AF$6}e#$l}Dg_;^-U&>)4Q8< zf-V!SiSGLK1Mpc2cLOJ3tlQtwBZCPR+n|(_;j(lawTaZ-G?(g_!IA_03g|Tv{u+VL zx~VjK0J?HTqGwA)cMS5l$E1&F%~0)Z7Y))GFn$kLc08*NT99 zZSo3 z&2!hBFqq9(E9@=!yH7Bp!8Ba`5WN)2Gjlk_5FiR6Xw3&C4wi@cXVH*fpfg=IipDOy zm>l=t4*K8G+y7D;uGU6tt!cZed59O>@)1<{SPH_B+Uy2RLb*fG0G zabI>r*e}(N26=mQ&PfZ-1t*?Iob#a{ncvYNBZ4XQ+xxv-WT7pTuomK5?17@UXZFH< z{Rhv`Yrb*sz^He{vnu94qQ2WewOz1pm8&50zgnR<%OBQ=Ckaz|E;~+{EgDch|r2D|C zz&gxX!&N@=jEX%2<@#~O8!0#TxkI})%do+78?Geb!W<;jJ;p6%2KWi;HWTyVgW9saQ_3PuuLH(E~@V2$YJgPuV$>rhd!|Seg zb9i$S_UaAd-rPRXU1#3v!UQP-F>9PKTWP#r78L%m)IG3i9T!!57ctlKIzvVkHS_lQ z_>Zdx7*FmG*AaQ6lZAsvQ>li~hPMgqa_02b(D_=v-*)#Dn)X#GA+>-dUxbJy-%{`G zBFQd^U(Rg@>5YTwjqF=|(Q|(k&Y4e+mAoZtj26X02{D}~yAX@w-UeHpi$A-|)qdbk zhQ)bjlq+6}TgO10!yp@R5WFau9+k=rLAX(Qp(xVxG9mmQ`d)(tM{q=H<|DcH->cXR z{J~{NA-8~bl1reCGV*<6P%DN#V0BVp(xa(q3tNh1nD(&bgD*#cG8?%%?aJw+chW?uE^h_&_Lpn3{L z&p?ow&yc$C$4w$g?xA__P`OA(8#(rOYtrL`0`T!g-XDwtKG=DujQpco zp&S_e>^7`|Th(QRK)7M~6J&^uXd9(I!xO&?Tj-YSyTp2Xgq__vakmC1KEsCe{=^yT zP&HuBc@lO)?v!B1^HlDk;m<3WmpdywFdI&gpV%C>l*4aP;+U*TlJ*ds4pC-Tj@z!H zY=PVF5cI5!#-iFz?<6Sb!Uyy77 zP}~NxD6yGf6#~wwzIBOXLa2mdT5@@aXjdk_=kN8!f8Z9`FZk=J8+T^_TOf zw@f)%#h30=Z6i#b(ea5mGK zanF&+At7jY{JpW23u)yK;|N{-2NK+@of<9N3AWy-)jl^~p_!Bxh=DM>(rJ%5n68gE zM+uxxw|q=SAe?Z zdDE*W>CU&y>Sxiah@Xrt5FY=Z)O~(iJk62#-VQv^QubK{>>rO;7QQfH!CE-_>Zy7z zhr0c@Qe?K}U~2se0)3a!(J{q?l3B^-9`8{@SqJY}vy+p59Qk>Bv9vRu@d1sxR^=DG z*pWZ+^^}$OmS()*Z>gf*ol`bQE0EPAO|yXi0(1c4=SQ`L&MzR--t%#G{?%42`1&W@ zKs*aAvqC+!N@5)BwkrVV)$O#X^H8k?kzo<@*xm)urH~ z>maw*QK?(4xBo@q=(o4-i^ERU|Ag&J!A1hb`qxzDvsne_e6{&Lc=p6qC6|~nk-YY} zj!N&++r#xw(LejO%%YnxUs)B|IK-Nj=;0WECb>#eW9zx8_Y8$DWBl=Q-{(~M=NMOQ zyf;jI{e4>ZVPAl%td!-49|s(GGJqt>c2HxI=43cW&SWhdGgML8989+x!db* z5Ifg(n*NgJHqb}0$u5Q0C7k)YVUdN0QS$s-V*Dw|SGr#slxiw!^4()Lo&_g&DB zY0lzYfU9#e!@QP4z9q-%$Hz=&|7CxdVSiqkSBjfW=E8QT#PUUwxW&jcA!>T2Ow*)X zp)5f?K89y({3E|JPyFlvS0itqeRks??I@x04`xp);RR^?@Fkm7WF${ZrQXaPkK|22 zz$IxwT?a!1>Ai(4dQmOg=Sk{G;we|>&hv`|F+3{X=bJCSF)!n@?vQ;WEmO6Bcf7g8 z)$qD4YMN(BgLrvSy-iX2$J&1}cAC$?k1BTU|5LGZKz3OmT}n2ft9f_icQ)1w7X8at z3KXgyk~#9#N4rK&T;@v#)fU}PbY1`U538vj1;@%#&TB^pM-N2~Syqa^TgTqpxGY5u zqGQd7IWmm_Ck2k)DJKP=2B`>65xO@-bwxgWdnsMh98y}E83+d4+gcyJ9R3B8?ohMyZsW} z)zA2EwKkU4ohNerLrAJEMJUJpimkJ<=?!andYQ1x_FJ;Z*4%MdoWv?vn2ut)WP}Qv z;;bJ1b4yB%q*&c(6;-vYAQziU;u2Hj|g1 z+#!-HE82Rdetx-Itp6m}HlP1fuJ71<>z#zISkqJOGO6Nck;8A|g`GCOMiujFNdl{G zzjXA4AjA7K&gNdz|Gm%rQR0h>7}qMo zonf0s;`b~czDi4Q&<0hemC8q?eJTkfF&c~=F>(^2JpNVQpN^$7C;YOlE+DlOpq`ao zWgy?Jw!b&Ptt`Ee`MSo`la_BycZce%y(gcePdEPT{4AB#S-VM7Io5J+De`loe3WS? z_og;GdB|6+PLH~nw-%!@dy-rYVX^05V)j)6kS~Y+uh2Tqzuh07Ovj1Zp~c5Wh>x1& zMMa1B|2MRTh?@-*@oAaMa1Rzek*Xyr)-iLd-YKFcNs>pWc4lTj|p>0B0l@RT53k^ z`>Kkkl-=qZC0g>!DTO!UL>Bd;kr_GsJ8^ruGhb>yla~r==M<<}shib^jp^EjPm+!K z=N#czeCX4i>BpoNNDk?5{Gy!I>^0?97Hu=(*087h!zlicg~F;fu~<{tU5x2cBO>0z zw?6^+6em*0-Gm$AkFu3FVe@qH#EyTlU3#-6fSLV-Q~L*f$sCu@H@6y!$!U$U zC4H#*MP|Movahm`P`X(->*NPfapqStx@u8fOV<9A(aoh3KBMjX`X!!X!ObX}B1~xO z*r*lj0ukw4%rA6gpTa|yJDV9Ew;?_R#Fcnkb;si2N_uelOxbxFjeB1~!xW^HM*!`!AUh%n zw$Il;ZQ2ptXV3dLcj$d8d#bAlSkaG@=+6;0WZd&e#OqfrLxb90&81id<3qdylnl2o zG{k0ZnVP2+iRo9S6VUt1qO8eOHQ89UPuSJw8$ z3QG%1=Dzs=q7vSlog&lw>lHC>Ox`jsv>c8wX}?G=y$>s7enG&aiA%uuzC!A4tkCaL z-M++uku^)!iE1w8DuDR0z$gJuCDA6*VwMP0MEtkngP$Ma=rfIsQ6pxiYaSEc%-4TZ z8q!R8rg6Xfn6(S_)QJcblay(`dE)zP?hj?eO2u!yzJ6nLQAjj8IoT;A7mtdCXIKcJ zX#fNS>UsaEq>C$UZLxcNfD>}X#YNfM6)`RL+gq8Dt7I}v={e%XWhTVq1qhn2ELCfr zb?#7TGbuhfbp;niz6}?i&he8|Ll$1Ht_Sg7t%uay$X(s|6>uV9h#RL}@yFWb3!TG@ zAG;63MfEDtHw@2t*Gc(?hFzcM?)I1M7dES8MAhwn808IF#JAeHv%zilnOb^mtc zKBn;@#)Z{FX`ke^;r6^nhtYm~fb4RWf-;SV@tA zZv_!MlHOctXEVs(KR-h* z&c3;8pOhIttPhS|Z&Q$b)-1^ncsqBeAAP#{}U%mo8PwwBrGhL7WX7HbV zFtNqHITZTbX3$k}ery9TR(o%#ZJ`H07$1HOOMdQB{W*Au?Rs3%KCUI;&|_As*z4&x z*_87g;lo7BNvAoqcaUAvn`r+J+1Cq3`CYJxjFoX9v~SMD)BMZA+=}0}@W>6m2##}` z7R^uMqF%rE1#&XkW^IEsB|p|C-N$7pxBCm*uin;LBwG z8<|>%%avQ}>n3hp_mv*P`3)Bzz- zJ8yf>3uhUIhC*!Fx>pAdEAOiIGMW6%e`|kc*#Fg|7)$t zkMr{=wsng(F&=aF+q>y23XM;r_ETVf8WSC>ZD8};ha${vl_(*QhgCf%_?lxjE8qu7 zz|}D7CY`3Ojbv>*32RYOUqU!V!26w6dpvpUw6zBwJS`CrAdoWdT}ySF*)! z*c_HO_dCJy=SmYlG^*1w^sZ-IPW0J_fQy9uC^$XSy_?%v&AXTOHPeFxk~hJsvd~A* zV>@fL&vbwH7q?A4;0>td-@3YGenIxDplpmZw1cn9THG{P(st7~3tdihzfzrL< zL2DB-HO677Z~r_~gB<9`zpd%~^8ISmXEmXU-IqG(Lwu0uOxAA9j85CA(+}XPWpnh~ zWO(l6pSG6)cW$2tb$kWdM(z9nIuP%)`wf5O{Hz*9+fB^D7^7zu?~URDV$8)@fXC0z zf6gv_T&Cy!cYb%j@!i!8rq}5c$yc~KH*DDzCsx1=-v2?;S4TDd{r|re1r-5B5di@u zMM_C&1?f_{XV5X4F=Dd->F!dx22vYig!D#A$Hu6UBL^b~{QUgB=R98b+;d;gbD!tj z|6cd?h?u^L5s=G^trsG-XC0ph;1Yo2^(FNs6A#e{o~@nn`R7M@5WG}aKK$EYDq)DuZ-K+Tfp15p>n_Ji zc5!$Yj?`(PljZoJ*Em|l9F@yzDY_XSSl?O(l|6a~8{AsU*1~Ud$~dolkHPgtWXa}T zT5N}$D=&@TYO`ATcIBITP)@g<6op_;I1eP9p{Zf;8RN%QnJ^;cr=GXE>UcYw++t;4SzjvG-4ox>B%G?WE|bwDGUlCjo(H(Er&=|! zbC|D`YMys`9L3tfxn1J;UA~da5D!XA@NNf0ZJ%GLIk%+I^z^F@Mpg7pG6$D)B6C@bFo|QN|u;LLf==-xF z>`MrdU%)B!9P;d=NprLR*xkzhDV8IApHuRS4Ia52Gr zxi}{h+YZ;O1{K$Lp;KRMTbi!B2s~oF&o){x#2?ZTg*!Xjx_mcmXS!4xeMp|i=O}m; zk0d*8kB2-N7Y}9PYXuAfT>iY2#f#jmlB}C%CN;XOtCMq86H^n}djvAy#Pt*O&b1D2 z8Q=HGx@Z2rn@%-eKt1<yNao>mU1;X9+*`M>WT+maQk{y3 zjh_yPD9phxipEFsE2`KF;?ebFM#)`9VnDcL(;F6>kJfuK&n?}nD-k8lh^Ld5ghgSm zy$8(;++KTkk;gw+kAFx8b+Wd6qyr4w0IDmiO1@N~yG#j-g3deqUVHakj>Bco{s-Ul zH*^$L276FZ#Q?``mL^qIAh=@qGj%gJ|Ln!$1CMi){zb zpPoDAk)>YjOBsu+hKC_AQtpZNc)kIhD@zNXKCb)^BW*oK1NW^sisnhXlAgPgH>J8_ z!g9l_a#_A;iW@!zr?sOy=6D9?Y%^O+mj^!fNGPV|+%Hg4&{YclzvCI#sa|r5VAnU? z^w0R%GkRYxr>MGf^uAh7(Q~n8UR7wuaRyiKs6@MeMmzfdzn$8Xh?dLA;d3hb-|Tr# z(cSLRzJeHm_wu?|{_Vu5Kl*#o>DEJi&P3V&RdmG^3;4+g>rkJh9iOI+y--am7RZy= zy}P{b(Ek4$KF@*tJA?nLY%R@Dy5y*CxXzogQKqWGdADZEp+-P)mKTmwIr(yIjJo42Y*dwVyxTPDbL1S~FIKWJ zn0emCJ<{g4Z0(u9{$9Cf$f>1^{Tu7=fEsg}N0@Jxt6Is)kA;^79QfJA!ESkA58TH*!HKSsa^cL7`A&!{vLWnkqF+0)|RI z{-1bp#kC3q03X|LNt1A;7G1HU?C4rB zib2WJAVHqJd8F8$s6+Bt74_A6;LWeU9rk8Bn@N=;I!fWbKUmC3LKpv2a<)C@9Qkf* zn2IefFMKp2g<(hKYMy~;ox<!DY+xiN{WGt{bAZ^dD#;1vH) zYIi2o2qviCi)3id ztDH&amP?$@b+Ca?aH%dsK;o~#6F0RfI^G$qT&OFcIpHK2G)qtCPv$MJ5RkK3 za9w>@u2}Z7A@2aw^f#OVbM^t%9E1_sBX8$c1l@m6cz79Cuo(8elCV!UIk&M6iM;xJ4ou! zO@F+D+%Ma3Mf7%HM(=TQi!sdc5S7^1a^!{5qqeit=1TKZbXp|?+LvRSHM=WKzUBJ= zg^aiu_UE(9VUj!Vf$6W`=LYd_`;V+mdfI|YV+J(tIV3z#T70!%7N|+um1d*YSI{Yn zanF5cHwyL|GD9tw^Y36f_);s4tSnRHx2AD{+k)4T2=I8h4G#_-4|B0-Wco%TfdXfya#&a}LV zDczTb=%)vQ(mB=Qi%D`-4(vGXZ4uctvom8)(ylKeh-i?L z5EjxS`@LoRRgQcqnXm9JyL3*J+kw=a5J{+}v-vk2E!sQm?hf)h17W>p)UdbGB*74& zCqa%RsUp^JD#;O(VLQpiFtTYSPr9W$WLDEq?d6 zQrYslX*2yTBZ?%6-&^=xJlzuzz&C1klKZoKzns)1^4=_Z+yWv1V>9KFX7we4JO0*{GG!Eq_nmtiM zOzhx?>(IWm4#$z*!S3%aF@){r8hyh4>ay!=Z}`ueEa8%4aR=IGl>X_jx0L>^v=3zo zJ5Kx?o>C~G!cULRIC2k1sfA7NZ<|dP`}o&X@3I`V2=nXmViDF=BhIdOPPlj0l7Yyp z4avF_g;qir_Yl82OLIYz6CN&uhsGg@hken;dUF%=2Lju_nu1Vc-u37&=Sb&f7C_0r{2jk zBTINnN`DI1l>@#L6(N70-M${{>@{kVE$Ig`@=omm%?%STJh%5bsYL0I-MB#BbuP`l zOcpF#YIBc(Vb0F&*9v3yVO7z7yMPW%xtCG!0pBgy#C*@7`n=>sp zMx@;h2V{ZDdjJ*v>wXfl-z!;U7f0oRDjhuw`Jqj#Qtqydjg1S`+vcl*Qgnh-UZOeY zGmhZweM0}t0^-11&x;c;<5&JtBH0ROQD=^&YHsKvvMO@E+pl@buL^@|3`VbpQXjSg zDnPdor*539(pMljr17xcyR%$R>6sXc|FYX18LLvi-Y7Rk+-B{E2yL1fk6g>^DIU}K zKC_={C+4DuFoKPq+f38n1xws-PsleprsM3aNX>Ns*-ILTav9FYGNtZBcBuQ-gwuYRwZ z_vkjiPo>BbdV%01he>S2p~Stz_-2o@0~IbdzYecg5-{jNShh_P_nA~rOXUbm9GTY0 z6M*JCLXuT_cznwp<_)q!)#vowJ7BkSLA4`8(G4zJBjPclQA@z681sph!^d9ouI1$~ zyl=`-0+!dDch0;WiXj10MXvzcUwcS4;v8cHNIKru$T5gf#;gzx=Ut7B6TBxV+c_2L zy$*ZkR|>A?Jo5NFc?+8h@Mic5VZ9V<3zN&=oF-}iaN9hoIDC`kX6MHz&^L3D1A)(?Dh@4GfRoRsH(yICHyH9em)8%wH)K}Q^sSUH z4=VUU6vow1nK+j{DXuPeR?vrPKijz%DCE6Xj-eyVexdCK3kCoA-y^sf4V14o1oQ-y zGNy+#7tO&n7%7$P&zunY7v8bi4_fpzqa2p%5Zh8Dv1&?rzkqw4}HozvLmYy@^jmoIH}bb4(HroR;RD@0hPcTh*F={r0d(v4abn=eTLw= z&yOyaKlQvA+Kwl(jWC;V280A1PsuDDlsZ^-#|EJC@n@Jm?Ny&aI=Ohme6~UOS=?)m zCV~0*@?`CB-u{qFu3d(EmdY^_hGWj6KZ>c53BUoUu} zNR5E|98HXrh~X)=kSOthnNoT6A03k+;78~$G6GKBHfPwDT0kJ-AQ!v$Gt#%_BUD^gZt#aQ>c~oBM54!Mk^Qz9$?Fy@}OdRd& z$Q*F8$j#CeO^m}Uh2zeXrhl1!kH9_b5N=rA(X_!u1T~L)q{xFTnt0nkJO|fGuU`yC zmScAGtTTk!*2_zbF2cfYy7+k>$!4(}bX1Js$kUlp5Y2~b+mvDO*ZrzCf<5-;^&uB{ zBAa2c>40>e46?~ngQ)Ky8qZCZN_{E?l0Vty$qPWLkJIr~niSw8m^akE5W(nXnQdm;R9=11!S2QylgU34tti6}vORC_R$MAWSnaP> zE2q2Lk42f-M3}%s1cxmAXCJUuOgLThbfCq*UKJ<7SP^tN zdb*T|`E4v3a3G(k+VzQO6d0V zpR?!FjYR`>lj`1ybUUnTQdt$+21A8MNpzVy6A+cTYeSbg58$a-v zfRxuhxJD3En-R@UOgLCfM+LCA=)wmAyjylerO~Hh*{L(+8J)$5qks?0P|YN9UN~Xl z7pA44HOL(4%sz|$uB2GOSy#u0Nh^4mD7Gj(ogwWzA5Ax;G2(39IkWM-(^YmFd@!+U z>oObMH_4~VU&^n2hT#lM$mX|QFSlaU_$yM(9>UMT%d)-2$>;h=<$-VTPE)5`!e&;Z zws)N-RBXlYV{Y2`5#~^2fJk{Dp3cJ`TzTlpg( zM_j0v%dAv&eY(vqD^<4>h6S~hAaVs9=6i>upPP936JXiEa*{Rj72M@0sP23Xa6uBiDkhHn^F7Kp&oroT!*}@V;BvOTPM+*p| zoWKOS@iJTn)K@xP<}7`HK$5c6S|6*7KHB2{1UPUZejVUucn>44cSys`C9m%Q1 zWPqTqhP}P<1=rhV{oFmc*J%@^4)rqMh~;!Q2_#|TE39o+CKjI!XyyfO@mH#3B2&shY&bDlweJQjwjy}<0?Rq4lw5A4KTvAf|A~NU zYOU32z3#%s*D;bg^vd?w!u25L4t{s#@|u$ZA<KPbPU(?yL331I%x$nQz z^|of;zdb)2bdHI6-m2&=DP?=^q|$28>duA9j0!(0lZ~&Rje1?}(3{wmtvGOd1;U4g z2EmWseEDYEm;TYZn_iD=y-@T3HXV3%`eMIWuGNU!cD1h)#zAWnZ(VOsNth5yw8iOJ zCAjZe)$9)wqOUs)@Ub`@>BWv$^6tBHWHM*T=IYEDV=ouE{?ttCS;tj~i$et^o4{%T909@fW7f zi6<;5N#qB{2lFid6~PXMnZ!%dL3TLSUncWBfPr6BJ;^BGZ4w#_zW)T<5Ds*=xKo4o zdyD;rb%@t}_pLp{noXBcMAV2`3ePXF6U}__)Fh??e?P^+wum+wyMI?L_I84l`^j;` z_hcRg(9pQ|K{F=C3)K|6%BBiW!C1~Ot@PNYR;cfP7SY9s?AYIpEKA{&+sClox15UI z^q2W{4$);bzmuBQFu6cGeV4qnSqGs*r*N6-yUpOET<4BfI!Z;VZCyk!%NS7Wm=t~m z1nA)Wi>r{g@UyK-Y0ZF(=euUaW?O7}b{Kb6)?-Wi`?-I;qB*Cl%iGRJ{J`iGMtw>o zGn=xX&^B_?tU+-49jqt5O$lbtA0%c6l}8BK-Aoq%O;?|qU9YKGDpGMcrGFv-9EG2q zuW3p_Zm@ydcBstBAFq}M@W%+1I};zN^k7Qa5IfK#u^en+Ron*nWr{~6yHpknKBsf% zCLR{vVg&1hBR&|?$@KD9a-aS@waduL*<$m?QMlo~K0u0&K~Bc9zKK zVp@NrAjKGMd^3NM&R&;QZ;q!@*3In!H{m-aZc}f1++@wm-@BwX+kO>V2n)QZZ#d6C zl=x>(h7sPGct2P{Gl2OzpUzE`wtOY!>-%)Lko-a{1ZR2iyH9~p2|Q*&#=&d{!Nt_! z{Go~FNRAk#iE=v3!xdb|(FJu4pDdr3#TJ{be)Nnfpq#@ioc40+w^@8Fma)EeQuG;^@_ZnznF5dKy;-8OIAjksmc%$7361>Te+zUOXRl;V;g}z3 zWT#Ax9kC#Q2O91o+YilOn$!o8XRHhM=c$u7;___k`>-qZC=NdFa%SNpV%q=@WNOq~ zRe~4Yi!+4WeoD!y7$b9DK*qg*eSHA7o|eouw@pZ16SSVj))VFbC3sK~z~Ce3a|| z4cqwPh^I;*R`V;=_e@%_2^qYdABhD<5TxKD%^!W28F3Xq1-K19I>ZI1&hQch0jZgu z`KvjAiRhIHCTrtAQnCqH)}2d3k4!FHD4i*ZUpk;~fVI`x!*$rfO8HA!v<)C+#J-}+1ow`{*Hy9Zp2xdSBT6WO|Z8oe7o1tyl$kXI&lb`(+lU2{lShvG@H z`AH6T6bM>+(KX>kl$w2Lj9KA8j0^j?o_(l7hofB1X4h7`+#o9@W|QAN%C&Hn5Sa4A z)IEQ~j+|)!g4EpDb}Q%e6zs@~@ew27fk!v|lVOZ7s>@F3U=8{4A47+G<+vMCsFYyL zV5-}%0WyJaWb__J8qAw>A0F z4r^(^dh9K`u$yHDeAezAE!7%pQ^D1|cFF0-%?}9M9C%UC-zJd-ku_@Ud?6nDDKG}2 ztVtJ46m>+xDO^X>AE~F$HqUu!a#u2+1qYam$WB|Do-8ZZ#htTX%$c zvWSXL1_2kH-8$6EWF9iVtSeD#{|0!PQeqM}mB#eWG;)Q1;IJTgn`oJFW`6gr&)Z?5 z?MP+9S*l$9qP-u>^sHjuOLHj%YVu9$2Lifrge21(>b=lsU98R-&L_uV?V)8899>Y9 z4Ke*SqzDXD?(b~qd=GS)!=DmYxf^cw1&0a$pj}zyGZi>10Sf~mQ@<>cGl<1*>a(%Y z!D(ID@)z+)&v%5 zo2XlS9QD(ehingWn0q&i3B_Jdu*u3N#%1@(aX7hm&`J2SLlnF@r)3xMUGy(*;&zwx zGlX0b5o`{Zjov}~pRDHlQM#fd7m}ZLnGjP;mM>wJIVf-_=y4_u^btt$L|ppJVz-=y z{J`7A!gbVY&r;R?F!IJbtm`sd=w-7cMERDc>jdh!I5id>`m;vqL3T@0rHi7koI>*z zX4D2{cy4qj(rcx^(QM%)qS0z>psi4eKD%4k(b2&HMV3Si+g)UPZ!tEgCO6BUP2J}9 zW@T<3-F{;OTGwG+?WcxTTp!YPi=; z#B|?BeABIT%OjSsF5fB+^tR-(6Yj93K~~SsnKrPpb_jDxR8Rd!&0gAd%GVDlI6e+(Zk#I zA1g(;O~&wG_BV5W125HP39$~>{RP%IBQn>srwkb?H-brL_BrSoAX zOwG%}2;(!qGi*B?H{ofRskHqv70de9uJCgG5ZCba6Vw=pScQLQK1+iHT}9Zr+Gk5L zxFM6zrRxMiGu6YMJ47gu zfRdn!HYyuy&N%@0-b1Ct z#AqI8%Sn0Ujg;rIYjUwi-;0?}coAc*q7`$*+kI@YO;j2VwoH{QE4|{Tx$$L{0X1o< zoIuje9G8H}nER4mjqcJ8X;}H>`$BP3{e_z@CNAFf(Ks99oH~xiL|f}v%@c&*!!~l< z_@Th`(c`00x63tWqd|I=sh$$?b9tF)@+{Hy^iQW(@%a6GoGpAbzzEJS_#&8QoS>hGQKhM z14|K+toz`_R5K!8c_I|dP{Re#NL48`@f1w)HSM1o&5l&M$lsZIRtfcMi;dcl*eJd1 zePNsDuxx@nI+|Y*Jvj+h(4_+UVV-wj2TU<}7t69znXTcL%}(!vT4sjO?MOe-{V~T^ z1`7IH@}T$f=4kMdQ(1{}%AD`s+>||+LzG4Q*{hFYsTV8n+gJCE8=`x*k|r}+`A$Ec z(Y0VN9zXflK*}mhc?Qeb8n}(Fvg#4NfM1VIUNmsd;k5bviYZ|jwO#Vr%LymyO}wVK zThdv0iC^&OOMYSNLRQgEES~l(J#nC)OA$-2a4``TKW<9k@!hO(wF_~uol95eZpx70 zB}&ibn66pz)<7rVuXAE(G*8EETNR2WJD+>J%?|$55@(VNsMIg3;;HsC%xUqM*C32? zX7k(=#@g$A9P3DT@-Y4JS5y$O;Bc>(c4oNqgP-piO_s+rQQ_ed z996s+wJl!Fz?iPd1_{WdXg8RC zs)zal5*`iXq<{K5iK!`EuKnfeK#otQQa=h$Q&aQP{lPxg@YGxpWW~MI3Ba^>f;o8m zdXb%K+>tG(S#7X#Iq#yO`COTEl;Jm4HLF$GO9+oxN3j5c6pLToU>fWb#$!*zPF2F< z?PB>0*};e}mFm=xrprS9)VQ2QF|RhGe-3~J&CK{WiPx-iud63)dkKy(1JXSBlZkyy zn!z5yj1K-U+*8XwFxTu2FYlGpP?U?tTXG=tD-sEm!pTv-=C2LkLxQzdZ4N^>b<+>3 z14>JAr!U6E5FY#u#;Ji&F`JqtMpHNku4v{-O@O@_o@APjlrc@neZwH9KO)C@8z%2} zOFHmtK$iQZnI6k8xga+k_DcN=__uFWiYrn`4samI>Bf;EWoDGhCWglnuTFr@xUi-U zzn?p;w_f$6ozXx3x_h3XB_5{ktPBLHc;DdJKCZls1eL<_ z^b@{woq!&RAhT`|pc>Ta{st*f*pAp=L7GmZgwkn?&w=s*0X&D-k81iD~)DWEm^uBPr57P^ECz+H3} zjayr+tiWehSnv4#l0ww@MH6$3L2*$Tt0wX@lV5dY@gJwg15PyBvuYiNPNf&b{HmVf z5mwi077+~b_hvIZEJ06cq=}>7GEbDju)~~5+e?Kx_KkP-8jV3+XWtiEY~NMitb#|I zdh~|#8j9X#)m!wIOq2LPRwnJ|Yz@!S(c^};mtvAFUxezgjap8CDTZQ=-@V^df33Ds z8$A>yav+uu8C(#JhiMpGV=m`&* zr&VDs^s@Z4vb=sCbQiQcy51Ik8g6wOi25Zd*OPd%&xuX$I}6vwPAsRol=mfupIBiD z8PjnU*ycj)&^qr+JC?K0kY92QGL{J4#`LKK?YS(-$#{4m?kiZ7V~m{MrfU?lxzQq- zgx&Q@nf#Slh{<5DXM?VdWK^)@psVn<$ObYo1!rNk#gjgTZlz;3`22<~N2Y7ss&`;K zo6_Nw$N+jSGc_exz=vo^2N_K!`l83CKAZzK%{m9PTMS%CUjl7iyv25#9b|xKze_%? zCi!qc-!1e`kznB;FrhJ)k8(YR5#>C|&XUmu#^=B51Dm2ULB+oK?CV^}1HASoYBgOm zp+1oOLiJX>Iny%$L>MHxnB-^VAzgxg_ zAxtXv-(Obbi{=%^PsY%mP-c8Ek&d%wqpvr|z1QclAf;QvGtlUJh0Ro{^>Ftv59B)y zr~(H2$faMh5y27+#9S0{4J&*%$C*8rCF3&2=?!5eNnu;i^69lbeyJ(=&x!8ms* zY0@A}^d2jWiw#1znRt|-#B$z?KlIpX_p#~q-Tl+d#3LdSu$eN?sWEn(wqz`u%@syU zwwm>|cv6$Eb5rbBT+TxzwIZCIH6dJODgQwkF;T`{aT9De)iq$A%2>N$6PU0`@|)e+ z;IKU}ZZ7NXj<>BHSSOlxZ*%86Gt17|j_TI@N}sEeRvhFaicB-GnCPi>19Loh6WLTA zK%ZqE1SS@Cz7^-5?9nzw|I9oR$yJceiHaJWEHoK?2&}SRL0-UbiB$)t(&%!c!z-}^ z=1kH#CCI-RnHn!xg@sH5bR@a5i2xyo;T>Ll&DiW+;g@Y zospN-HQ){=KblDX9+aM3jLGxt{44y)k|>Dzp1JtDT65qD;jt-s<=}S;Pkv}4sFX3L z;1lAMcQ!TqF-mks-#xp4AoV@^)O@1(wx$xK>3liJRCALCyuw|~WvlrOy~^fb!oBX! zo<-`nZevLu0tYl1J~Ka*eKvd2&t2mK-Oc&R^YsilF?C(8L(97ZBKycl9^?evsJ$vB zqSEKh9j41RvExT={#MY{tBs}$lPBf?SZCu{PT?qnB9-w)xUt_kwX~FNG)(j9i_$#5 z8>s{(KP~dDWX#4?xMa}bGI!|G4pmb-Z9<#x(Df=(89LgkKznL#k6Q+(xfBoh#8bYJ zEMw@|#R}Z}EwVgwy|kgLZ+pF)(`%tUBKqiQ+~qaIk^0%ZF^JPM?4JG@s*Z3UVVZu| zj7LM8G4)Y^%zCdpqm3)EkW& zYvvS=$XAq366z?vbQg)1-fnf4F0p0hiw~@tXU&@r`KFs34d)8k@$oO*QUAQQ;G*Hd zOE~*Z@>3D8i;-18tA*2q<*D=S}DB*B6 z>Ybz^1e@h-Ism> zIoN-aiU5^iC5^HVz-bwmXI`0-qhUj7D;kR~6Af0AYMP5x53T4vSDK?HU(GDhycogh|gz-HQpZ4L;>+z)2CSQ|fzh$tJs$Bdv-cG% ze*cXWvccz_d3GC5**tNnBwx@7*d^!SveZPPb9Ik(R`5edC(FsV8FS4Z{}I>|Isucz zwL?UN`R+l;38kd_ODnww3{~4{{R0-J^Udm`r?|u0*0G#!IApT>hAEf!hF4%uWgp71 zklP`Oatt5Ce#C_)3SOPGg{&MV;m2f!pMP;>hrh8T&)C$6I2o04=2?2(gK*9_IlDYd z{dl|Iu-;ioEEs?hKz(X&&|Mfd3~1nqyS9{_e($uEpQ>YDxHZFpS+k);*b#Jp!NQx4n4Cl!g24bHts>ICmyWU+c17}0cO#(#*Z5qI_ugLxx6xJeGvpm zL!HW0`7BgrnKpXatTRGannrjj{oq3Fgw6M?o&|L}1-*?*2 zk2#o@aO!RQM(A4PR*mjEOw`GgpJ~+1(y+%^IB-2n=1y10A(Y{4xyJ^slTVUkv!kGE zqn&+43%&Z>K>C~Mg0&RQx7gPusAfHu@SdLp)&fJdC387s-q;I^I?UkDakLP0B*`J! z?(M`<*h%_`{Ob)3w`)+3#{0S2`E*N4KF&if7dCv9>5osKuCkDE$<*TV%yOE2onp5) z66cq9<=5X2PSuwhS>9YAAs3y-inR08_Y7L)b*NEF*)>=z^#)A31ceh2Q-R@Z*$n*b7WXK_0me5^gBLsa;9?w z{MSpHf$_S!cKhJ^YkS^|TVFQY-wyV~G5`H#)79_lcvULp^C@pzx50aN!+Fd`cb_Pg zeDBBsl`gqWUw(%)ZQvacratkfd(T_|Nqg#EJT3CC>dy0OA@L z)=wE@b;SNhx#Ebu>Lw>XbNFiXilgk;maU&n_v#$(=w|L=cNHL9C& z`q_=?b*q{^WZ|rXHT^GtoW7f*y0?U|9p%~o^)2MN#3{oxOk^b>Y>pS12xr_|Hd7} z9bYFe0&G*5euvw3V$JRi<*ER0q}B-RFZsNoYhE5qJ``yF*_(6T7&iq}JH zA02d4pVe$`y$^Tz@-Gab+?(ma>(i>IXzf}A*MJFo@7t9cWvAk(N9}R4W}hsopQxl` zS?$Kl42Zqe6ZXR8X;nBV{0(=aU4Av;hrEeI_2ho>gyxBCW-^Lekej=nTE?38jm!UX z9gK>jZjm>Bl~rlnUC;BGd3?pqH}v^{VDIB(HHK5BlnsZzm$jk1z!j_EK`xWc zepOJ0^Zw1Si*b9E!jj}(KUw3XP5l74jbw>Zwm>0cL`^l1tXAP|dgchN;Bu!fTL8ns zqKQ$hujhxS+Gf89s5jq7{^Z)8ty+I|FdE4~hi=|C?7dYOZ2Nm6=w%&W^krX!e25O| zNSe-~9`-jqPf{&8xFk;J^&xA0&duLdB0Bz6NpP+K5sA#F)sy8c9CiirO|9^kr-CeQj6>WF#Pc6QR`p1}y5zxZA^R^#qHc#)-s9%9DetH9IT{(I2q-3rYv`c~27NP==%kC0P!m zi$qk+-W`s|3GFL9!AKz`smubzPX;O)4gkZEBF);QWy-;qOkmSz-k0xm%!%Emd_gJl zx3sxA*0ip)JY5Va)%`n{6`LJb_204Ae}Y#l`a8bXY`R34{>(SyOVsRr^xw)=N727V zZGFE7Yc6eF{&@FO{e3rY#V%19nzBrlX8LE6qQ($O-lsib{ezg0o~ZglroH-|xa`|c zT;kPoNMAR&F{kWrUd1>s__@MsUh~l_tDg`z@sl+M2SH(bs$mM9)cd4{U~UDqUve`x z=n5N-bh366x`%#)=>Z8ox8!n5;caDNTos-FkUPN;%V_Nzy3I7U{Ne8Bt`IS$BnGL8 zGrXCA9p3&{HKwNbU$7zHSgCs{%|dUtE1_&iuRCQ822*x@pWNOj%uQhX*iyHN`dB(9 zJ@QX!{i(7d&i$Hymo&-gAE}}zYLNQzPQI)?`MF7-HW~OmAn6|I+OBSk^n+(VUN*Rg zMMhN!Cff_+a2t}}GeUnnZQ|nR`jnL6n7nz${P@AqwdTOuNnJ}bi;sVUwC4rPErN&- z4`81Au)X#(1lOw*s6GQ`t2$^yqy9B)?8X@=N}i_HxAoh!Ny5dU^qHG;{GqN~9n-Ek z><5v-@4>NanM*VjCi>v`Wm-zMWWS@J`JeO$!OglFmfAXdCN*^P{r9-*l6bEm*DL3Y z*~7V6T*__bI7{h9EFFd}FWSBe=T)i37peYuYG8jV?%-b9{}m-@;WPVO8%-Vc6%hZv zYz%F{%g6Pw%ILL)gSeVq7`is}PP06hg?k)LDFH~Lrdw7yhHeA)D%NCLG7KD^$4k^Y zf_?9ej7R+xq5$0m;;v-^&0MK1r02E$a<*E#I3H}59tz6_s~Cc6Y@4#hG~AV?;g3fo za)@=q4ThD6U0(;kTC;zf$p%-i#BK(ptJWDXm&V+#{Y#MSpPWx754W{FYtEtmENf7i zv~-V=^j!CiYM)}QlyiOcOz5p@mKM8$nw23D`&PEhzN=QI+FRsk2+_XO-AEE-^xW-X zNAAmY!Te0{UkA1XMF_8BYbpKGd%;t)M}zERzn(?=@6AOe<6uaR+_Y{pOBfucuPfF#e~kMJrtyj$`jez|A{Lfej6wJ z>b+5Kui++ZzjUWEiPltidFHKbmLRtZVSD`G#L-6J=;xP;@R%P-w3C_3)eFzEBYH5i z%gze3IjCM;?yG=AQPQ8hw}lq>V210pF2cbdHB0GJ6yGK-zw-ZHk~F8OD~u%hy>bsy85pXh6ZdH1)|9Qlrt;=Huw!_x{SLfS-I0xk9QrIh$d6RYZ#h zU7s#-zxgNm+F4rU>0E#SG6RfnPh^ogjgUW+}=Pm!_$JkRWw+_qj^kqedx3`+y+{S+dK(KvxY@GLOTXJ04D$PMlKp&~_Z zZ>7)47@VKGJ%(ICFP1)DbjFumG208e@nI*@qG1O=uCNk7Q9) zLOp|zI(B@P$nCFV`>1O9%|6w+_Vo4Z^kwaOxY+3OhuXd#gTMtC(07@#+_#J`bbd3=FQeFmcP_>fGmvj5iEJPeyh+s11g-LR^JbbLl4wdYRE6O6}m=#1F71dZZh1d zx}F~y2>D=@mbq;+{)9p`wQ|unbSl7nT$;tCB-2+>bwA*9gdJ>bDR`MKsG5VbOJN|W z_jYv)RP0_Rtbm6>*gP$1n&m5b7o&K#NUF3t0%s zdwv&dS#&6cvdm!~=C+|27JIS==JexU4z@|?-M{9zo=wd!=$my#Hdvkg9p>vXN#%_X zbip{>eZf{yR4y|!YUk^eg}))M^d;o_CH%X23Uv1Bgvj0D%BHIyn}*{tNr+X^BTKLw zFT+rYUK*crO0amcrQB~};c@Y@&pD6Np%>cy%k)Kdlv~$od)MYYs*TJtHBi)|_@5C! zY8E4(t#lr?y9gd4zbo>bb!hSWfzn2Y=NaT?F5^#HS_@SV<`fE{tA$^4>{|n?6`wur zLq2=_@7Z++Fs%)oK3O&R18BVeH*9?U61~zYnzFii?CnQck-Km=>kEBOoZAV0|K}8j zfF3>h!r2eG%pRhy>zaEo@oB5YY<16p;Xe&`<~|+h3PmW{d^h{Vt&iTmRj!8A+Fq5Y zIs@H-UjUl*4=)$D0<{sD1Is>=J=KjjPoZ;LD_LixxwVqZ)SW&M;_nX`(4zNtC$uN~ z_%f{Wn*-{H$E8Sbx2~P}V5+r0oA#GxT{{_oUpimk zNsacurHd3%R1mSgmk}xkNU~kK+?ce`s`g3)7uWGNUwq9Ht9WEj|FO#H+#2v+pr_Yv z1+H}VTQ#H#Q}5v>ft9pfnQ?@>p!@5GwOnQX-ENR3HGnu=ZZ>lysAb z%W?Mtqxz9rtCs2>JCxjRcJ8ZEpnyTe^bxb#ch(9>zcDT&WwV+ux9T!GSF+SjGq<&^ z(sd5)kuWm(p)b2|xe_`-)lYnoFmYZxnJ>I|T3dC?wz(hE_e?063<~z>+#jNt8fop= z6|!G!iqk8`T^6@+B)F+}28nm>ST06a^#pPKKla`#Dy}Aq_e6qQ@Zc8QJ-AEo;O@cQ zwSf>IxI^&ZPUG(G?(Xg`O*8%7b?1((nb&!mwf3s6-c@z#^g|!nwd?=u&p8-dXRd%q z>%VkWG-?fh4G2&(YJ6mm`#3JtlJ7JT{+J2e*@}Bu=(;bBwae*$X7%3*uJ&QudQbtS zZ5|ZfpKmM#oT8APM*=@8Sv|Pkb@j)<9anB#W^09c=WT;8nNzNa^hbBZd^tyP2Y%Uo z>q|V4>hOzT*!f4xl&iVFUtfjLO04tt5t}ZD+t%Aiw5H~BE#q|Nl%4sK#I3Ohzz<5d z`GLk;@of_wd}2@e#?>0|o*Ohs*=mh` z`p^+QFgKb5WVh-1QT5%w)i^Dv?Xat0El-mKH-?$auOcf&nuE+?b(VFnt_E~Ii7(?c zv+r)0*j?-YEH_fho>avOGPBTE!e3Sgwl=`0sSg`BZf z6|1N*I{d~@5OBXfzoac(**Bm&C^#r?6#Dh>#NM{T?WxXgsHkOdmh}|<@vSB3N2mE} zbXKx0qq#`O3Fp{#dCl;wl7Ma$2O)|hqBGr-?GF}z#Z8+7A&!xoEQwX8xgy4M9G|Ag zrmMK|^4u3sMPPB<0f)K~R~PvKZ)5dRCQ)AIu9R(X0jjZ1?e*`N}5Lpx7$3KNpO zLttMdtQhNaINo8{S?DW1t0%Q7Wgxx9LiCfVX)b^ESw-u%)xC23NKJ;}d`Zj5ugcfZ z1@M=n(n%$=CZW|3#MNeroWV;*hJKc6%A~$Mmwbo5F$~;rz&RnC>C;v{6YwwcfPUhd z7##376wa53FEOk2v>wDda=2`SY@F6MeSs?O853ZX|yaMO!j-;=u`|}Ec9J@H9$wS zf9GYCCfRbRS7f;MQeKde&OnB}+>deR;XjYp@^Y$5?sdNW#jiLuNlj*ezLdG(gNC^X#Bh-i1c5n`6<=8HYi?>JjImCu4Gd8 za|`rs0W)N8zLaoj#YO58`>d!z(ZG?(&ok+4S};Ef&Xddg;jH85plQAwb(BrI#W?rV z@rduk7{SF*z2NcEfEANb<6)m1^VpXId*U!HCJ~+Zw!Y0&gQFak<+T`nKfx-_7S3kp z7l+tUhI2=UoYi5zIjbvDzcc+HwZUE!SLv$jIf5)-#nPvn2e|zAT$CY}&6glw+}b1_Ya_TEOYzNr@AcZtpbPp?v+h@==cQaAK242&neywcIYgHoR>UNujGnn z&J-OkZ}N~BC2%rhMM}BZSkxn3_|!vWO9#a*@spR;T$*dN!MVOM^Q^{9s&>EGt+ffv zPO27=wY*+c{bulT)1W0hy~0X0rgP zD#C~IjSRh{^=n`vqjdvwYC=~}tdu9=NZnIV2fD!${ds-_eAR@JX8h2TMn-S0aD@KZ z+PMAFW~9FTa_e}Au;Ko*=7E1k6Gn4vovlrJwxarSOh7S`wtMh;?D0#HXE0#jJ}gyH z@ClU~XgQSf7kHjm?afgih|QUl!Z#lHbd5;Z!xzO8JWODO0y_y4DPo=x>usROznQ z5pJogl;yA`m_s^Z%`lBp^^n`3hRB3G!{WkfDJ5bJ-DrSeejq=oyC?zY^_tUxqSWD9 z-7a;z(m#6+QWLUs>&dQ7XKtL0wr4g>_2&b9>|wAizPuzv4y4>UZ|}P;xR_;MZkt=r zqA8Uq_7}2r7;jU+S?!(5RbSlEhKt$4NPl2M{-~k)EiWY}_$+fzD;*3(nJv6)RF)wk zLSmQa2IX%TM=a}Cw3;@dp`*ha_oPIpYll=AkDC>D=7)9`n&W&Pp92nv1^&98|9j>< zS{B=}oU93kYzsC+c*)@#Lf`$b7Lo%B)&qsW@APVSB@0)Mt$2mMbf-m@DMahh9p(!s z-8Sj5X<7KRQ1Ln#g%4V}HWY;G}NMULx5xpH}THm;e>O0CuQVsl^8DF-2Us=<6EbjS0Tp3>K_ z0H2%FTss~L16_BNKm3a5n)hlgMc?9#9{UB>yPU($t&-kW?bdkBWkT{aW`A+W0_zFT z7%x;3Lt6x5%HDz_P+vJNE?EIWf2P>NNaSS}X$E=lufW&iImC!|u63Smz5CnY?v_Q8 zUDR!)?M{BP1o_!{cZ?$vWmg%ZBJzXdG4es0M#R z{Wk3GkWcHdKnOQw?Hq0w8So?57lDcZJZwDFASf<&?`=pDlI34+bhLZ+~5-^cr8zANp?2DaYfydN~>WtOB!v}!oGM&Up*drmhO zkR?f+EZ+!MWNHhSS^8MxkzL4F6nU>&<119Ywm+QdC30PC0zqg0g!V-(asiNBk*_DV zx&mE(E76%u#kOwc&bF$pXLGrg@9+r|4ZUIOm0fWPlkRjTJ9QiT{h6CxxDKl!pETs$ zJe1x;h+kCgr8niszRQg!yDXt1=P}$DS(j4Od{qa}{47zX`QE%D+^TB#CC%q$%(1mV z)m)?IwxQ~Lt4gh+yi>93yi(t(j| z2bfCOI=zwn-N?;g zt|-wgxXpT48y?(WXLflgk%jCusr=riA6sEy?5DfC=~L_0Xd-7`gV1lKzvox!%8b>) z^KUTI^ll_P@Q5CPhHyAsPKHE2=T(xYzdd_#tqCh!m+R~xcV}S4>*GevlaxV%$I;!V z;bM%vmMi}#egJ_rPJ@x>$Z?~Tp1}J8!7>(&gJX#AS}u7Dh_#U|CdIPsPHt`P_j@Y} z@9TRXhTdUeNaA25Q06O(3vISXpKm+CYf1&!Z{kFEDwMd-p`H7D>!^dY~NJs zP9nv?H?8`9cacFf4F8@Ho2)Mvm+#+X(9(X)%vbtSIQDMaGBSd&WN>HiDBn1$dFZIN z5SDqqQ9T<7$<&Jkr^zQ8%ng6rY6y!FFru3ANS%{kR;H!OqKxRW<_&Yx`|CV#J)~X> zk~Vy)?^GTEyZf$z7Y_;fh}XXP>=u&AjtdoMG)!vH(%#*RV396lSI8gv0f}uSl=d$< zYwA16_+G$E!@PPHaa7p7vny4>54$ORpbgCi`FPycG-@~c(gJetha?~ zbuhIWRc`vsv*z|@=Nyx0${mi7>DrtHbXK=}zh4ZhB(Qh&cpY_yjqH@4_}VU$Qt823 z*o;K^nJWh;g*Sw0e7(E8{Hybl&Z)y&F%y;z2m5_?qxL6G7=T7#@Dpt`!)H+rny|-j z3BWHa)8}_P@h@u$W}HSXElHV@=)@#ijT-09E-t$jeX%ZQ!y{9L8Ouy6aYlglIc~RW zgIoEG&MG~F#F6K1Y?0?DSMnhuuId$k+W2!{&q~V~ckkgDTWnTkz6Vae?SP>?;9}CL`f7tiv}(S)qOoGr!N@ zT$XB9KVi7|T{`<7%!KZ1tFABLoAB_hEoEMmGg-bdfX7!l{}ZkNLheu(<=32+Z|M(^ z0$HT1)jx#Us)*@~72&X(_%E!hF?#(ch`a0#N*)yX2lK zUBGIs5ZO)7hPN$T@2hh)xuO zu8`r63XX|$ggv;}EAYe2^WT6rZOhBHA{&+QhK{@HzcyJzdS66%2)c!mHkudFrb!M4 ziwVSulp~ymz5WY`XFZ)EG8SP%cw<9vh3X`sihY31xPtz?h5+GrP-J8)kiP#z#UXEm zeXS`Mw?RlT^Is&b2)p=o5$#p;Ax^p`bB}#3)kOylzxmmi?Km7P-313_5D-#Nd@=Bd zb09|gCbYIyL;QeslIAiaoW`|hWry)QNSkc5jl+lB0AU=qYcfhdN~S*&47H3; z-iZBbM2wKu&JBUGT?8LkK~NmIq%cW4e(^3+-9Uf(Zd5(!A|ov0^lMCVsarVcA}>TX zZrQ-{F=V#V1StGsM7AC%kes-%L11{D*rp@Yk4^G_vA+b5I{Mjlje~%Sa{wGhz z+>LAOC^)+&e^7xf++4H_xI0SYJLm#xg17cKqC-B za&i!S1_nW?^>h)~Y#Wj8iwUqSvv&Wq54sW${5OS6a-2xhZH}-F3*zjq;<5sM-A*lm z5_y0XZW49igsvLLcnl`PrZB{V6*i$?CPJys;p!?vT1I+EB}u(ihW1a$5e3j)lcC+- z25oLPaeo&1?%C})EwUK2VQuUPf}_tV{A^@R5(Hp8)*;#-g8uCxO9p?qZ0G>r|)ibnv!?#Wa3+j7h+2S4kg-QNrqx`j_qX$Asrq_+{+0Q}Qp z?_Z|_E}*Ir1`Ct7n{c~5;a+`(u7e)`Ac(L6puDfuW|jUSbg>$-bW1slBJBMTyf#38 z$6e!u-eqUU+SZ4z3i8s;LU%DH#@@r&^}#(()c}{2Tw<1mK=T0^HQ?^wUp&t@F-J4tvxjp4@tJtc^v^T1Vef+2IShP+xSxYJ#>!s&-b9Dkt{eQ610nrZ{$c?aXH=jPyts*_JJE&~& zlTX3^BRUSc`30ze^V@);+zgq49kYe)gzqyt*Afjo$QHeVu4dW8ANLI;sfy}2F6Kuh zc$)^db}Qd|>Or@%-^KwMZ(#-3HVq4Z`&^11A-KuL-t57EY&m><{`oH}eP$&sEO=b} z2?}!#@%fj1EaO)P~2LI{$Q1OrJoZqu^}EZg=&>#ZKTD*NX>A1b$T0LGM1` ztam-amf#a=ud~XC3bn@+!tu|;zMQ7{CFzeMoIM2lK@AW2<6mM7oQbK#ER9GC?R{y1 z3d^poz`t~jN57Epb?!p6gigPW%F-sggCIAh-zfjSvXhg&2fl8DNgw*(8E+-tRY)80 zN5vplMJT$VcPISe$hWs|rT$)7@GrTfbjq$0HW;U|ey<#$8z0EU^Sy@T<~4d#r!2sY zW;jv)ApGt2n>F8Q$g!t(I zN)TR&fCyBQZPmo@f$t~}sGr_z46a`hc4shxf>Z&N0ik4#k;_U@ZR{Q)90#Lbr6BU| z^4&u3D1`kmZzjtJ@qj!CR^AN^vXoE)f)<{tv1~Xa$Vq!ydbQ@N4a$g)*2dVe9HH1qw&n z^Ea`^uCBnNfrEpLBB+ukYfdb>?i7M*WQ4`i=w_>ZHo7D9<1 zZXyBh(Othr$gqQl9`KUVVh#_0fEyY8>miowRHx@LC{Q5*fN0Y3$IAtK*TQb<2Ph?s zZ2OrRCg34s3+4`k{bp$Nb?i5l`AfM*w3X`cZ!^P}a$OKEKbVI$Af%>2;ahKVSM=Z( z{|Oy-jOKwO@LJvm>;czRa8N7-VAyedyU|kWv)TnN-vpcDDEbwL7ln6?jv3Xw#~1Bz z-EVjGA@p0x;~}IJYCg#msP81uHWc= zO>~Y1(rUeCy$ig*$O}(Iy28Fl{MjM@RX`RyAo&?lQ3leInN@JYrD$ozFF(fz>D`BK zy?fORlAGgBe=c8LvThZ_4uH$-Ivq2jKLDQooW1`=18znDGaMnLIeon+tE~Y4#YHgs zSH3nQxwaWPn1E&aAG7m+i)gsG ziy?#2>^(CYxf+VY9Wv~!^w#e4!W$dVHl&xQYldk4(5!Cqxb0ab#c=a|I9PThd)pa2mx+ z&KH0}IpNJds`D>IRTjx0Pxb)#q&BO zz)W@zstq$bB_8)s{>KArKrp<^eg#`i3VUOy2^;7Yy>OwtPucJL+3R8`9!6XyeAf^UqOCQxLb9f3&L5492+-R?^jAQlvB5!6sBjuMmcEa~S*+ z4vwK$EHwFMzEr!&`r5VWm3>me=3W`b!>L3k=I{+XztKL%lcowQS^E-<-;Ci+Hs-u5 zEZ~!||MV8wzh%e3&KmJy-oRUUr&xsdHB{p{P$0se8(oa6_dsy8!EZl_Z3)pUnt#PG z$LV4nc%oY{$2k9*@`^=^MMZ+z2NQ$PPq|x|rn&ol$Pq47MO(yKuPL^>;Qz@`SvlUv zk`0$5xGi^jIpPgv3_{hAnd$Su9Zx}G{w5!#tdKnTLvMgU>JbrE7hzLa62iY=omy$g z)(_i}1O@;;{Nh z0UU67@G-RcL*VaSj4tBvgtv_1e~+jK?fEpvS$8r2jr%e7E8t1MX6zs?tQpjGQ?=TY z>A3)TIGXa-Qj|-*t0HXg3%*woIWlN~_`!*u3o5Z60#_9~?_GES6b&FE)$$Lv1~8Fo z#+9rHC}jT8QQ-nCZu7xgi2h-6`pjFP6d-X5B0+i!o8YCI| z*N=2sc`qUqZyp-$wJwW~oTN3Ak8MwM2*XY}T_0f+Wbg$nj`yLC+%=P%!AArzQ`e_y zXUUC20yLtx@m_F$q)fY6$Gw8xql-x@%*?CcQiI6abx}v5IO@ zDGr(UdQEgqc6VXzN}oJyob%}{)|K*5o9h5kho4d8KvHmEq(UK%orh20QnFUe#vS`z zBfagMlpW7;P|*IkA6UQY%peG2-Ze5`z$?a<-VJ3QlVN^WxI9m z7#+k_V%m)mKE0IFg5WY2#Pyc1oxjPYJlG(9=!QpiH7}w+XQmQG!s` z(u0r2-rhaaKEKu5|Mb%*OF*(sC*WfKSK4x2UBfJBr(lnhjmwf7g_y!f^()DzgF~`B z5#gkM#$;y{k&a~?Crr}1BI)?yS+cBiSA#7fXbP}sx`qFIjf56j9 zZqg3@1R3NLf~ooWQ7X^Nn)#3!R@WWjiG!Q|96DibCNss{{urUXqCK-h$Jti zt*yoSK93_XKC+};hmMu^hUx&OckMSFCFT9?DTPh4VWC*`-G3l81T$eeO3lk18UTd| z4rV$~2aCCpg)<*0#53#hY;ar|;3PO{A$9>zQc(xpUn52WM=MZh-v zL_FCJEjn$2yhW>|o_Pc=Wb3b{b`fws8mR9Pe{uXwe3v+LY4^~f1V z21HG1I(J=q8EEC7aB4%hj=v)unQ(Y$|K!&815_D&!`Jhb{%D>%Q!{@yZ(v9on;4x* zub`mNr9~=J#XJ70sZ}p`jcev59xV1VSJIv>ps=_7Q_|R_n!99@YCeQ6RiYC!knfQ| zYA#(6UGPq>T{>rMo7|vHw?s!JkwjPc`zN7#>z@KIx{J^Tr**pj1F%;3K3O4$dZEAa z^IE$l?1T-zad_N?R_#ZHCebfg4MS2PNm3@#@j%3ysRQiKul$rq_Rt%jJ3LH)FuF|$X4RyRLr!qDssVyT$as-1eVrK8!=>LLQBgMoW)O>U;=S-@! z<44U8M54kl8)=uS&7+AD)VD@N$54gei#svbv^brlHEOc{- z!s)OT4`D7lFP&4&)*NF*Sy^(VA)TVMe42jZ8cw&D}zS8yoeMNcx zDp|^@%|$6mQaCd!l{^0j@u#-A+i!h+VI0_c9#w*hpZ0WL>Bp;bcqmnw?JctsCh<%d zN)G8T<)hGixP> z5b_vF^Akjpj0*bx7jdn!NS=dp55*$6{Jy8XjC3cZ+OQ^16tZG>c}OeuH%5qooc!1& zG-r0&8LMDj{vNW!)_}nNGrpICjun>yI6M(gja8h0-a{u>b^@qSNaqSasYBP=Td)@& zVbmhOj$foEt*T`<{daHQWXGnkpRPuf%9%KiTQwX<{)i%rA1f7UK)c<0Y=4Ad{)_lm zENjEosL%SOxlubtS|oJr)W4)7IXM3B%(a0AdrWxyMz)bu4V=OlE-UJOoi8mc{2aC) zv?i=LX&7xfR;LMU&d`j_Q=dsm2=Zp(N(Y$BMHy~N5(!2ttnYr8*I8Irq>1Ru8_;RN zXV?d#r0wnZu=gxWWPODr%=}FZ=T^-xt>4I>k!yv|!(8;$t1M+?BxEA;tG{UPxIz{T zjIf*xuM)+#>Th!++>GeKg+yiTFowL#bHBgHVG8fgXaxS_o?*eH@X)Ztmg9iIwYVwz z!<#I7?~Dauvymn^vyK0C ztM&WYb(@jN-J!|qoPfN%>9iKLq+pg#(#m4cK=t3N8NZzQnH{_bx<4W56!F1QB778@ za{38kbqNX!$96?1gC=cs!8~Nuk}nb(KXxSCDhgpV_2<9Ils)+HGu>omUJCU;mX|F2 zKBlS{vjL!dvEOcz;u6>3r}n+b{|hI6Qx-wZqBG{XI60ewm~VY7Q^KS&Ez3!F008vD z7@iYa;H)CfL1M{~mLd4ORQ~|eA-8J9{}a1bbZ~1-Vo&cpJ(}Sj-M6t-e>@^Sy)w$h zD^;4;r>+Z&CdZ0*z?_#kp^~uCh;&t%YH2_gk76HafQaO`-hTgw38#<%OAKMhsr7up z+Dy^E{GYZcei7!6JSWUCW!Bx~j$X=6T_>)K;_O}e@Bu~c-xOkGB$DoZ5Qx2mRq2Up z_8)X^gBJ#RG32>|YzJ7Xy0iq1{~x{f|22Be(!Yx>!x|K$Yn=-pZGSQlxI5bmM9eS5 z1U)!7SGe_xXUPGzBHu{e{v>^=0oj#c9>L6OnMx9n5@acswZtM5xSbyVDRF8MJ7PrA zJNj}V>d&;{Ei>ycsuD*Cms|)7hu1tu!qNZNT$RpLdhg(pCEijKCvQG1;}PEi4ptrB z8Ngx_8ao|&J=fwjU%|&2oMqbL@wiu2?3f~rAAzrYMi;Gg?JHPn{xJB(Jbq>Nf0%v5_NvFZ)Hia7} zRvwn4w0su`VQi=C8cytuf}v1W@hRJ6*Y(?Dyxh$#BEZk!mf0MTzDL$P_JZd!*%bEy z1fZlfz63znde8KVdf*=-;F}+v#miha!se&UO(PF%u{oNFNJ3-M&-4UL=YhTs8cBxs zK5i8F0U5*s0G8mG7##9>{layVbi^eU(6w_43sXRv0*I^ZPkA7$T(u@HVHvvS9J_3L z{CCg5(>SX_ujEFk14osR=0Q5{8HSs+%KB^u?Fz{?M0k=c4lLfx#$dN1YL7+BSd%v~ z8F7BAmfM^`Efg7!?t>smdbutEK~#Q9mTG&UDmjO4zVpw~i-jWju$GW`Rds&3;>A<_ zLfN4YUQvryjd{L(>15*qd#p6UEjlIinug8%6MH(Z|T57sfc-q_oj*j(-cU&Mv$}F7YY|%e$p!l+Y@{8{p~6aSHWLPucM1g*j(wE5HZ-y%@C5`yo=v z+U2+Z1onJ5$SL|zHYz>P5VtARe>_T%YaRTG{P=Zuectd#_2WYdOaNZ$8GoK zEj`LDrn@QFxG(zs>DpIkk_FDu2qcKSo;&S7dB((O)A+ArXLGH1K5JLr#wGg|TWs0T zZvO<@j~MW~g=nc=Z4oZ!u@uC97+N~mSjsYQy=m)rn5ftX8Ra}ecN&{?G?mUw8nbP> zc+YL$+nT;;EfKkw*b12E5xeGHOMiQxo};u^qyOeCQo1vmaM!co8-8^coIC9&J)f_p zg)b&lC&W6Ye}OuJJE-$mi3gRYLy8g_MFur%X>XHS{s3F6ijJqB)`6F8AWP4AV_Q;j!nLgIir}5uW!EcWiEL&z*XlcD*jE-LSgKB8UT5j{WU$ zRT7mBN=-Ez#S0#HHUc~>bD*_5{tm%EK8LDpJe!gk9+i;JB69cFEAGorR`js7Q#L%w9Pz zWMJ~)@Vu?B3+?W3E_*(z802`z8jm+v^72011!mW_IuhXwhho<3IGTuZ4s&!h-KRP- znQJl6Oqg^l4KD%>Ha&x&WuM4iaru6J%Ov1;H3*?1+m@s{5~{9PjvqN;~@cG6-^|o$`W!eA9&M4qJ$+s2_yho-IXyQfhHd~Y> zVxF$o_Vyr4q~XUuEQDt@WQJ}T4$Z(JXfJ@9QG*V1Q{THSw*#wF2fAfj{rgFSHM`)& za-Qo>ZqPM@WS81VJ#E}cz;pM+OZ1LZtQ66zyZf(-!htQE_B#SR3x%9zi6aJLYiDQK zp>biSqtWi`Aj@a)(piSrNebF<`s5|g(#aQM-!J4Ro2JmRz6)T(16Pyb%eH`Wokh6j zkN4W1KvlprJ0SVuB!9`|{yY~FAvOp+fBt=iz3Crxzpn*sLE=`TRZDdyTsCp#SviPjACmS z5_OwTD)2WIdv1=(wyglj6?)`q!9w&pL6S{PBs8t#i9{-B3C7OPU ze{SvtRe%>my@}fVY1Vn-S2QC4-g?fka5Eb^`$|qEwNnT~2X6F5xk4WkU2>dWAmD-C z3;b{~yZ=*#aTusaK7lO z5xoIE$jz&%>3fKW=;Q4k>+6yb%1SUVaHFo8$J{?##qqZ0TU=El-Zv3}z@t7J`Fz{M z>+{9?aL#l5?sB)jTT-*Rof}A)yD?J)dIe7z#$xIiEsYi9+^E(GrrpolvYl!nL#L-` z`xhGT?$_opYOzQ(q{}+_X*SKFWqr_3dT=dPK=_M7)PNDqF00y2s;pFf_8jJghr5C# zLyHi;A zp+~3Pq@r$8`p>rXpK&RjMd5aj+>e^%JX1y~c8J;jFDq=P6rhnVipV*P$ia)qF=bT1 zu`$n^Cc(b(&a?gR6B~{lyAT!G6nTN|$8m6YY1(e_uV3Qa3OHpZre%@}GvpyQf9cdE zYB;Ap)IW2oeO5b;32&iXgyaeT*GbMePXz`$1nVzdQg^@V43E4NyS$X4d|^A}Tyf9o z?tA*>W_Ut`|3|Yfg}SYjA>@lT<1=oKRBKVhQB3J>OFrAken2`SAVMLX;l4*b7o&(K zLVG~1Pd)cj5i&KKh9I{B?yGUxG=dsr8iu6q|NIfzT3?KBMR5CZ{%4Eu-*ozAb}bb) zEfp0(c?H}ulQI<;wE}r#r}N5!`cIVF)j5u{|c+pIYIrTuN8$YOmotWovO0Nx-)ZK?Vg4-5O8UM zhh$Tp;+T}nIUJu!TuhZyD4Qi^mt{+h^LDH^yU5;W@jY}xb*=eMErm=s)uF9siSE{N zt^PIC_SJsQK6*XO(br6PaPb2$p8uVOr!g1~hnuBXUd{z~d%mqeeJZ-M{rBgaR1o^8 zo)(n!N*J6_*hqK>53W^l7bll9_!ZD5{e_5H>Dan{dt_?JrkRzTE>8FIgC=&gEN`uW z`65aG_t*1op0@ehe%h_<%w9g~8)yUBv@bvdm=Ckkt&xx4%G$dp?l94F{67}{hrLI> zzvejQrDrq@7~Pszs@8uQm3LSToQ)?tLC2Ch*@1u^rQ?YBpn~zNS~p2^pE>Dpn32A2 z)M!#i!fC)s%)#*EYr4Ewrugqzr_c2Uw)euJz;dO{C=~|OZ3gt}0gC-rOWh`gUpG8J z4r{J0;6e5D@$;{DVua7tmPhe$_}ahpV8&^z7K!hU-&OzIoM>qS z2K<8CU=?gnSVhl63F(c-eczGHJwh6I^@Lqn$a=~FTYakia_0;UyC>%1;YV@xST2@w zW8D+AibpQ6$va#*fRNpVxljzQ4ovhQyUx^KV#7yok#2!tSOW$yTzs{ZeR}#7&ul-_J3>w2fnQu`&IvBPPmH5@>o}CV+O|CE^>lk>f-l>_&9NJr5s74NVFrKrL7-rIzK;;;pW__i_8Q zIdCOzo~LpxFbLgg(==c0^mxQ+;Q3*WN2f#bMOeho&-e|Glfw4uJu81ns`peLZd1YN zGxYbdPC+8K6{Hk}vX@?}ZR*UchnJ|CB(^vo-DYZ*3#65c3C4By{RdNt(aL2EzmBVz z08}9Hr&^&K+D$lZv5LL2HBU{zuPlSDEdq{O)^q+jfrE%~{6z(uJzM=c#P$gK7Am_l zKpg*l{k^{9CmmdPLlI~k5sGsfuJT5T2apJiFEXLHK zZP&O5mFL8)hiQqByeb*Bl2%PREcX?kYJIydl%icC#H=n4tlze8TZmI_vMBz?K1N~T z(ruZT6)eWn<@;0+yhlD}CVM(fzqc(lLhr0{jCjuQ&DAwlXvjokhwm)xn^tJWqjk_& zfkXA=MWfQ=#6Y$CvdKr%mHYPQ`vsAo_*u}o#SlBL=FLUv5~G9Bl-g&5y&pUHRH1#B z>2s~^%F{=0%$x6CD@t(-wOf?Ij(rrqSu>Qua3kabnuilUEJsftrf?q= zNZ3QTWcdd^>EpTmn#eMdlBJuk(Z?f~myb{X8y;_Q?`nlk6+Cv~XIFvFBgwZfUZkrp zhsP25+6H`$eV^HNeHd*1hKhPt|O_#K@ z(i8!`d#B*Jd>g}G6RD9jJY$>iOY#FgVJYsvsQ^Z(q3-Rdp4he(`ZxJR?bQN2zCa@s z=S-#mSEuViLt?vD!fUEq1zOo!duqL#qKdzO*-7&Udmx?@b-q;FN~A+y;ZQ1#oj(!O z5~Zqcy$|I5_JRIF;Luk>+j+;09($?nv&que>-|5P)h0s)D5>(mU%zV_I1EW2e@!R} zDHSfPBfdpy8j(Ih0E(=F+TO-q2H$kJr~gg7r#YRD{q?Xc`_}z{KajEIl?cas*>LZ9 zT8~AEy>&9h!3azAM5~narASmV4NGb$+7Dx`?9Bd3rIf#)>%#@4?u5H+Lhw?*GE7yy zwrZJY*o?Ed7IMzp=88sX5z~&PeuJKw(=KeRvy1*M!FkNGcj(e7z#(nC9{_98^t6E$ zENA%py>m>Htil1_vUXQ%-EAqPa*6Qg<5dmD?$~3C%gch_~ON8%O z50pWwb?_Qf==lmQjr7}N&^(FWse*MU!mRnmpyYiP%IumiKkA=9L0a+lVV&8x=(WCS zzY8*MO!Q3xzVRW?E|SbXk<^mT*WqC(OBGZ+^mN^Q@SuROlg!`=UE)__S>i zH(Am!aQ;nXlP0H~?QZx}oP&0YrsWp#aJ_ZczEz(+TUn6U_mSaNHhZo9xxcj<#uXdQ zbr>FNebtm;6O751p5H_lZEZ@N!D$(Npv1mD7o3NTZ`K*KUs5qa**qIpUKtM%j9eh5(yy=hrHSGZSO2-Rp;v zmA0O#ljWXH>w}%DoqeUZ!zF0zf#SqiCOhO6S7Cdkt#J`Y5#0~abO4Ghg3#Z`!fWU+ zmg~*y{}zqz_}1RPh2>Dho>_ThEm&Q7O3G7iEu1HY$cy#8?m_uA=P)MejNVAe!z z2V0%_%;sZ;oJ1EpeAlE_eb~qn>)E2xGx98Su>oz^YjFMFnJV_=R#A`pFm$*%R8h^h zzPgv(obCB;wTp5zp5Mzrow_2e)zFVKn76jVQe7R}!<5gHdXw3VUs4bFDl%rdPw z>eGo&7Ga|1L)bZY>YKu?59;2jk^aXH;QKetrh}3lcctFTTQiyH%zOCWq0>o$r*p37 zapCLj)wEu6+tunuprc@WHG%U6Zy|ztu`j&6l@XbtM|9}1fBSmsqqp1ZGFsdwnG?m& z4>YfuOT&R|18IpyiDYjj5d$&)j&PZrH(t@h&x_`|siJX3wD^3>&ZNVw`mGs+`)EUh zPlOvn8yHG{CBoe9!!FH_jCNw9(^5{(dJh-DjD_7bhHdyOU#CK?dBxwpRJCKwk`BT9 z-)EpG)26nV&A7pv^CDGnUScCCzdn-sbZqc>EjX<0$4c3DXZ@4LwGg;@)o`95O>6p8 zP^H#Ygx`k5I~H|puv;tqRibaw%p##pd268OhQ%KKtzbtBjv)+-6hvgV=?QxSwYe7V))0Mnki_gXyw zc8S}pX?DHBzPvU)(p{oO5f{UorSftJCM2)ZbN6obgqQ95sb?Va4bhz6b+aNJ^V5pf zqMhImbEK&!la1jpR`Ryj_@ZcX+rchs_lN{?Tf6V0<$W^n~-dPp~L3XDtZAAw;XgcvpKN+Q01Ki2&CS8vf1i_lNE_>{P3ekyC=1x)xJ;%2yv;d+H}<(ND_=g3Pu$xCA3pQgpM?$>&FkqYa-bN0GDoVs;EaVGcf zua%k__JkJU9YA*gO}4F>XS8+XWTurkM4IT9=oZ;ju`vCvw2Lu@H-<+7N-mi5-E6!v z8SB5z@zCMtMkfw=+zbcWgAAvo8pV$m(7k4gMi%-}Q5ZbWU>humkD|b>9H@xWk?7ol_dA z*4K?=C0JX&f+5O@CVdIn)?=?76Vfr=>-T7cE+fdvS*%#oe9a z?mk$HySq(sXK)`VZpB@v$l!wvI_Tm3bI$qJ_cM3)ovdUhdu8j@i<@F3B#h^LxDn@f zpij@S0GnT4dXN6i(8$_pKGsog@HE!p(%!DVxbS}8-#=`(hmSi1*LB1Y9q&UmLzu zM&~)Q?u|K1bjHybc=aaVo52Wn(9Zwr!a_b-GcKOq7>LzD7NoTE`IAsc#Mairi~?H1 ziWBYeVts^@y>K*ps>lNQVRn)`n^DeuSE61OI%NaZCxf6)iuL?EbE$StzcL|O0=xG4 znZ5De0TaSEu$n%>{<7B2bWbPdUkS&PXH)zXn3Rftl?}A7Le9MRd3doR75v?1#`mH; z6t)c-^^pFSO4C`9y;e$t0WN9sM!oR5Sxj;@&qrArBQmmS0y&AjN+*AXN1gHU9eRI~ zz=LRY^lXK?s&7N{Zxp_?EGhaMFK#Qx1+spe8%FtlqDX-W^vn6{JpUKlI93?6booov zg2j)osV@QH(sD2i085wBmRb_BKifTE`E(3}H#)z0`!JK*P&CXEiz>SF2R%5Dj^y6C zuU!m`ov)0XZ8aC2MnQ6bT;$|nevS?6+hvOo`zULSSXv|A{C}4j{M}bGW_KLUV<&r! z&a~bBP9AOnJGkcof3ha2>dXFJV)&$_tKm5PW$0KlT?(cdjZb#A_vcV~+%;^rhh^ma zQ+VhLL82Gxjrh2cycht^8yIx_v|;^HF_6(&>e7EgM?3am>KH=DED}|vI|elx-W4y(h>5`lvB0d31sC0;gDhG{~@Lb+Us$Mc~OqW?h|P$N=BcB3TeQ2a@Qgle}BD%2$o~IRKGA z=l*Z}v2-UW4CPN_cyXsv za(6z0e6H}{;wt%NrQuPw&&|~_?Tn*#%)WA9_97|>+(7DI^HFt=*!nF_CeM{KwfflI|Kf zH`8?^qrcFtgTc_u$~hHc(99{4%Rft}9&(vo^lxJ}WFamgoL)4jfUA3Von|CZ>>)nj zkI)E-sda%nNKCk5Z^0_?G9ghPwx6E7*SK|jOlKt1+8hdMWXqR}ZO4Ro8J>JKop^VL z|Mgx`y=3^jT|-B1i$Gy(XRa> zhwLy;q9D7B_C6IDr_No4(cTBK=5fQVGOsM=$9XpQFkm~oySu(@)%P4G1~O}0r>n;& zRMgJCO4W};6+C^ErHiOy&A9`=UQiO8pNRpN5tq)STb=NXac7b(?0|zsx<)rlgJCSt ztY}7+Rp&(cZ%^HR^p>QANfrU;L&r64r|GHN6v7pfiEE5_QJ~E+CBoFW!m-~Gg@T({ zgvD>@#fAFukDDpqUKd;bvIr+_|J765KuPPZ)hF6``P@R%UBe)$_Ll(ZJ84_z2Lp&t zA7g9|8jdkld=C7$$K02lSAu<+n!%@>EL_1p`o+NRH_zZw_V$Z2#~}MR6l9lRvHcoF z<9R;vl7+b0Vi{k6IpQU4rQ7(AGg-g{D6gZzv3b$>1skCzsbOTSbojCcyM{t-fOP>^ zov^!&mVLLUry|gs)gsVKl3uIn_7RLgi4K7Q<$k2Ch1A#BHs!x*8}i71K1EcK9lGXU z^irNZz8lsaKazh-_7SK&_DIoIU6PVntMCfU zaY~Wc!+*{9u75WOL3jb`*`8@qurMSdCFM>O%n(-am1B>$@1Lvq+G#GhLc}4}MoLFuy{7#1sg3FhpgUQ70V7bLmG^o1R7So`Lk(NxmLuOxJerNRGf3VSi>pRWkxG*=V zPO=$ihezfZB7#4Bj@mM^^B)e^}Guj3ISL*-8(+XoCdRU{a9 zjx?DWa~q@`oQb|X>>=@9`%itmaA`kVkqQ9;HA1M^dypwc`m2@0zO`&OTi&HX>jFz8 zOAIu+`{Zq}_d@Ul#Vsz8JNJ9;(8^>=zi*Io>Th;mYCT+T$&AN9*TxTF)k3+U^dhAa8(iSy{!0xNqtubX}8L-^iM9>1-QYCXvFblVn z&h1r4-O+GW12Fi$KR%E8L5#&1S9<}it2Ag8Io`h~r*O`SWuzrn-|ZxXUUrK0#qG9< zzy$c>x-p6_3pORKb=vQ@cR!xY#7?rlhD?dL5bjO&VVyZs-C8fK%nqz-?N#!vA`(uJ2qT{zYh79j*D{DtB=}9iU zSnEL@{U1QRh7RTaA*5-c!BRnVA?!G$1(WRtj5a_h3f<*8;FNN{mY?9}2{tP7i-Y{T z#?(b~tF>M9Qp4_N`J2*?I>8Cp^_2 z^;@7>|Hr@GOW63oPMl4{_vM@3+3I%FY=B5ED1grE<%}}6o8@EVZ)A(9Im`Hp34ExG2OJq17airHI@Rp z9oGw!2aa#PvX=vb18yto+8^2*T$>5|Ig7R)O6P(9t(coY%8yk^ih1(Jyji)4jE%7x zL>dxfTm9l37RjmnSp;}uul(p*y#xnMVFGx0c$ z-ws#W0*uCT9<#9pSAX%2VC!&syGOa9Q7}_9gu`JgF}6d+JQ){IH(#j+J1WWjp(cI)9b%vZe(ms`$AOKjSD1l5;y_irh&BFnJLg}J*AXHW{=(X+Vb)|W$O z_v$Q;bmfR%(CXknZ{gwb)TW1V$!Q@Q=B7G>A3Q-GCg}EHzzK+d^^F-(n3g2{kHrc5Rsjy^5v|xR zk4{gUd!yxrN`2UWn_U$_iK4q>A~|TZqAXRWXUp&^2e~1#AP6B3%IYDv;qrgQA)jh~-=0-{F|v;lIOv$-hWZIiw*^Ua!EzFAmXj(XxK)xC>+mX@w_ z6bGehwf z)Lbi^53?s9dl^fJ{xB!>1x#Xj*B?UDw(Dx4vN^}-BDE3oY?gEMZqAKbW#}u4muvjx zhriQ)L!6&VT=kN88Ih>hblKOjR;VIO5de`yz*&N?pqHqH$&qVqlrqc6J!L0H?O!DZ zkx4-RA{D*Emuwc@o&a&#c=d6YmZ+AWIJucfR7i$Y__zWxuLh_A8b_1m6}Xh4#w6 zyDzim90+tOlk4LD<7zs?anCep8y=IVrC%-vw2tVCwlqxy^TwBrN#FeB&?ytn#cjdb z%N6L9`PfNfbwzG(HT(R&S`2VF{%fMFw@TkPr58=ifp_ABk71LCz=CI3rA4J{$3_LX~ua z>w~zutHe1+{w8RXPa}v^(|NhixV&)xZdg|8xIi7+yymttoW{YQNnh?aB7`3Oz|sSy zF$;VBcXT=i#rf5!4ZO}s!dHk}(*;hWMJ#?S?^XF$!SLd>RFJXP5JEwjSHs~$kbO=n za>Lj#r6pZ{*vT)53bt$|7OgP>^HbxER3ym!(sCc(f#bXL@L|ftz~P7<*23W0Kd*dc z=&R)D5(8aEc4%kaKf_i6W+m6m5_$LjEwVT0oPTjpE_bC>kQKJ6C9R95%$U2%c6Qso z-q8SLjSiA;opxFc5s6;?H0luq8sht*MAyaztarzy#QEJkE|gG^BkiX)&~A^%HZrPR z>A!9D<{JrLKJn3uUMf=y;F|2R!S0OlIKEQ%BDcU?%1+DrJKijp)@SPV{hM~r`QGAt zoj$IB%Sxgvq2TJ76VWncm55lk{O84$hdj$`pIE>un(C0PwJsB z4C45JDkM>8x3QPayr)wz#7f!)-Phq6bC|MoL|0E(0P6%)GnHCH#CQZnufJGqGWIU8 z2%t6WRj<#L9O91K^@}O); zcr2eiHODh{zEM7%9?PX{)m8zJSHD|>Aftf2I?(iP&)$2k>tHtUIT-Q77EMQ*K)8*j ztE?mEDo*%cnMo`*hFdeFvM*q#t#^7j?ATRft`F&_|Je>iguaLQwiB%oYl~rivzin8 z{rt!EbDZ6FSN%0=KJflJTHwOpgPc?+sENaZl4Xt0<4QI0Fv1toag4-%+I3%VDULHj z;ZtlR-;L5x0Xbgp(x7ax5`tl33)S{o>C4!2)ih`AHSx}EtJF+zKUFkm5eC{hmWBcK zb8KHL(oHm-Uz!M!R4?*Nq#Sxo#>H(<0NU?59uVB<@I*gtD7}!Nzv$>k(JSv(C-A)c z&9&{mzr9j7?s}#Cn)ViMx;=*daYSk{O(Q4db8;6;96uj)g*YQvgkXbYygHW@~mYI}`|%R<0goa1B&V?MxHT zK2Ln3XpRsgLkqM%60k5J0bQ>esZ}CvXmwR__j>_Sso)j1+z5O9kV(7egOEEw-B(Hm z^2{cwMPm)0Jr48VSZf=$FV&qdry7(niIEC^_V-=^v&s+}>h6M-w+o}}1wl-ARI zj)3uf$n>{=E?mxRD63_me6dxloLoH$Z?+<0OHFKP>6chKk%)1e0&`RZY!4NzU?NY% zEsUSkZx(*pM_F?eMCMB?7Grm^Kd?K=74;g?0G;zu_9z``ZX4Yq^Gzlk*}+SWXXkb( zPkH7L*}3YA9;)+ELL%6CFK!GwYjrDJ^e1H84c>X~)HHmnfkLDrb3g=FjIDn(0Xmb%!7NZglC^_=RM-Ry*2-#)1>Coc*A${ zuBl~^nLhK_(1dGyd_N+dUVEkX6EE0hCqqP?RlhaQ(^r1v{B*DLCVe`m(R|)1;sVx^ zn!nrT8xT3U_sLuV14N>BnLCw)M=C_gxe6(ro4q&Cxjx{oI=NVTKpqTI;^rlP37q9L zNYI-2IE&>y^_afkB6jPwL^g^77SE7B%zwUW>?=aQtWm)#XW1nA-)e-Cdi1gh|8cX3SpZ@@;?_xb=126LU=YNMkezKM0VsAIxFng92YzS` zYPfU1v@!>1cW!hIr_sq7Skxp4uX};y@>~_Rs|?8b{kEiDc4{`8O-}jR=9d%5(Nlfy zm;Ke=K>l!58F;M(v^PEvRxN-gJ2!ksN(AD`*-{T5KNr|tmrB-zMAxds%)cV|2HrKa zFXl1D8Ijn%PMS1pQlHKE4N8Qch_MIv39D2s9ezp%Q z9B5Vj_Nxr*d`kHp);mcc#%t#QTk==Gdbs&~d2tNuewLGM*N>?+8b1)Mt)Kbj`JCJ` zjJN6p@Ty*^w7-V9IvR+KMY5|^4wd2}#k2+jj;z|b;^(w^98!D_w8K7_NASW;Oj>lx z7Tz0_R!{2*R7_`YIFgWPzX*smtOfE_oQS6pg#7baETTsi>;9Cc3qG6|9o|1oH(k(I zsnC>IYMGvxAIvC7?j0T8?+MJ*`8!ABr#5G1o$=i;s(ad6ZJ0o)N`*YnulMtOt3U0mc$C@?Hhr}k|GX+LkR81Lv1)+h_kGgT+N znDar!J4p2St~|^@*{i0$<*r}Zyfnb*<|M~fbIRO%=u!A~aJ68iu7lF=tm*Kh@o;7I z%LHB{3Hv7H46A!rT*}N!!R^~_ulTI-DXbRff4__9cA>}y^pwzr1}ISLn%FlmF6T?SU`O@5`(4y+gwWYvUJe%fxp>o52V6bv7&9# zI+4K4SF!Nh`!HRoW@?SFv&_8pz%eZu)*)bE%;MR32R>jv&YdC<^f;Z2^ClOjsBI!% zIrwo2wm%|3b2{;6_8MrMvd&>Kcqnyb-=R#{VY?E%1#Fxc4NZ0OH3~S+dc*_;fT{V0 zZu4$kWY=`S#_3*MM>n-Q(aEM9ad{K>hU~M?uKp#Q3MkGT`7I*uce`=%c~y$~ZS31) zSyVjO*i2h~j{wLA=*Ky*LXWOU;3Y^s%|z$2V^f&%&Rv)4LF+<{SxIbmp>#Or@X!%O z3l+nawZ(0zmKw{Qru&i{K!VQ{@G|@By2eU4bH+_yb)ig02jRdDok84P$T(uvdTan# zO!rvU;__}iDYOJHmZz?6iDoTd!>2Z7b40ITe878fTgXg(@?~1KNu}_~L7BWQ2a&Ob z5awx1RexrCg1`6FmDudrx68?*oF!RbHFq<&%UPrG??#aut7~pvJRu97aWcvq^ie?G znz=9j(0VlMCX&YJzsIFVMqmUPRs)r~?rq8U=ox#RTBLb&)shtu8F;1VO7 zlTjzS(A$#tQ$Up{~R#ASPS&7fA(R(*EY`q&%dwb{9I=MklFyMeMO z)^HYNrsLrUne&qmyY<)kx3#3OXH;g4*##AAA19SF3fMu}0o4le_>2_XHwslhEI)_? zIaZWpoSGT#T~9u3{FxMq05Rh(GB)aMO@|r*>0X0Ao9O2nEjK_q`p&Ug9akqZ{e7`0+i$EUwzw1A+%WbMpPfwKRw6 zMmdD?9g*p~4qOX&u{&LOvSrHA$rszA2le!*B?x|EhzM#F3CcDhr)-~jFcNs0gg{c? zDCm$siEVw)GIm0|6g&3x4+F;@RE{6Wjpt|n*2IfB+B-Skkp>0DOa|?!%<;eQ9gRR$ z7U+`66bO_{#-;+!&j{L${GuJXs9I|{Fmt||a?x4LvD(-u_Y-nAm721Wv=o~%(``s0 z8EMeo#E(gUrJ7F7NpB@;gfJpZKVA?q$miFgMAZa$(oKvQ{vv0 z^j!_Fg2&ujDelA_1Zb3!h3jIE^)eZzsT7A?8H85Br^3I@sU^UYKrUJU2H@WEq|1We zZVps|%v%>*11JD?=DU6S;yu$c;e`0aWbm-v2R{6Y0M>YxXgxygE{yr@EbZ(ib_{0y z6fjIs5wTeSMRrsVj!mC5)y>Gg;hX=!t)0xp26KRVF$2!)Wi`>Cv#kk)+iP@c?Xv(W z5g5~MV-@|bz0$bn?+aGOjT>$-`B>QE8m}y>qpj%LbETV&_;F(~%qaw3a_e=qnLgWE zc5%}L_DansFIgg4vt`~bBL88pfcVdWGA)EaY4~RQvYy91Vd~9%CvQ3XUy-9E{`gEc zn82fC&ixl(!?1&}vYu#$C$?{Msh5N!P<0uxR&Gz>a^|Y4aP2pxENfU${`CBgmd z-aaa6^e}%>#ujAU1fQd55njt^Z#E)lfB&g{zxDJj2Bv4jxB>`%)cSZ;)zQ^Q#!Qn& z9n|uRn{1yY)Vx3JYwTtMfHjn=g&Wv|gQfCOf?XN)Vdm=1m1ty?cYz1Wj2~sTXm&VN z6NOl|Xy%X*UBzrKoMnTGd%){`N#!iL`}bzBWTIHOi8h-o3S!_U;(vUEf9w7#wkO$< zDVkV%i=i`-0HeUK)qlY;&=RbERLdVppjJA|DkeE|W(eI3ue_?u58SGRCP75EDyiU6 zZc+eU>~MylGtC8mpR+TTPzL7{6^uMa$`IQF@k?xZ^%_d(T*MIeA2)6hS(E0xFD4ie zhN;af3g|C{YGCzql!u1aS_l+HJ&-KPnMDQxZ`CRZd92$(I`&l30?UZjiN+E^Ki00Y zrQ$6{K-Cfw*&R^EAgqShn;Uwl^j})ju69eux+H9 zDKrESil`&6HZJNKcrGhIam?V7goMBkN2a~a#$x=rV7L!4;ZL?AcmCf5it>vL4Q&zP zxppJ);dqoTO6kLYcapw8UOG9iY=rpzgWBfc<$Tn({K0#-#n(Qnq8p4NWHJG^f@38} zWh7#`d&iPH^+8|Bp}XS8?p&I2!;g3Vu*vDOzTN)7ey{ddR*?5rw6yXmo!M4pL(=xV zIV`qqBVjV#NhZ7K(4PpkzHwxk@N`zZSwwl8kaWuy`$Iai64CpM8&XWI%|taxvk0`+@w}^jOk& z`|em#(u>TzCk7xsUSOE${1=in|nwLdn=M-xp zJJUQ8sA_D>PHHAL0U|bnH`urkcor%2n~lOCD3Sf*Z17d`rlDVJV^mO zgkA2Qm%UUX69Sk+(F7%kgJe*>QwjRo3?$l=?%J$6n=5go(J5UWi$W9Lw%E6#Z4DtL z+U#?2q@~bIErc;6&`mMGD(7X_Ex#|gg9hA4veoVlY!T?(h6=}>5@#EXc}CpTD*f51 zK>4fZCLAYQm2s_7SkdE&!?*qtiMD_SCSd2otPfKU@t6!ZYmaE`UXJv!qx3j?!L?DL zzxjiEkRssA#@cGtD-sS-lbG&x3#}g z#n{J8DE0Gitaq))mh4E>JCfYPTr@tXNw(n(5fnboz&k?|0$PMhHAD%~x6;j<45_nU z_#O8FB`tSX&zW^DveNKA4!=bqOjuDw~~AX4KpACP)^1Mx8<$~T9XHQLplHaRs= z`BX(>WXs@%kIp4Kw88N)<%LZFO+j9#zi*p@c)N5adc2sRF=L)6j#HCJsqCv~u1!7L zz&TaA(Bt|i53=v-0T4w*%x^eE^(TD)H-J+75X6Ju2h$Ye)9@XfcBNE!pe`+E>dCPU zau$|>ibDywevUcgI1d0fsrT5h|>G|BvBMzlG(&Djxn9)Zep_ADI4K5Kh1a0v)40s zgaA}#Bzbg!Ad+ix!{dbh-KtLswK8WQHPP~Jbzk?pXB-MpuA>pjcD}I^UA3g7+bHU7Sc~|^c68t!H#Wu}F_7uBDoZIY#NVzUX zWHjh35dF`bW)i9FvkOfbQHKmBNh+nnL)4Tf6nsNP&r$bsx5mrh&Tx;Zl202#AIIl> z&^u7f#cwTQ4=Iv4CY+^in@HyT;|@e#C+qj(F7Z&ZiF~XF%n;umsIpz_b4kvrAslo009`T6xN@@W*~jHT7U#ZoJ_*EZ9a@b^6Xx#=D+X)* z1cJEMA9uar@lqBO;#sdR;Jw(cxC+r9;Jqf1*Eh!?SfwK)a;Jo10+L$+qJpAaEAAq# zxr=+U6CM@{$J+QdZd5+mgt|$B3!r~h&uqFFi*yQ&zuy0iC*4gU7h{+jS`Omgl>gn& zc!Rq3(z`$f)ES1f2|g+4?Du$hA{2C%dR#mo&~-`3e+J#+MQf1F_cb;<-RESi@kPsbZ}Hzp_8&{lUNf8k=4dedi*XbB~t1! z>V%8t1YZ{x7# zOhC9c3L_}-AN+Mwuu(MfM`Y08y`dwqEFPo7|G`VH-_r+0$d0h=;?e(RPw7Zk+sGV9 z!fPj!5e-ZVa~CP7S=W08^r4+4qWM#B9#c(Oa_L9Bq14I7-gz&eaJNzrI?XyB@o~&t z<@pPxvmH8=#vkIcyK|)d%vUex`mZ1EFDv?5^_?AFa6yztD?=2?DbWG*mtk$~0b*pt!+Ye;w)?Pmq`ask3#wVM2?}4gRNAFUN^-Rl1|B-w zqI7#`2T*APp-I0eYAH75C(>k)5q|Fh?=Ky3Rxn*}Ik|Z`Kla+in8p^o?a`*Nw6d@$ z{%Beo$v`dr?h~)eEgThoE*&2;k`j&x+X7cjF-YQ3;~ISnbhb0w4Rh!S_i2yg_P9L9 z#6lxeqE@JqB4LW(&(Kghzky$TxcReLJwg*68upG6J%y2M_iSqqx?Q8c+`rb(%0E3g zJut97%}T?tjLlQ~Rtfuq7uwBNGU)cayOcXylQprEB3CjCbHPHGm z^EVTC)`{)Zcyp7@sSCr0b(aU%Q$rCIjtUL>4Eerp_=p6?0N2qow`1O-VqRUI?;$9a z&lABSK4~{MZkV|CiPq zXya4l1vD^}vO6B4sA~(eG2q4}hvD*v%OnVDDjL=A6-*VQWwS@wBwV|*#K|1|%aTgb zI(3|Nt!^JI*~%2b{*OjoMs7n@b$W4eGN+o-iRyG>CV^ya?e75Q&RSYIHV3fn7zK>cc~)v>5l-T|M!KcTjkG7lMy zh<}!Pn6xdkQ^7?w5>!wh#n8RY9i4#IHynia-B5$0fk8T&ld&R_N8i4|zW! zF9CXn>HsmIVdd|jgCzk+c)wBbMtEmO+ZJ_Ws(N;EW@2QR>^pN7_W|9g*8=k#kGdZ& z;jX3@dzCi)V}F}%l}!^JqLI^z>ie@Rwvd8 zyrj?!L^8T-4J(VV%Mwe^MW5P z+Ss>1$^n&u^(^ZSRrgF+E-6_i(OAXVLuxDtY|J%W{0)`yW2$1s1ugWDLfk1-D`o4* zY(hGUAbHvJL%9fv>6b}41ytNekMOQpRTrkDaI3;x%|g<)(04I-!gP+hsA5leCi;p3 zltd=3BOm09Evza@N)*4DPz+9eMeHY`WVKgCPH{~SW)Sf(#ku7c?7OfNrAbGjZ88P- z+c+>N5iZv6z7a`ggtlt zqPK9W#}EoQDDC(?i?@x`uSkGveus*V+mR}LPFrte7Rs-AO`yi4@)?QOxZolhpCC{k z?c$dy9n;icA@K%&6${mnE(riR>e}~Rhi{wTJ08#Lb8>SVGdeGZ95c(*qSylA!Fkzc z485lhF?@J~*~TV3wD^`<;<5V>7B+#sU(l~vu{NA^NQhxpxY|cNu*^evlp9l6ePtFi z=Zu3=wAtet%QPnCnq`&^6eV5vg&6x~s|aZ&{X_kBu{30fnISTWB}se|Br@<^b+`|s z*xlJb`kwxis@Fnqz`k7OH~IstC^tKHTZh0?b9c_WB`=z$%*Uwkd7$t5$@|+Jj`p|`8!*#} zz)_zaOMLhcexW{qyZ59_s&s=4?i}(ajPjPvHIaPSoT)*S9QgPDMc`P~edR>&8<~CH zEDE@bIClwLB|YGi=V+0SMtdBXA2z8rjHLw;U5w}dA~u1rhEkS&SRaK)f9#{CVi-u< z$0X2E^u(t69QCD&SVZvxT2&}te4dT5o$;$%Ap48Tt$J6%z&q2=Of#BI*8DH=#6@>L ze}-bFy5R!q{;7a=hxqv)d~;-;7YTOkM6RO6k=Sk*`(=@V0zRm2XgB|eI=5vKUPZem z<-h`umFi;Vn4Q~u-!^2X^*}~lYTz$?7M&kET2(q%cICiUh2Jt*GiWoFVN8t`7P=`a zDh1kw+UIz}>_mKljsz_7a+K5?hQU$8oUZ(h7bh-+=*h0t+%aGO_=xM>p>((X{hMWW zAR=J_q>KN|j%6G#Kv-D95z&ewb`*jSN>b1KC$>J-uTwqwGfI123t1!BF#MuQD{V^E zOg)m_Hg(KitC*PSW%AgJI22#uJ>ae*)F&k@g0p!$`rwDZ89v@l^}sc*bQUQf8Zl;8 z+!{gp;-u*dBSLd?b>(SlA%xssZEE<-AI}hT6ym(ByP#pXhJW$y&(9>!(?23i3}g4-5yjnY#QgiC%q0p^3vF83c6&AUuCoRS{`xrUj|~ z21P)t1}d(4*y-&EfFoD@y__Y6@4A1-iMm-aIMqJe;vJe0x5 z6i#2ff_4X|&h}mmU@sco&n@fEO(yW1=g#ZrLkJLFh5539^TJ(L)%Ko29`dy#`bkKn zb>^{fU_){}Rr^{}scbOl-&DsR8*CyDz8>Uje3WG$`v- z;f~+=d%wjIS0!m^(b~FW@b{|tzgPa6NFA=r!{08Rx&B`aaW>B`JGJsxI%;X1cYruz zFI-6;GaG4)qe!)Ua(d#NX6QR=YwmkmY0rV5HDdI{s!4O2laJ6olidUUH?y?JZoBy8 zzX*v((WLzXAE8qwRFB`4QIqFv%=vpG~fQF zNaggSg*%|%*;COIfB0A=Wac9syQ}T`A*2&k`RflFWTSzvY}t4ioo4*KZE?9$)X2dD zpJRywVSDUu(J{Hi8&f8`p=1JiUa37F1$w`7Wc7@UHmBtNxRO@>mAB9Cc7Mf5PmG$3 z7d3Eq%0^GD@UckB%;7E)FP2P0p!a87?$5vf-bqTD9mrsyH6j$oM&sT?rBf*Rd%wca z>4{HVgX?KITv89vkp11v<<0nIVt1L;LKMv`MsLBzgh2~?AV6>d6~}T4H(~5iBo!&g zAL?+xfPMHtFtunKKN<-8qcJ5-7n`h)(QBwDyD>Hm3{iy?0HeJ#;<9A?oHE=Rqx?Pbf$l8C`N(>Z))BJf$@ zf*;w>FjnN$YH+vTTmuzhHL=@h1>d?57N*lyko3jSvys_FO5orzgHzFvOH5IbbJ2;d zvEAGepz}n(dIaX*EsTb<^i+4@0_rGIdfud9ul;)b(TOX8jj);6<+D7!3_g_tv~Wua zkZ?Ty3kWO_P7*a>_frI+xwBK~nBQ4H5FA@l3D=V?j^EH%d6y?lWIf7aQ+;)`jU2vr z_|!2%N%3G-Ab=}~w-zz1xw2C%t@r>B{@0|W4$TSMmO@oF0OWo+8@#ve`b5#WR`X#r z3iiERMIoCVg`1w@p>TMlZlk82LfBYl?t-7V#US);2?E9dMBT_DlCnncD)Ye2P6^w# zpyIDLLLH34$@jsSiiexG%ZqTA@$8i$bR(7hT0}5t=p|hArvtwQm{IYnQNjeYI`}77 z>khe_iV9d$rqV|vuA8i98O01w6LVQKsnAW!(J0i(9f|}=j*kAK+a-g!d!_6uRmg$u z%^a;>4czk=sYG403ZVZaB?Wo}v&xx^qI4|vJA9jH`MUK2=SQQUO5~U~Oe5=6I~=WW zgwo4~LZJgBDJ4SU_cSl5cFk1ugT$<3%XFj0H}%zA{v2fW&5{7(3krt@TpppkHMDq+3I@AYCy?D835 znhWn%MsH&14pfzJ@^vZEx1y%=mW@+Uju_z)(0gjJTqerG?m2%{&xptC7AF?6jl37sz+!c_dWk*aaZsb`{!9n^DJ)kM%x*!OPT0HWi9TNZBmu}^1u2TI!5 z-vbI^*9k-tWPGS`5zr?_k=IqACXGsX*adG(1*$oH5h3}KN_vx1Ze3A%l~hX?shqAt zn2a~fH)e!4K)09xP0FY1C_j@0PMlR1P^bY9MZ#Qm&R^?~pJo@6Y`e#WZAt+O$!x%= zj!{oD8SOHWQ@BlJ=nHa}F{&QK5MVfJg+T1AdBN9u3KV%DIbZf?!S9iOToyb+@A?B} z$_0z7&?@Ix<(k1P9%ajrN*LjIXIW*7h6CkZ*+t=FlC!>w3?KpU>t5zsROLX~fpV;# zD2`|!g*!iuD4ZpgE?wq+dDA%8j$zjHs25OAwrL)znxKolI3?lJFr`9Rsc~YWPf>uS z7pWYoD>b6Biw(T>c8%#;4*6QzfHE z%^QuCJt4!Z~G9Jk%1z_r%r(N)Y;%_KUp*wxp^12ii z6`y+KU)fdBP^(wTlcgHl;`{}g@#}P*sq4V8RnQw!;}rv(u6tyh~lwN_hB#sCqIWF^fUU_CrD~b%8iUa4KzZ+_lpO$ zgqKqtfkfy@ELZ|6e$8mgQ9|!e)3kvr3)PMY=QhF%wH}aJby{^s{oj%2fF6Re9EqSP z1%gEk7UspDYFp0W!jbOA$mwdb~3M`5*AyUn9RbxZ!m;MI$qu(>DGd&y2OgGnDK;RDOWm_b(U&$p*$sql8`Gu$7qEAk*-=$m zL^3y1qo#V|n zwQ62jy8^zo>er;=z6?Hah`ip)r@tXZ8XT2y$uLH&*?1x4)POwjOLZ2wFeS13mV+KeI{E zw+lYSEWNyooO~f<*+1)ZeOAg;j(D|1KkqFZvm3XIyV(W1XrfGHl2%h2XaB}sfSMn_ zq{M{z4XBa}7rO@${2o>Dl($FJ5 ze;4hzbN?b-Mi!jRvd-rgOioiES?$*2_C>Lb3^|3RFN!CQlbgPtj*ili^G^63Ns52u z=a@h`t)42n7k-CH_fh083i8%Kbw9+iVsB4b@4L|U%<@Mf-n(+i{pbs*(=F*wC-@3jf zqpt_h#pszeE3$-+_TAG2C2=?0VHZM2UNI`h8L2uvVp0rV##n(-&76pz5-cV3uE9_~ zUm559cbSuoxgWUcy_4|rr;2NRlz;9NtL6@H>SGP-MWq)~$3^Gj+EBuw-FsqD+cp?d%RTNJVzF@(X$mKtk}%-9EEhAde^ z_N~MuAxrip3`W+;*taB0NwQ>&on*=Kp=>iD3WFF1&wQTe_x=6z{PkSdx$bja@ArMq z`Q!aQ_c^co{d(Q^(2Fk}7u=}$sEvt$x6-G0?MFW^*yqfL>>TZ*ip);U(+a7>ryqVD zbqFlYN91EppQYhEKgWNDQtoO+>%&( zUH^7=9B!`8&==@NWJcH%@23L0xm*<8Jdx-Sb~apMksk^vH!aqSIeL642zgFJoAvxF z`tSP-T(wwX0x=;8NDcOnItzk!$C|!6i@R@uK!&HAyOD@fo=CYN7bmquj2pT*2`E7S zh{z(JuZtt1NtqkkNI7*d!uhpo=hqbA)WZda9Heuy0V_|xp{!fwmp8aGQ-;WDF1k?{ z!Mey;n(WGiC-ehnXvcUSjZv8!)x@ckxLr5sq=;xI<1lH zqy6iVg2mX+k0%#NCtt7bU2y3Vq-Sr=mps6IC|4?=Nc9#yJ3UlReswys)4JEAm8T`sF-b@Dg1BVl66wf+y`z8sgJ1}D^Krk_$h0O#{f?N;2(CD~ z^IW%dZkOX@Wn+PF+Gv^b%uZqYRAZ3vlY_NV*LL3BE*qxzg`n!+I?%tx+vn+({;8<& zN=n&+*Yi+y_OkdXi+i;l8d%>?y7s_bZ)@fO`oUU|U?Dy8? znA&%Bi}F>OetEldL6Z;ShzvhxtbhT)8T@cdB;g94h7PE5@I>s!BWA$Jn0al1=RG^E@kkjC|F-s~yex|33Alk*zvfcIOT)g~Ch}hB#2vMSUSq zaK9Gdduu?-n`OEN&%z3;J~294x=tnUJRL{BHU|hjQBvB@#rqHTtn7bGvx7bf*eS+N zSx@d(7<%jo=m+;_wT-+vop?Fu@m&Uz=}h4pFukjx@kqg_YwFT0ZY~Zh@pro6*Por+ zM?#keN9sm=ay*x`>}Og@B{$$IPlk=cClL-q)hr>6Cj8D{8CLQUh;5w$97M${XZr9xW ziqdvI=wv!H?_l_v$@ehdh~R$6+xEhJnYWi=R3Cc9Mb2RaxiY)X|HDq6svHc{d23uV zrO3K2PuA6i2?!`|o8+YFak{o8*~sm$vaz%Y6g?IB;2=>_Pm~U zKjBBRZ0@tnit*VoP2mu(;(8?Y-Q zA^wf-OD4HNto1(x9fk;&gR^7L%))boYyV-d!RuMOa>>*?KEPVcMl#{u7mb7CG-Tr) zhD;qf)6@2B;|xMqVXW!Lb;62&3&bXh?kWOwi8@4$q^)?`Qjk~TegaK@r({Y|G3j}B z_6Nlmwbehqq=C4quwIOR8AF(T3}+uo1|&bcw#$y7YCiIi>b)ri5oprM`pe__Xp-)5NoUwlWu!^~OTc5HpuH!i-snYQa{p4@R_X zJ}yNcZaSj+E%bUW=Q#hP4BVDk^5^)KpTWjhNx3J~iQvIIE3vXF7>i#6Yt>boPX`)9 zt9Hb#bWH?}AP}h3GwH!$JDame7%0zmI0R%qC6N_jf5YR-H2ls}uZ%}p$S^yly$|Jq zl`lr#Xgt|5@OXmx9Up;a-l?Yf!k5Z{pO~w>cKn&JsJT$rUtO5xX67QV$4TFbPAa1E z#9fH*H#Rc8Q;vGS)G@f&z*yLh;L5p--<-*EHed;v#)oC ze>UMSeUYEPQO?!GN9_vAWSqqGsO8;+%$OJjj$crDK{S!JWlstF8gx$OmLPUwr}yu* zPiqO3&w&f>TyY!aVxRbXeIJ-qBK#XufB5{9Ok4r|V)Xr|K0hjlBW2hWV|r4_@jzqI zT|6%Drs&MD{)391;a&^NkRf;QKz!H!#Z<;A@o#C$fy9G$C7zT%Df`K3u6alhrYAy* z(R(+i>mXJ6Q2Vf^eo5~3RP;}M7wyo9J?DXvAB&HNBeT{MMNN9Q6L;(2pptXxh9M2orH{{D;;Y_ zOFVVsf0ynRnO&wt9>?uD2T%5Kt#<_`ARaGP(@OlW417!f(b)4M2Q*kRDh7|QcW4q; za?qtF_2?++h6T6{6v69yijQ;AQXG@knXj_zdy;^do&*C>uk>G)TkUefgD$spmk|P( z9j4Ow*149a*$>HiASaJ zh^Xlk2jjMbdz#DARw&|1cHA=)1g56GMAeb~?);6+c+Yz}JGaIHBt;9l_7UN*{D*us zPUs-jang*eLQYRFOVR2~a)_WdhsSEathe-=Q!chAF`O`5H{;i|CPoK-PvvRE86*34`c-3^|4)bp>*gG1#00>1z zaCnVQC}v8ayz)Iijk;Jdj7e+G8d4D$uk9VrPgN^Qqvir{_+aHl@k+bNP1~w$RlUU~ z?3oz*%y|#(go06PjOXe$E9_Nb!LX-Bu}7n&WUSx$J<_}M5Krw9_tnt{cdz|(F2;SeUN&zmrL^GHbLsg^ z;SiY@MIqcK2I~Y{r-iEVI6#-?@tM zjp_hO@ZtWXr|6va-WgbS_gJ{zh}*2%Sdd!kD3*V{)7aoAwYZ?=rrF`@jI02)t?V{t z&y&|=PY9ORJr?*oNQ)lS!p=q;9yaie${+fp+X=$MH%C_n4#o2#MBm^kpj%NtOUNo_ z!An7!9G=A$ifZs3N&v6n(ODSo;hX{a`EC_Xtm@=pN(K4Do%TxH*YR0iTNLhWnLZw5 z7BJ^U@#_h>`NE)V&wJ}ZT*1&y^N$JzL#C&yp^p~eTz`5O!-OPiOmrq2b0skDY`L@z zxLAlSA&hfQ#R-;6U$Q^CzF=6+b*-V`eV)Qv^JerBxOqOFPRQ&ro;K}*eFDYp)gQg? zF>Yz*;H_c1C=p{gcgfZVvnrY*=gi&jjH*Aj+w@SCLMWx~T;n4cL|K3Av#YoG3h* zb|d7k_DMQ~tzd{Q(W1m}ujaDCvb`vt5+OXgExYZ)A;LN%_mn!ADY1uo`}=j@59Yjk zCZf^093Cm7-WUx?e01;aqNS*o*!7_2~>d1Q}q&v^@N^H9$z zYWGh%?)ZDUbtr^#j~E}!ZFxQJ*mA;#az7>d%;19{M|M93PRjWjHMU*LL-%MYuctIx z{X#tzIL9q7y@VNi4V-?;R@=Pual7aqQeWESu1@>>qE2qDgj&n(yT0hJWHhC!q#T}@ zcNm~*8Ql1U{0(7M9w7s0YGuzJADrIYwej_8xrdx-5Vb?vx6}Ic%wKsAtS%kM{X_@J zE!RL}`4q2mxT6<%cJCv2@15Yz2xu>jNndZ!1i$cIDoPHL&nGe$3?-Z`6^eMX!0WdO46jrgqH_c#P18N{i$!~pSNNYm*b=Rdn8a$lOeVWFDHTnKhG zGlt(!TM3k?*y`a$245K1=R$UO<*t5zaD7+@UM$P?EBhG;{9K5b6%{J0hNNCqEU`fD zI!Np%>$O&z$#H%BpwM7_^%_44xmcCFl6WSmPs@^bYwBqp{&}PlkL!&UvPi|2EdoBt ziE(qyGPa6xH8X_Ea$loQFuz(YGu|}~%<4e;q5XJLt)UqgZl1j(8r-ih(y(y#VRe6^ z!yxG)8=15qjjqd5xQE5XZ_7qvB%i}(57L5!z)kPOLDc5@G{8@8 z-6oRDlq_Nbc5fRgfI^JgsI)cf^gMPk+75`2TeLShU@A`=7%b?b(*?)t224 z`tbj4|Id@;{ofwC)Bjg%HrHUx{Na)Prdo&5=KRT#`6lX=7qoF4VI-XQXXc>e_hs3) z9khWpe8|q>_ubZ$ldSC8d6U!G2u$0l7ddHyDEc^+HoK$Uo|?;<-uT&yJ**sN^qwYm=tP#nA_sB!T>2mLO>D zG@!(dC5C8qXH5fELPBrD6Wo0!gXE@!#YG9^mMMbuQv#Q*x?~WY+7!b`UFWRWLIy?+ z;BivwgN`IuN$49r)^D|2e9(_Zte}2oYBkX@5CUqQ~WWD7NOK!;4DI;0 z$5z;@u4nx7Q|J-5FleV8|NL9-cE_us_}dBFqTALzs4Y5E?KbV;#ikwe{0ABONJ$S$ z6YjHgYt}Fc(*AbTj$g~}OGj@5a|imfSCU_Zk}D=!*+u)N@aA>T=_uxHRbfIyeQ&AK zx7W-!$D%%ZI4S5IwD^hY2C0&IlceK&E2o!jHns_^3yL<=w`(}ootzYA{wm*JN&&W9 z&!PP^Zh@M!&-N1voj(ob&}!yvfW~$L&KkDzqCY(_Yz>F8d&T!^_|@Lz2HXS@xSYd+ z1TU?3x#(0%@-9{f*aRU-Qw%$zVFC@uH-15|siMC?1ipVHs^~2L&&&2e%-$9GwPJ_y zfS7L&bTHAPI0@mmgDh6#dBP*wKqFoxVDNn@*>>zmP%h5^*IV@AzF zG<9P7b*&Bk=f2Vcn+Px#d?Mwckq$2$u=g@{^xbR8Ik39BLtWl)uke^}@5(}F|K5!q z<-uz__JZ4fDIj<>^`PGgKj0(y{Bw~x;Q7E?%d2~J`Bv}XCUyA-t@S0MsV)r?+=>OKa@J#M`Rl3%RtKp_e=LN@%QEIC)?4YtDmD z=yiydFc32I+S)O285isKpqVpn^jXYX*80nYQNiI&NDR~bH%vKrLx^DH9X0B*sE~eR z9Sniw80*_=5KcwZxhUX6UHbAuvhhtWf;O5*W_;}a?Ux&+5B zE(o(_WdNe`IibATMZzpkxU$k?`G2R7yDZ0*J3YlBifK|pDgq+}&*Hg@cTNPc7VCQO z<88QQ*s+ufYdR?Ko~V7613enkH+Uxjy?m54V`^`>larDeJ5x#Gt}cCRao!sMa@f;;tUJ9@Kq>)+3iNE_(+ zPQf)GYUkg^y8POAq2W#{dO14C_d;D#VY?}b#{;S6y!610Trt#%@!2iig-PN6^gYdx z!H2DdF_Olu-ovDxnjxF2_xl)GToU)#OUcTeu1h-r{9~9Glo!cC-5_LotP4ekj&hQp zhdig^)?j~)HpRak>a{ISOhq3)AMsD73q}&qdcg_kLR!g>;PE;>9S*WeavWU{g`t{q zaJpk+dv#lY&PRu1oJW`GA{nP+YdpA3zge%e>n~t{Z65r}s|DNzp=|b4O-55X14Y8J zI7l2+EvlG3DLQtP_?I4=(V$)al)ZZN{mt#*sN?9vxZ|{F)K6h@8efe>Q*`WgH@fDf z&atjT-a)Wq*CD2!M29%{?s+DRSmIU+Tg`k^l|Tgg_<+k4zV-I=Gr@i6f}%Vrhi2R| z4M*<%h@_0B_qasdUri=^sS!*AJt$yS$+7jTndYDU#zHHzmFz|N1eQWMkFG(cO-#1? z`2GUQU5>g}_$i_>g6%3zX4AdXAGC8co%okGnHEzUw1N6glqP0SyKd0%8y?{sEm@qk zWpepU6^UE9>D$_s%r^mx3IN&~jC^HLVJD_vsYH}~-brEVPL5j4V6twr>LmXPMZ;Q6U<;KF)wotjo3YY&Ww=rD;0B<=mm3;Xc0n?b`Bl_2rRh}atRD$4+5H|}^(mfcGvMq=mO)jPD z94vh4cSV>&!8Ps-FU@zk^6&#fi;7b*72wIxl&_C zc%0O_EZ6y*HVBrp-A#>fEdIN`q6ftVCN?C-R_|E%YA+|CRX^M>0ueLpI^Y7g`jhkJ zFC@!jQDNrT5bL)WT6Z)k8?giz_|D<9KhJ5^z<(a^6fP{8T`x|NaL^} z%EZbB9CYJiWRny0AU4)B=xWZq(hWP?aPDk?8rHfzLrCKUDkZx6hf)NW{6NdJBeoZ{ zO89#_DJ4FsoU7hrl(fc*1xQdUHDxn1pl9J&>toK>7Gvc{xHE}{Rzt34)Pjy$H2RtY zw3U3J$R0iD++c8zz&u&SbJLtX%#ioBo$6WbM&*jq{(k!hjpP!ikSRemxVmgnq?D+~Nj-3q3V1blJ9lU@VGlx;GI0Om zT5ot?nfmn8oI>`N?tMi6T{CBCWB3iu^+gEo+#PJFh$yu$UVp5e_uX&OpiKSqt6>Ik z1w85^oA3c~TC3ApI5dO5@6 z+Vca~#}oCGbH`^oAE{&QehoJ3c}1@?KPW@0W-BUlv={e|!JO?E2XA zzxz>o-~7k)Ki7Wa`SzcC%sEDm53O&aoc2!w+fL0F6;65EB0il&Tw**xty9NCsc%;B zKL;OCJJ`VeJ*U!b^KbU&1x8N2ng=6Z{E4_l-*ojl)c@3HQ7N%gNdB|fMK?OVtTF}I zez_v}_Lu}$v>ctqbzdp59taiFP0i(`7g0p?Q#Co4m7EK^wLQ2?t~pB~k~^4)`O1<9 z_a!Qd5=L>?C4qTd%kU?1dBo;RY?1xxb}?VXdz};O1)(PDS3b**z#LxR-+$fNzyNt$EL1|? zT0AY6*q8d*og3T{bRt$U6!O6nO^Fn|16WjIVTnu0;KrT1ZSE-N3T`hWZ{>btI8WdF8as9NBga-8?OTFCyYixi zlM-`G`Gtz-qvCPlOl5R-83X-~KO#}6;`sz!V8L()3w#i`!XRaGt_1qLgN_>L>@Pm# z^9jzY}OSX&V1s?M+KsUd^_oh7JH+ih_WPwPo9)da5Sg-2uObRKHO^ph#Ye932 zlviU4k4wqAV8d&Pfqk&n4qn8WwX@X9Uqw#8B}BZOni&EG3n@IM!9SiR)c* za=^zKa#;1SD?@D|Y+YM<=9Rbm-K%T@Ql6QiJWJSU^|FhXN{s&Whr+(eQp80|{Hx@W z5_HMLj(j`0rkcVggvgViYGWwJFY z&_t)?%XoeW)pZ0Q@HDSy2EZ`ND6)VU#$Y0jV*VJ2DiRp+c}wfJwE}*3eb;Xi(Qlrr z{v?4tO;RS<`6)mNuO8diCyr91R*IC5k(dF}$!Dn8s6I?zoO*1A>Y~@M#zT@s4arca zAi`ZGFXvYZ1TFKAZ_&N_2UA;2<_+!a~(STFb+VSk3&y-V#zN2~YZ?%ohi4yyGvT#Gh=^r&?c_(bgow&G` zplhfeCMgz;QPI^6Nyc#!`I^F|C#TN_ob9bj1#i-wRQZMsh=x zzjXD|atLsBZcd%lk+5+sMmXR|LrkX)nI+@cMs?Sy#zerE9~LBCVlb7;cTQ$I9q>gc zy}##zQwAb!k-lGvR!%nFBWZ=SqECVZ+Ans?M%ZBaZM(9#<}yz-d}WdM)ew-o#g%p`Y84g4v_djCp)jAx6-m3=ec9>GHT>s2 zE(s6Hj*8oA=?mP{VsIvEp^slup-ODU`yeqTRQpyMGNzxHgWF@~kszWu7)cx4&=g~d zTc!H(WBt4~KeqvEyKbNk)p-Ui)^H|5aMXjq-Ze~5WyvX7D=i=pOn zL$Qc2to@P;uDJ+T#23wULvSu}2kW<__Z%0Cg~a#GRAuA*kSVgueZ*~;BKi^wRz5tu zN+(bCE{h?sw%y^ncoCIl^tih`dHwO8od<_ zDA}f;LN;q|qe@4@yM7)SvU+|`GroJIzjeIb2ab798#!gn2@pMT I3uidSvb^rhX diff --git a/hw3/.Rhistory b/hw3/.Rhistory index c181128..3a641a7 100644 --- a/hw3/.Rhistory +++ b/hw3/.Rhistory @@ -1,426 +1,79 @@ auto = read.table("auto.data",header=T,na.strings="?") -length(x=auto$mpg) -glm -glm.pred -help(rep) -glm.pred=rep(FALSE,397) -glm.pred -medium(auto$mpg) -median(auto$mpg) -glm.pred[auto$mpg>median(auto$mpg)]=T -glm.pred -contour(auto) -contour(glm.pred ~ auto$mpg) -contour(glm.pred,auto$mpg) -help(contour) -contour(auto$mpg,auto$horsepower,glm.pred) -glm.pred -length(glm.pred) -table(glm.pred,auto$mpg) -table(glm.pred,auto$mpg,auto$horsepower) -glm.pred=rep(0,397) -glm.pred[auto$mpg>median(auto$mpg)]=1 -glm.pred auto$mpg01=rep(0,397) auto$mpg01[auto$mpg>median(auto$mpg)]=1 -auto$mpg01 -auto$mpg01 -auto$mpg01 -plots(auto) -plot(auto) -boxplot(auto) -boxplot.matrix(auto) -help(boxplot) -boxplot(auto$mpg01,auto) -boxplot(auto$mpg,auto) -boxplot(auto$mpg) -boxplot(auto) -boxplot(mpg01 ~ auto) -boxplot(mpg01 ~) -boxplot(auto$mpg01 ~ auto) -attach(auto) -boxplot(mpg01) -boxplot(mpg01 ~ auto) -boxplot(mpg01 ~ auto,auto) -boxplot(mpg01 ~ auto,data = auto) -help(plot.table) -plot.table(auto) -help(plot.table) -plot(auto) -plot(auto,t="box") -help(plot.table) -help(plot.table,plot.frame=1) -help(plot.table) -help(plot.table,frame.plot=1) -help(plot.table) -help(plot.table,frame.plot=is.num) -help(plot.table) -plot(auto,t="box",frame.plot=1) -plot(auto,frame.plot=1) -plot(auto,frame.plot=1) -plot(auto,frame.plot=is.num) -plot(auto,frame.plot=0) -plot(auto,frame.plot="0") -plot(auto,frame.plot="1") -plot(auto,frame.plot=TRUE) -plot(auto,frame.plot=FALSE) -plot(auto,frame.plot=TRUE) -plot(auto,frame.plot=T) -plot(auto,frame.plot=1) -boxplot(mpg~mpg01,auto) -boxplot(mpg01 ~ mpg,auto) -boxplot(mpg01 ~ *,auto) -boxplot(mpg01 ~ ,auto) -boxplot(mpg01 ~ auto,auto) -boxplot(mpg01,auto) -boxplot(auto) -boxplot(auto,y=mpg01) -boxplot(auto,y=mpg) -boxplot(data = auto) -boxplot(auto) -help(for) -plot(auto,frame.plot=1) -plot(auto) -names(auto) -auto$name -help(sample) -x <- 1:12 -x -sample(x) -help(sample) -sample(x,replace=T) -sample(x,replace=T) -sample(x,replace=F) -c -x -sample(x,replace=T) -x -help(sample) -sample(x[x>9]) -sample(x[x>8]) -help(sample) -x <- 1:10 -sample(x[x>8]) -sample(x[x>]) -help(sample) -help(sample) -help(sample) -sample(auto,size=length(mpg01)/2) -x <- length(mpg01) -sample(x,size=length(mpg01)/2) -auto[sample(x,size=length(mpg01)/2)] -auto$mpg[sample(x,size=length(mpg01)/2)] -help(data.frame) -data.frame( -help(data.frame) -auto[sample(x,size=length(mpg01)/2)] -train = sample(x,size=length(mpg01)/2) -train = -auto[train] -auto$mpg[train] -auto$mpg[train,] -auto$mpg[train] -auto$mpg[23] -auto$mpg[228] -auto$mpg[391] -auto.test=auto[!train] -auto.train=auto[train] -auto.test -summary(auto.test) -train=(mpg<15) -train -train = (sample(x,size=length(mpg01)/2)) -train -head(auto) -auto[,train[ -auto[,train] -train -help(contains) -auto[1,train] -train -auto[[,train]] -auto[[1,train]] -autoi -head(auto) -head(auto[sample(nrow(auto),397/2)]) -head(auto[sample(nrow(auto),3)]) -data = data.frame(auto) -data -head(data[sample(nrow(data),3)]) -nrow(data) -head(data[sample(ncol(data),3)]) -head(data[sample(ncol(data),397/2)]) -head(data[sample(ncol(data),3)]) -head(data[sample(ncol(data),3)]) -head(data[sample(ncol(data),3)]) -head(data[sample(ncol(data),3)]) -head(data[,sample(ncol(data),3)]) -head(data[,sample(ncol(data),3)]) -head(data[,sample(ncol(data),3)]) -head(data[,sample(ncol(data),3)]) -head(data[,sample(ncol(data),3)]) -head(data[sample(ncol(data),3),]) -head(data[sample(ncol(data),3),]) -head(data[sample(ncol(data),3),]) -head(data[sample(nrow(data),3),]) -head(data[sample(nrow(data),397/2),]) -head(data[sample(nrow(data),397/2),]) -head(data[sample(nrow(data),397/2),]) -head(data[sample(nrow(data),397/2),]) -head(data[sample(nrow(data),397/2),]) -head(auto[sample(nrow(auto),397/2),]) -head(auto[sample(nrow(auto),397/2),]) -head(auto[sample(nrow(auto),397/2),]) -head(auto[sample(nrow(auto),397/2),]) -head(auto[sample(nrow(auto),397/2),]) -head(auto[sample(nrow(auto),397/2),]) -head(auto[sample(nrow(auto),397/2),]) -train = auto[sample(nrow(auto),397/2),] -[sample(nrow(auto),397/2),] -sample(nrow(auto),397/2) -train sample(nrow(auto),397/2) -train = sample(nrow(auto),397/2) -autp[train,] -auto[train,] -train = sample(nrow(auto),397/2) -head(auto[train,]) -head(auto[!train,]) -traindata = auto[train,] -testdata = auto[!train,] -testdata -traindata -length(traindata) -length(traindata$mpg) -198*2 -summary(testdata) -testdata = auto[!train] -testdata -testdata = auto[!train,] -train -summary(train) -names(train) -head(traindata) - -testdata = auto[!train,] -testdata -!train -train -?sample -sort(train) -train_vals = train -train = rep(false,397) -train = rep(F,397) -train -help for -?for -?for -help)for) -help(for) -help(for) -help lapply() -?lapply -sapply(train, -?sapply -sapply(train, -?sapply -train[train_vals]=T -train -traindata = auto[train,] -traindata -length(auto) -length(traindata) -length(traindata$mpg) -testdata=auto[!train,] -length(testdate$mpg) -length(testdata$mpg) -training_indices = sample(nrow(auto),397/2) -train_bools = rep(F,length(auto$mpg)) -train_bools[training_indices]=T -head(train_bools) -length(train_bools) +library(ISLR) +library(MASS) +library(class) +train_bools <- (auto$year %% 2 == 0) train_data = auto[train_bools,] test_data = auto[!train_bools,] -summary(train_data) -summary(test_data) -lda.fit -library(MASS) -lda.fit -lda() -detach(auto) -mpg01 -mpg -attach(test_data) -mpg01 -names() -names(test_data) -ldf.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) -detach(test_data) -ldf.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) -lda.fit -lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) -lda.fit -summary(lda.fit) -coefficients(lda.fit) -plot(lda.fit) -lda.pred=predict(lda.fit,test_data) -lda.pred=predict(lda.fit, !training_bools) -lda.pred=predict(lda.fit, !training_indices) -test_data -lda.pred=predict(lda.fit, test_data) -lda.pred -plot(lda.pred) -names(lda.pred) -lda.class=lda.pres$class -lda.class=lda.pred$class -table(lda.class,testdata) -table(lda.class,test_data) -length(lda.class) -length(test_data) -table(lda.class,test_data$mpg01) -mean(lda.class==test_data$mpg01) -sum(lda.pred$posterior[,1]>=.5) -sum(lda.pred$posterior[,1]<.5) -lda.pred$posterior[,1] -sum(lda.pred$posterior<.5) -lda.pred$posterior -lda.pred$posterior<5 -lda.pred$posterior<.5 -sum(lda.pred$posterior<.5) -sum(lda.pred$posterior<.5[,1]) -sum(lda.pred$posterior<.5[1]) -sum(lda.pred$posterior<.5[2]) -lda.pred$posterior<.5[2] -lda.pred$posterior<.5 -lda.pred$posterior -lda.pred$posterior[,1] -lda.pred$posterior[1,] -lda.pred$posterior[,2] -lda.pred$posterior[,1] -lda.pred$posterior[,1]>.5 -sum(lda.pred$posterior[,1]>.5) -sum.bool(lda.pred$posterior[,1]>.5) -?sum -sum.bool(lda.pred$posterior[,1]>.5,na.rm=T) -sum(lda.pred$posterior[,1]>.5,na.rm=T) -sum(lda.pred$posterior[,1]>.5) -sum(lda.pred$posterior[,1]>.5,na.rm=T) -sum(lda.pred$posterior[,1]>=.5,na.rm=T) -sum(lda.pred$posterior[,1]<.5,na.rm=T) -mean(lda.pred$[,1]==test_data,na.rm=T) -lda.pred -lda.pred$class -lda.pred$class==test_data$mpg01 -mean(lda.pred$class==test_data$mpg01,na.rm=T) -mean(lda.pred$class!=test_data$mpg01,na.rm=T) -lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) -lda.fit -mean(lda.pred$class==test_data$mpg01,na.rm=T) -lda.pred=predict(lda.fit, test_data) -mean(lda.pred$class==test_data$mpg01,na.rm=T) -mean(lda.pred$class!=test_data$mpg01,na.rm=T) -train_data == test_data -train_data$mpg01 == test_data$mpg01 -lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) -lda.pred=predict(lda.fit, test_data) -mean(lda.pred$class!=test_data$mpg01,na.rm=T) -lda.pred -lda.pred$posterior[,1] -summary(lda.fit) -lda.fit -lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=test_data) -lda.fit -mean(lda.pred$class!=test_data$mpg01,na.rm=T) -lda.pred=predict(lda.fit, test_data) -mean(lda.pred$class!=test_data$mpg01,na.rm=T) -head(lda.pred) -lda.fit=lda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) -lda.pred=predict(lda.fit, test_data) -head(lda.pred) -mean(lda.pred$class!=test_data$mpg01,na.rm=T) -qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) -qda.fit -qda.class=predict(qda.fit,test_data)$class -qda.class=predict(qda.fit,test_data,na.rm=T)$class -qda.class=predict(qda.fit,test_data)$class -qda.class -mean(qda.pred$class!=test_data$mpg01,na.rm=T) -qda.pred=predict(qda.fit,test_data) -qda.pred=predict(qda.fit,test_data,na.rm=T) -mean(qda.pred$class!=test_data$mpg01,na.rm=T) -glm.fit=glm(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data,family=binomial) -glm.probs=predict(glm.fit,test_data,type="response") -glm.pred=rep(0,199) -glm.pred[glm.probs>.5]=1 -table(glm.pred,test_data$mpg01) -mean(glm.pred!=test_data$mpg01) -library(class) -?cbind +help(knn) +help(knn) + train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3]) + test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3]) +train +test ?knn -knn.fit = knn(train_data,test_data,auto$mpg01[training_indices]) -knn.fit = knn(train_data,test_data,auto$mpg01[training_indices],k=1) -knn.fit = knn(train_data,test_data,auto$mpg01[training_indices],k=1) -?knn -training_indices -train_bools -knn.fit = knn(train_data,test_data,auto$mpg01[train_bools],k=1) -sdf = (mpg01<1) -sdf = (auto$mpg01<1) -sdf -train_bools -cbind(horsepower,displacement) -cbind(train_data$horsepower,displacement) -cbind(train_data$horsepower,train_data$displacement) -cbind(auto$horsepower,auto$displacement)[train_bools] -cbind(auto$horsepower,auto$displacement)[train_bools,] -cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] -cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] -train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] -test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] -train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] -test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] -train.mpg01 = auto[train_bools] -train.mpg01 = auto$mpg01[train_bools] -test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] -train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] -test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] -train.mpg01 = auto$mpg01[train_bools] -set.seed(56) -knn.pred = knn(train.X,test.X,train.mpg01,k=1) -?cbind -?Knn -?knn -train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] -test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] -train.mpg01 = auto$mpg01[train_bools] -train.X = train.X[!is.na(train.X)] -test.X = data.frame(test.X, -train.mpg01 = train.mpg01[!is.na(train.mpg01)] -knn.pred = knn(train.X,test.X,train.mpg01,k=1) -length(train.mpg01) -length(test.X) -text.X -test.X -test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] -length(test.X) -test.X -knn.pred = knn(train.X,test.X,train.mpg01,k=1) + cl <- factor(c(rep("s",25), rep("c",25), rep("v",25))) +cl +length(cl) +length(train) +nrows(train) +nrow(train) train.X train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] train.X +test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] test.X -knn.pred = knn(train.X,test.X,train.mpg01,k=1) -?knn -length(train.X) -length(train.X[1,]) -length(train.X[,1]) -?knn -plot(auto) -train.X = cbind(auto$horsepower,auto$displacement)[train_bools,] -test.X = cbind(auto$horsepower,auto$displacement)[!train_bools,] -train.mpg01 = auto$mpg01[train_bools] -knn.pred = knn(train.X,test.X,train.mpg01,k=1) train.X -test.X +train.mpg01 = auto$mpg01[train_bools] train.mpg01 +length(train.mpg01) +nrow(train.X) +knn(train.X,train.Y,train.mpg01,K=1) +knn(train.X,train.Y,train.mpg01,k=1) +knn(train.X,test.X,train.mpg01,k=1) +train.X +na.omit(train.X) +?na.omit +na.omit(train.X) +na.omit(train.X) +knn(na.omit(train.X),test.X,train.mpg01,k=1) +knn(na.omit(train.X),test.X,na.omit(train.mpg01),k=1) +knn(na.omit(train.X),na.omit(test.X),na.omit(train.mpg01),k=1) +train.mpg012 = na.omit(auto$mpg01)[train_bools] +train.mpg012 +train.mpg01 +nrow(train) +na.omit(auto) +auto +na.omit(auto) +summary(auto) +summary(na.omit(auto)) +Auto = na.omit(auto) +auto = na.omit(auto) +ncol(auto) +nrow(auto) +auto <- na.omit(auto) +train_bools <- (auto$year %% 2 == 0) +train_data = auto[train_bools,] +test_data = auto[!train_bools,] +train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] +test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] +train.mpg01 = auto$mpg01[train_bools] knn.pred = knn(train.X,test.X,train.mpg01,k=1) +mean(knn.pred != auto$mpg01) +mean(knn.pred != test_data$mpg01) +knn.pred = knn(train.X,test.X,train.mpg01,k=2) +mean(knn.pred != test_data$mpg01) +knn.pred = knn(train.X,test.X,train.mpg01,k=3) +mean(knn.pred != test_data$mpg01) +knn.pred = knn(train.X,test.X,train.mpg01,k=4) +mean(knn.pred != test_data$mpg0) +knn.pred +length(knn.pred) +dim(knn.pred) +length(test_data) +ncol(test_data) +nrow(test_data) q() diff --git a/hw3/answers b/hw3/answers index bea2e50..a4e2011 100644 --- a/hw3/answers +++ b/hw3/answers @@ -85,6 +85,7 @@ Part B: Choose one of Questions 10 or 11 given car gets high or low gas mileage based on the Auto data set. +────────────────────────────────────────────────────────────────────────── (a) Create a binary variable, mpg01 , that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the @@ -92,6 +93,9 @@ Part B: Choose one of Questions 10 or 11 data.frame() function to create a single data set containing both mpg01 and the other Auto variables. + > auto$mpg01=rep(0,397) + > auto$mpg01[auto$mpg>median(auto$mpg)]=1 + > auto$mpg01 [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 [38] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 @@ -106,6 +110,7 @@ Part B: Choose one of Questions 10 or 11 [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 +────────────────────────────────────────────────────────────────────────── (b) Explore the data graphically in order to investigate the associ- ation between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01 @@ -119,6 +124,16 @@ Part B: Choose one of Questions 10 or 11 Displacement is on the cusp and the other variables don't have a terribly useful relationship with this median. + The boxplots indicate that acceleration really isn't a great + predictor of mpg01, but displacement is. It also confirms + horsepower and weight as good predictors, and cylinders also + seems to be very strong, even though I didn't take that from + the scatter plots. + + I will use mpg01 ~ horsepower + weight + cylinders + displacement + + +────────────────────────────────────────────────────────────────────────── (c) Split the data into a training set and a test set. Seems like a 50/50 random sampling is appropriate enough. @@ -127,87 +142,133 @@ Part B: Choose one of Questions 10 or 11 > train_bools = rep(F,length(auto$mpg)) > train_bools[training_indices]=T > head(train_bools) - [1] FALSE TRUE FALSE FALSE TRUE FALSE + [1] TRUE TRUE TRUE FALSE TRUE FALSE > length(train_bools) [1] 397 > train_data = auto[train_bools,] > test_data = auto[!train_bools,] + Actually, I changed this now, because a solution I found + online suggested a different test split and I was having + trouble with the KNN model, so I followed their style. I used: + > train <- (auto$year %% 2 == 0) + + and then the rest the same + +────────────────────────────────────────────────────────────────────────── (d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained? > lda.fit Call: - lda(mpg01 ~ horsepower + weight + acceleration + displacement, - data = train_data) + lda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) Prior probabilities of groups: 0 1 - 0.5431472 0.4568528 + 0.4666667 0.5333333 Group means: - horsepower weight acceleration displacement - 0 129.08411 3557.757 14.55981 269.729 - 1 79.64444 2345.233 16.39222 116.800 + horsepower weight cylinders displacement + 0 131.96939 3579.827 6.755102 268.4082 + 1 77.96429 2313.598 4.071429 111.7188 Coefficients of linear discriminants: - LD1 - horsepower 0.005678626 - weight -0.001137499 - acceleration -0.014950459 - displacement -0.007401647 + LD1 + horsepower 0.0060634365 + weight -0.0011442212 + cylinders -0.6390942259 + displacement 0.0004517291 - Error Rate against test data: + + ***Test Data Error Rate: > mean(lda.pred$class!=test_data$mpg01,na.rm=T) - [1] 0.1179487 + [1] 0.1428571 +────────────────────────────────────────────────────────────────────────── (e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained? - > qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) > qda.fit Call: - qda(mpg01 ~ horsepower + weight + acceleration + displacement, - data = train_data) + lda(mpg01 ~ horsepower + weight + cylinders + displacement, data = train_data) Prior probabilities of groups: 0 1 - 0.5431472 0.4568528 + 0.4666667 0.5333333 Group means: - horsepower weight acceleration displacement - 0 129.08411 3557.757 14.55981 269.729 - 1 79.64444 2345.233 16.39222 116.800 + horsepower weight cylinders displacement + 0 131.96939 3579.827 6.755102 268.4082 + 1 77.96429 2313.598 4.071429 111.7188 + + Coefficients of linear discriminants: + LD1 + horsepower 0.0060634365 + weight -0.0011442212 + cylinders -0.6390942259 + displacement 0.0004517291 - Error Rate: + ***Test Data Error Rate: > mean(qda.pred$class!=test_data$mpg01,na.rm=T) - [1] 0.1025641 + [1] 0.1428571 +────────────────────────────────────────────────────────────────────────── (f) Perform logistic regression on the training data in order to pre- dict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained? - > glm.fit=glm(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data,family=binomial) + > glm.fit=glm(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data,family=binomial) > glm.probs=predict(glm.fit,test_data,type="response") > glm.pred=rep(0,199) > glm.pred[glm.probs>.5]=1 + + ***Test Data Error Rate: > mean(glm.pred!=test_data$mpg01) - [1] 0.120603 + [1] 0.1407035 +────────────────────────────────────────────────────────────────────────── (g) Perform KNN on the training data, with several values of K, in order to predict mpg01 . Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set? - + The knn method can't handle the NA values, so + + > set.seed(1) + > auto <- na.omit(auto) + > train_bools <- (auto$year %% 2 == 0) + > train_data = auto[train_bools,] + > test_data = auto[!train_bools,] + + > train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] + > test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] + > train.mpg01 = auto$mpg01[train_bools] + + ***Test Data Error Rates: + k = 1 + > mean(knn.pred != test_data$mpg01) + [1] 0.1483516 + k = 2 + > mean(knn.pred != test_data$mpg01) + [1] 0.1593407 + k = 3 + > mean(knn.pred != test_data$mpg01) + [1] 0.1648352 + k = 4 + > mean(knn.pred != test_data$mpg0) + [1] 0.1813187 + + k = 1 looks like the best, since the error rate increases with k. + +