From 439f7abca726b8a21ef37119bb64f5b8a45a4b84 Mon Sep 17 00:00:00 2001 From: caes Date: Tue, 24 Jan 2017 23:05:14 -0500 Subject: [PATCH] added r session for hw1 --- hw1/.RData | Bin 0 -> 17788 bytes hw1/.Rhistory | 60 ++++++++++++++++++++++++++++++++++++++++++++++++++ hw1/answers | 4 ++++ 3 files changed, 64 insertions(+) create mode 100644 hw1/.RData create mode 100644 hw1/.Rhistory diff --git a/hw1/.RData b/hw1/.RData new file mode 100644 index 0000000000000000000000000000000000000000..353da23c4c0f94b79fa74ec932e9f3e819c8e6cf GIT binary patch literal 17788 zcmeI(XH-*P+aP=q6%{3-C?X{k6%hder3DfN6$J$qDbj+{r9^rQ35p0x?;=7#nsk9s z0|Y_oz4rhCLJKVfLh5jrXXbh5{?9w>{xGxV!;`ggt+lUnot%?%_Bl!R{skC%{LtSY z>_mUgZ>A$YBL(xBF*jc7PQ>7^THY+RGU@NGlgE^KI!3Ntexfmc-G%;eEwcs$8W(i% zw2_y`_@W!0ryaTWv{C+(=!S9rUQ^7ucK&ejxtl}Q% zaRFSaI=88Kv3}z=d=9*OR+m8?ds4-@`HEdRb=SDQ=|QphY52*vEJr&IVkJTZt18UU z@TdL>^4z$!Gh8$pR=FF4Do^%Rwb?{ZP~UkP*E80Z2uM(O{}?>-RHpf0GP4BkndCCe zQovab=rYm4R8_WCrP$)|Kq9XCh#Kj$t9C$V#$EP8Q~^>db2^gmVRc-KH}B~bC%11Y zkc#zFyY>^RmF^W>eK2(F?&$uXij-hSO&hplGdEY#R@NBLxUcmpknqS^0qp>s5o$s` zUDF5gRJ{s6$tZ}_Wsi8uBtMmDPG(xv zj-gPe$!TVRHUc7B!_ZRmXON7@L64a%>F$r449M>Jy^S1g-D2HW%TEc=X4~*)m>ep#zN$hL{WA|8& z?F1K!(~&4rqUS&nc_nPka4tXkSe;eFj`-LMww@D}oI-~ai__}>6 zX%2M=m($C-MLO$_W2fVLY5p^NY+**+9Il-hvi^wf}g8+shnO z0JUNJFZ~U^dR2k|33JH&O;5sdVfP-w_l6-ZKEgx-O*O8Xq?@-#OcYMM95A=18(hx; z)=sG!7YQ-a$jODA+P@IKQs+?%i%6`>>jf!89OCW7Szlx7!nifrRKm1qIss9QPb?)E z%oZE^k5xQYX@}Z_u|u@tlrdRMGa+iGUJ2Z*wdl~mc$I?1l9HxfnscD91CINl%M;ov^>O&21Vh;x+4Ne_9qL zNq?GCwrrApwEP|6ZNa`Swc$MEES-W-0@EEt1JlS~5vi_p`3=U3auoT$LjG6!C1w zSD8ZLwPYYe46c=4&yhkQv_B0!s?{y z#;L2~A0wmJXMXWSu=N8SA<&ZxM*c*2CUekaWhgm)df*tu<91L1A&xfbcnw7rl!M18 zZ%PF1o*Sq10phFAXo30EMzg`0+K-cW<$IQp-HOx{k9hh;V4s`92XwNJHpmKcxYfsT zM0vO*P*L6An%NV?=rIS7X+{!p;=Y&smtY{)WudeT#tsLgNh!ic!_Q8U6zNh)T3qPt zN-sxkWgyTQD7C?X@mDR}Lhsc~dzN6`iG5dgVpMCm+ko%?x+Yf! z<0PdYiC-#?0+MTm`s?1ReNgjx=YnIW2rPZ+5olq^Zw&^!_#b7Q8;dGlAi2!&$y7Y* zQDEr3`{t^E-sp9-gDg`7eiIILphzElU6?Ldk3)3uVG1KDD#G)vAhoMmXS1!&ty^Hg&% z(;6IuyVxv09flR`slo;zK5;ge2%XWTy=g$6p+v@TMKQC$o$|v@E0&~hn};@c6iI6t zAI($oeK5S^>X8Y!PMW}aF!)G44z^YrwZEw@F|XnG1HjO3_3n-QPFS1U{rRL`hOZ`Y z?5WK7eO9kD7)bKzT<2GYIx$|QzD=1S{R!@^SiMH*D0={0MULgzs{7k3?mq*5;v@adwI=k5naaOPZK!uIJE2DSQjH(FI;)GmQYIQE*|%HgsFhA{)_Cz){VX!Jncn z!Vo5X^L)qT=*7W=Mtj8xEs#n>aQIJZe1DOD zwk+$dz%o%q$8N->zfVYguG)Eg-@D=9L$||wAi>+JQDI*e>?jYo0xZS}Fb^$psheXx zHkH|P0r&^11Txzl>fQMS_3BPQH)yw`MuC6aX+(Kf8_wnj9yy${MzfE!H)%zTi?0Sm z>w*f@N)b^^-;fPn-Yo}-xE2QcYW7g*YIpEsR@n@#1Py5-goJYF(X)^-jhqm6${ri? zN{}JT?PPJGI=}l!y<(7IKLj2xjW|v34@75mEVJt_PckInM0p9-*!rrcD*h5doXhVD z`zO^;>YhQem6^li7 z(+_qo$UD zy(EEck}BQv!tOVQ>RP~Ltfnl}iw%6L-cMu$kh8gidvAv1@MK;V#?!=m%>fudfY6o? z19t~TA%sT0o`h)69v-)yL2-Toa3a~aSz`3t9JFapDrXvwXWZ?&fAn|v!=9<{zjd_Y zwK>?5HvB9Uw;9IgojNP?Nk0ibt-n-LS>-&4_2TT!AwZKf#fOX9DORj|dp1WhO(tuT z?s!tB{@gD7yr+6M|IfWkq}j5D9FA;l!yi6xI}hh>h-b+4I78(o8Zklj-3$J%TA8PslzM1Cl)ybo=|eL7q6H4llf z+KWF@NV-kXA04*Of_v^V^9#gq$H`eji8Ga<*pOY9uomjuIj{GCo#ZB!pFg?Wzd#M6 zatPc6`PRJ-Q{9=C5$-+75Q6pmKtA@;c8=-d$fH4wBu4{5w+Zk?(U7IG_9X~%2B$5< z9$Ab1?15jQu_1*v6NNeGx|Tw&%+!yl#VC}U(TMqd!Q^279P9~Jl&(Z3DEjn-TjWOy zC-6P=DN?#Ik~f-{(4D!t)+EB>G#&W~HVa_dmeiY5g*Q3VkQOZv%lec@iXXB@o{IN000~i%IoJ#BiEwrBH`bAz`?cK`f=ZDdGl$n|5Bp1t zVT<8{PV*b(w|}yG;Lp;3(^XHfzTH!!i#AK8`E$D#r#Yu+u#V18(1mwCVxbHdG_N|C z(}-8MsatOoH|f#J@vVtsC=0tFym5*S_dK=@eFxtJh0`s}Ab(Wv)pv{Z=;Dq~xV09K zq#i*Iz9W5sidX4~L3HREOC*9U7bEA)h|fGhVtwMLkaPnwM`GikXRvwtbFcp9wGjc( zM4PR-c3bJ{h!UOJkK_cBvycbz_I!`J+8{x7rK>vsCkIVxIG3|kV{z!^sE-RLMHs@n zD9o`+IXv8=hrF=+T?h4xiJwpI<==NX>vL^YZ1(i%JF>SBd1XFPgK~W(Xw9}t_YMOR z=z(OT(MO(Y@(~710adW(`qylvQ{>ABcM*4!1PQexb~rJ{lK{Zs?YaeyQ_~e?0ocBo z{Ztd|-U!897{`I9nf@-To7gPdm;xWZn6yPZ#b`Q)0~kZpUN=LmmOS}XXsMFql8v0^ z2T+>1#KaDOjQ6vKLqEYOh?kJM0w(AQWOg0ww4!D=J_y}OJw1`x!{_S*@$__I2r2Af zp0J9*?jYJ7A6EC$l@0&zU3)Nl-~!n3pm4n06C9!ZJ(C!8sjt^1V%ei#xL#m_8d* zpfV3NlG;~{j@$vIx9C^`8RGko>+EuTdc084d)JmS5%0{m&+V#xc7X%Gdd5T!a-!Qb zr+F2qH<`-KT{{CTZqiA{JnLrjhL!0uWJQ~01mR)vTL}4eE9@T^(QcHLJ zFG8rgyBuY+@b6~T#lgGJdJa=I{q5^Vpcb`CtX6c08+I>%_QN4sMmYuk4vFxyu#Yn$9ei189?AkClC7RPwdG84Cl`iy_!QJ{6 z>Hms5rY0{gTrqrfgc66 zMeYq@ptXrrLkGj=ggkqJ(i3d_bVY6Cuo<(9f?bnlB|b;~=m!Su!ZeUx&8!N| ztE7!7vQ;85MVCY9Lqyp+HD{fQ$weKj=Tx9*Fqvto5cf5}WolD9lOM@Qzk_Vp+Nkar zQ=8GPgpdCMO)dc7h%8APW^x!*%f}tQxc{J+!JCGuEI+sb(@KmQjZS zbI7^jVB9g!ECn0sn$=2Spy%C6SYy#8EB^~%HywytXf55O6^1BS)*nsbuLQaFJ{yd^lc*K%AD@a z{ia~%p$z1SHXwW_*oH7^qzEQK1l(1u>JOa< z3fK&j<%%(@%D+k1w|{R5j1r`aGa_>#OK_q3T{o)OI#q9dnotP2MJ0up9ab(8|kTD^{QIc6zJ|@Xh*U9dkMhmU9ojnW+z3X!aM?UnTB7dreWyN zOoqf!R0h*JJTSK_35Rc{RFkfF)y)qlOHFPwawf0zqw)=ZsUm_ z`yzyTc(t$Yk9*{kA?gm=*lA~S*{?m^x4KV&{f#B>bx=j5s>0DFW6vMSP2Od4FY|}r z855qJ3%99Lm)(=NI`Q?*t%)`}%bJv_A(c{0a+g*AF4aT(NM5pgVT9sy zV3qf>%Yd&EQg@u;bg>)Dd}|gw9yOI<+yo9wQB#$=&Z8}z-?`R-3w3m^lxOk+f9y|P&?Ua-8@xaG1LN~l=j-hU ztIYeLvhqxD!qfJ;(1EARg?IN{6i)+RO;u@QR>G4q4MieP6U;`U_!O&st-T!;K9?6H z6-jp}z8Q&rU>O$lrce{uk>D11OvKIE?6Vz_`z-If#S(+Ag=8r7QpSrl@UM~U8O~=1 z%VOh8G7Sdoa042BT5tMk7P>HuOJ=In{+s78%=;1R2-iHr2zM==GMC41W*Jj;W0v8I zvsyhT;RK_8=O-g&)ek2tg{}qLm(XEPCxz}7i9LtACcZ9>)x&$fb$Q$40#Zu&#m^Hf zSZQ@sWFq^^+P!{h-LR|H37z3){$|diu_CY3JKqAbuYKwI?Bcd;=OHHx=GSjpF6&dP z>)y0_(>v85G+q|Mw364CbT6?F3pXr%G*H-6kM6T*1LE~ zHYsc*N4%`mzlwk9ftrM3!Rh3{Zga+^Sn`{T1e-a7&@HWNWkb`ed*b?IB0_mrofOHW zjGgn`Q~Vbf<95oc2MgKqE>_?L^wI{LtHVdXLXTs?^GlJCKD}G*EzVm$7i1`JU*j^i_36#o zi&q588(i*~|w-X?#{e)MMXDPR}K|vFV*eth7lC zwd(S7-frvPcJk;Twb$Aq33Wt+!1eJj1*`5)^jC=w?o9r&N**A0lb{V?;)*mz5bf4h zbp0a#0HF%Uo9U_YU1jLg#EtI--TV?Xg~>MBCsJeM?_V>`E{}CA`Qkid{l@*-t*hi&+u%PYvwQB`N|0NC{VY9& z^$CoxZC(+?#JT3-qdwz_{V*}b@5!lLjfDm^3QzR2TO`9PwA*X%pFdKb%XwbaNwU7T z-4hIK%a)zt5&hL`QGb7aF?YP=k>LmN$%@J`rSER5(#vo82ihdKrH!z)t>S(rM_5mN z#=8cTbmcetxa}X=J&9DA`cl;oTJ$AnsNMzk>(*Crw7MrbR<|_xMoOeG^NODKN9+8S zPJPq!!9*-#HJIaqO!-D?YHC~2HQ4I1QzBmIWzh@6b7KIB`uNAyQm->KgAMwNs)Eh- zdo49#x<(csYQQkb?x`88MIb0sZHsY>+Qi8nf<;nH(=#*6e=X|=T};8 zc+cOxevX%m(2~m0*OmE0f3g6!ELR#WsCO=0%j~z4tX+J0yjtOWl%Mfw@W+^<B7 zMg~Fn#{{?O%M+q4;ays4Nk#h{kd7fY;!5tL~}CMYf6nHEW$uy31N6`G}=wKwY9|J+35KF*q(*MK4xZ?j~vud zGBqmZxoB(u>ER%hW7z(JYNE-9mud66sS!Wd>T;mSDsLF^ib+AfevtzI`mYc6BU1|k zD-}QDwM-UYRQ3}s_2O?N=7G#w9*ZS+5G1#sK71iUsXY|;3@oGPBK7R3hJ0LN%Qv#b z^_wmoo!q~FISY-{q)JpyeMwzWKVm+8HNu*@%>Agw zODOk6i})yZTFuPhjWckH%n=TX&_A2*i3xSt*IpGgzml` z_8Qln9%h}+MT^8MWcGi2F&?G$kEBu7>3sC7c!h%gkNV?3wfGI}o31xr~Qo_*}q8@TS%shIz|9_djfBlKWqs;Ql{l;hQr9Pn(?ip)~7G8-S zj(PaMN`G2!n>yIgKkJu(JCpyT^}k>H-`m!|U44&Lzu@fV%fIYYQ0Y@AwM2}X=2~@n z2GjpK9Ao70sG$7vu<=<3sZZqzzm2tD7hWm(Tl$j_k9+0cj>BIsepGPu^6=ra4s4&w z1AZIdd0lv^#NagJ#q?C(dE?uEZ-pD>KPb=_8_wf)7z!zWv()#(E59H8=J!7qCww;2 zzF&|fI{cj5AvdJ_#c$*5ucgkH{GUya#((b4;m&7yU8NiSK^@oL6?)?dE?(NVTZmu` z5I^!S^vu&dse;biW{7}oL5~3C0T>oDituv4ZrIphjw@NsZ-E{FIpC+>{tn}pWeDu0 zy`xJ{;w&ijBb%RSquQ$ERa?b$2G?A0m-o2CJ{Nyo>a9(Q21Z%BAR0#vqHhQ6==OM- zepMh&+b9T9Fy^D z^b!x-pSlx^)mdd8A&86=bW68P1yR)sB!{<@k9gY}CexMOJ1l9!QqpxTOE=pERRy1l zQ&Ht#F}&rpa@Wrq(fQF8b?An*dL2+6?<5#a1@WtcB2S>yA*=X-0I@iv+Foem?Rpu||o%agSw0H7ocV+Bkt5qn@fim@h*p%3#ka zMsB=W@Y?T}p3|hH{6Z(Zkx5G``pSWivLRKGI9@D?_9S?cj`x&f>ZT(h^g5QU z9yqcICKm7wi%#|=22atnXE^*(;MiR(FCNE9w+!e^++zbbsUCt~Iv9~Zj1r}v(Od84 zVI84>gP1ubzvLS>H2I+qq&-!`s~&z6MndLQ*%(GGT4_1ptP9&=h#+X{2WFTX_l}009&%BT z)VU7bWp`!xHtv*hl|}SP_d_gcrzc@cTG?u^$30p1eYgE48vqwo#yJ=Vlg_P&Sq8tJ z1WeExo=AQWs5Gr+G|L=KoI4nk$2gBnn*>$nVS^kJ9_~5;j$}AXg z@U-bm)tY@a6Ipu#k;Nm_@xfh&9pWN*hMu41SHjbnC`>q)#yYYD)<4_nCp0LWShmai8{h4`$_Ua6JagA5rpDk&sy)d zE}%Btif-K>t{Fbt{s|Xg(&^=8*y4$OIq>0JMNUKx^^PWO89)to5$O83 zd%#qHcxOUaM^dte0|c+hu+xP2{m3bAiV#yh;#Za0hx;azp}lm)$6YKAfIZMpzo_72 zJ{cn#4-u1*0uN~CH?vsHeNYj|ijP{R->mO(zwN{LdX7!yURjiK1kHBtU?!h>k}6&* z0_`B+8|2L$V^f`|Ifs=O9PM!FW4(y}E#;6Nwgd>_1bL2*N30&A_#fG%$%_aQXH<5Q z!&ByA2Zv`k!tiD)&7?VcE8gRb(_-YH{ERZpjsyP?^kalGDXO?2C+QD)fvyua-KksB zfp)5oDGtYk0~j6f%UIbk+gd&(DAfhY#yHCxW~nBex;qrW65a$}5fo-<`+u=5m>6tX zRGwvt= zX=lL1JS`?2^yM`9yV(waI7gC2wXD@glZJ+Yizh}-fT8f?PM8SSdR2#=5@w>m@72LX z&sZQix~i9J&X%`wg!%*_&+Gk3e1V@~r#NzVrK8rGZUj||=o#vq*kI>jC2z?jDeRA_ zrul~j77_}O8Ez7pK&#XN>0Z_$Dy@s1rp!0X@oVGIco-+~HT+>ul{kln-$h(U8-^L zT7(;gJq>i+hcWz%a4HiV#=rG#gyYaMN3_Yw1v!Y)#;DBdxT9UA8DUgr>*(6PDW`ks zMvhvxlL*ZoRlxoLO#HdqO1(>66{&}s{w~gXDzpbENH&lu0s-Y1J@1S6o!a~V1WGXb zA&+K*P;7Ks05+yEpQRi$Vvv5i#sQbyD7g%**W$$-0I=2bPd|MyR%$I=UF=;)X4PNZ5CJ~%ZZ;!489r!MV zb@Sk=COx+P5tYQ%KBcvOAybgO3(TksqRFC9M#{tz(oiWNTDAYSG*If)alP2Mc+71_VeczUXo!wJc&I5kpqvc z|EAyo7zF>4d4tlD57)kr5CX*M*NqVJytCexagl{N1U!bTi`om;^QOXn6=B&y$g@#f zjB|Fy!BZS}A}O^@Sehc8^hZ;69hLQ#jVQm_bF?!!2+Ow5;%0sg^xrtjINA$4NmP!n zfA~y=4WxUw+j@R0D=?sQPwglFKBDlm!s5h`&nQWC-a@E{WqcB{cR*lPf?x5{RXO|@ zqepVSZVsI9O?>W+Pzd71o$#wa2@)Zk9`y^~-+VbUz&?;A`NhkyfhD&{uR_$Gcegm(TnNp5?22zq*7PnxuPd1We|eTI}X%h8#f zj}-LmYy^gEWF@}SoQD3XaUnATAOMPX6gx9V7NCsOZPImX?NKgpDE=PN)l@%#`+#iC z;ptCl{Yb3V)Sw3ee#!iR@Xoe`wuZXdKKI_8jba@waxg+k-(i&*L1p~UP=b0Pyia?2 z#8QiK0p?+D$96@yNaZ}K?}c(?aow5xjr|TkVr^$4-CA1)pqvZZU=d(9@-S7@-1aBe zw-%MRY@X)tz=_c~!}Pdz6&9^@fUjQk5?N$t?W)`9o}|A zobheK6*HB_IYm%M3qo^V5hN(Eb(MMc?pO5uFN&N|UdIq%5c_`d9WW*30pe#7>a~z4 zln_P8fqft<&yP6hzK5(d_;ePZGtG$xiZexa_DL6mnR+3ss@o)y;BWrdqZQG^`t+)x17bo>c0~r@q2anE+ zkXCN2)m9yaN1-^~q5?hOY^(TO2&dn(oE{67%l4C{aJteb)i`qW=CQQ~U)4xokL?Z- z_<6GWuKc8U8WZ)a1{>hdboh}GMzSyBm{hccmIU~G^o^NyyH_LC5hrvQy%Ej4+Q7lK zKfTR<3^wty0cW=f??}?|5?&(=(6#Ey)IZ=bDTXk~v#rME)YyryLfR&Psdh3N!APXJ*9FXzt`RLS7 zI8|2*1YxQW0DkIJHqsDSlj5INi?rQ|*#q}2(kjuBu0Vx@;*IDSKw6jfwxvK@Beyc9!h%bv} z1gD@fZNbk{{dJS!zX4?;DJg_qKgk<{`#-xsF}$H~0n^&^e#L%U2$Vl?pSzd%fMt%( zirDsl(I8T<8M1c@_=omES-mxbMGH$wcZJH}b$LGa1IQjiAvIOup)MZwPPY_}oc@gg=SF{5pXCVtvr;v;M_&cmo)iK+p zW8s2mnZ4PcPRl>E7K+5VwX-U&S~ee z**!>-&z02+J89ss14u#(9D57yE1De9p#89AgH!5n;Z|jCntwyi2P+Ul3xdPW5!lI! zh^f;m)OV!kYgyQ?S_}HJZX54rhXzYCTy^+FuGma0hgoM;0DzbUeJSqR8|u^I61@c= zNBh2-d&GKVF3$>2Q6qC8V#qPf@2U}s_}0YLBcxQ<-B)mKU)A3=>Y#xwKCtE}7F*{u zORf}06I7->f9?o+o4nn1I(FbR?lS!upff*r6oSie?-YYZuxe>)n&gUiS(VD)7!~jN zR5ew}Hsjv;!ZwM1%+4q)>YLjUaScg=H{N7iYRF<0Vw2)I)2u(-%b>RdUUf~xDZa$VofiC{WqlN_Uyyb>WV z)&ZVOZ7)VChAtw>TC6!pV54`ZoC_dl76G|FPw2CyKzAji-5RjUp$xNUNq=R*ntT7Z z)v}*dufEV))fX5IVZ!bJkV?*iR;-gdn<|entCg5ltZhH8esrUVHD3f-FM<$?ifcN6 zJ1UFb)W9v^0l0Wbd&!}wtTdYjNngN{cSC1b9WzAh0?!c-ueug9#Kte7uOmthPx*R8U;1#|3St$huQxFFnX-^#sE&(I0$oM+f zs})#+yQyL(1?*0cB=5SDE=DD@TNxnR*Vcb#7^DDzu;N5#gXUP{ud>p6**Vw8%yhc?n%8@u6*je8jS&m>iz?6bQQ8rTddb+TJs=~! ze#sqeM&$b*q?e&foOG7M zP@jEtugH(;PqTWrbG3FIG?kMce+`ea{OncQ-d)0Mnaj7<*>!%;C$7EN7BQXbh_)>d zk$0wv9!dG}9WpVb>!5PwRSn1v@%x(a&b>b%L#quy7N zZ%t9xv=qf~;l!8C>-UOH_*du5?zibI6**^aPJeyfaZcJnlI)UrtH1nZ%~v5HG5oi` zy=F#pc*li5N}yy*Vl$8L^!c3zcAIXm=*R2HahumG{4Sg!UJZrDHJ-v<*gf{z^Tsf* zjZUz|4Miopn<~(m*pkdK^TCjkl^2Dx3PI`Iv2EV|zH*Wi!I*c>gR!nn<3E*`)`p5@ zUlxCKalYzYezEw2oC&cGfqWh>IG6sW-%}3)(SmaK)xCSA^9Y)(J#{JV^D7fXm7jLb zlq-LUtlofLo2HxJ{y^?3VE>7VmcYoavuOo+c{y()#)A)On1k)V?x&ye>Cex7G0|R2 zz{0#?)Vp5b!gQ4Aq-V2?y}M~Z=i(n-HeW-zsf5$1%m0No{y%6V26u>~F+9`keN=AE zqi1)Ij=$dex;1`osZ92dV&sFnW~Q1uLZ2svzs#-T!#a7U(6Tehrm(qdBY0ztVHM^5QI7o6*)T$|F56{;0y} zvEruO?V4+sVyT;DO>>2tel^Fx0lx;*`z84Ih-P*2`XeYQMYGIIyFwzoIhw!ki7v;i zfuvb-_VodL{DX-r*3;ilz8@b9I+n+QRN8PSln3f;gHf*?7)* zV!~0Nui7Kgy()ZpKJGYg0n~gxwod9j@`oyM(f(Ub(%w=C`Z79OGsXF_>9U|(9rami z8emx*I>ByL^SENt(xR>a@)p2?iO+rduZagm#%J)m0?^Zd8eYo zCGv)0UjC=GU>=-S_T+_DVk zOOcw^vE^GLxQs}@=G?L`t$HsLnRKA;#wEXlRiIm(!6eI`z$KgKgV&vhE8Y3VS|f5l zJ;;)ttGI}6A8$`JaBWp9JONeN_{*+57bnwB!6}; zdp#*p^<5Rnt=}5KIi(=#5MOG-A83tyBKhb+nV4AVbcUL=zOU5H_ue`A{Eys>Yd}(r z9fStPrC>I+h!i~Ea8+~)E{U1q81M@IW9u-aK`eSYb^ov;zr*(a%LG^M}5w{D)Q<_PD_=$ih+{j4f3z|sJTCU z__zRi+M)Dd?4}{a%V*v_a?ly*(hK zB+puFwYb&1(a&p+#P4kc*LSr=MJ1WH(|dT$1dCscmx5udjk*fWbl21lsm2>mUHx=5 zjdrI8iXo=82Y>FC8XmfCn0$KAq7l8i?#kt1GN_d$<(6l%yjzm1m7qP8Qe>GO-L*hE z?{n>P-Wj<0q4sO2#N4WcAMexo+B+<}sXXVuR9P<`pR-VmbTI3Qn{a-t>mhPj26paV zg`*~HWkp*Jw~twQLpQrE-*D3HngmAt&tt;i`<$vk9*4Un#t@{L33&0s`8|3Yqn}#x z#vv~uZpz?ALYs&4x!%0Tw<8|DsUtniQUU*BlGpi4pSxie4$RY}OF_)>@(GQw4xHY` z4{_(@iM};Kdh(`iuVRC$z)acRAxq_kl#WAq*@ht7zj2M%9F(!X>-z=n@$-~C)5~5Z zlM4$)!d@D#iZ{IOSD)kCP7KhGZVkEj;IiD`)W#_v3$yc|PVM(P>R*<79W4S(FZ_J} z!HsX0vjUuif2xhrKW6c~-9EG5c!?xY4V&M2wXLn8VSfv!_Afi>-?ieo_uyZ`UoegT zup9r%H2!Hf9z3(+x&K$;Uzo;!*p2kCA!>CMrfb&Hpl-e_?z#>#xFJFpdAP8~@5Q{%JRi zpJkob|EusnGmZbS8v}>GM_yT1$f=B;ZuU(cnRq|VwM_gueSvI{_3v4YgKE+E?0?5< z9QcWQisS1C8~Ug1*eQ1ZPp$ur^!T^+#lN9Q{_)!1k!aUS<+|`4h2e?X=?goa4`IRN ziXZ>K7^D22F00z)Z^z*;D97Ik$A7XKQo;VsPDg=;Ytz#{XnB4vfZ5Z7xRN z{=ZX>|NB1;@x16JI-t!%a<1Zhc)*Ycc@G_NZTc*}pLKAJ_nj__TJsz5B*a3_@2VP8(~ x#=6L>T}U>RBqxV=J@>t_D2^Yoa53%*vMqtkNn1*^!%3_|-tjwLw^i8={Wp`0ARGVy literal 0 HcmV?d00001 diff --git a/hw1/.Rhistory b/hw1/.Rhistory new file mode 100644 index 0000000..8056b14 --- /dev/null +++ b/hw1/.Rhistory @@ -0,0 +1,60 @@ +Auto = read.table("Auto.data") +dim(Auto) +range(Auto) +Auto = na.omit(Auto) +fix(Auto) +range(Auto) +dim(Auto) +Auto = read.csv("Auto.csv",header=T,na.strings="?") +Auto = read.table("Auto.data",header=T,na.strings="?") +dim(Auto) +range(Auto) +Auto=na.omit(Auto) +range(Auto) +Auto[1:4,] +Auto +range(Auto) +names(Auto) +fix(Auto) +plot(cylinders,mpg) +plot(cylinders,mpg) +attach(Auto) +plot(cylinders,mpg) +names() +names(Auto) +range(mpg) +range(names(Auto)) +sapply() +sapply(1:3) +sapply(1:3,range(x))) +sapply(1:3,range(x)) +sapply(names(),range(x)) +help(sapply) +sapply(names(Auto),range(x)) +sapply(names(Auto),range(X)) +help(sapply) +sapply(names(Auto),range) +help(sapply) +sapply(Auto,range) +cylinders=as.factor(cylinders) +lapply(Auto,class) +auto = Auto +lapply(auto,class) +summary(Auto) +plot(Auto) +pairs(Auto) +sapply(Auto,range) +origin <- as.factor(origin) +cols.qlt = names(auto) +cols.qlt +cols.qlt = names(auto) %in% c("name,"origin") +cols.qlt2 = names(auto) %in% c("name,"origin") +cols.qlt = names(auto) %in% c("name","origin") +cols.qlt +lapply(auto[, !cols.qlt], range) +lapply(auto[, !cols.qlt], function(x){ c('mean'=mean(x), 'sd'=sd(x)))}) +lapply(auto[, !cols.qlt], function(x){ c('mean'=mean(x), 'sd'=sd(x))}) +lapply(auto[, !cols.qlt], function(x){ c('mu'=mean(x), 'sigma'=sd(x))}) +lapply(auto[-(10:85), !cols.qlt], function(x){ c('mean'=mean(x), 'sd'=sd(x))}) +lapply(auto[-(10:85), !cols.qlt], function(x){ c('mu'=mean(x), 'sigma'=sd(x))}) +q() diff --git a/hw1/answers b/hw1/answers index 8abcf15..70f0d47 100644 --- a/hw1/answers +++ b/hw1/answers @@ -252,7 +252,11 @@ remains? scatterplots or other tools of your choice. Create some plots highlighting the relationships among the predictors. Comment on your findings. + I'll just make all the graphs, included at auto_pairs.png. There are a number of uncorrelated predictors, it seems, but many relationships can also be discerned. Mpg and cylinders; mpg and displacement; mpg and horsepower; mpg and weight; mpg and year, even; horsepower and displacement; really, there are many relationships, but the interesting ones are probably with the mpg. The strong linear relationships between horsepower, weight, and displacement make sense because they're pretty much correlated by design, as engineers make larger engines to handle more weight and so on. The relationships between this overall trend, is that as they increase, mpg decreases. We also see that mpg increases as the year increases, i.e., as we develop more sophisticated technology. + (f) Suppose that we wish to predict gas mileage ( mpg ) on the basis of the other variables. Do your plots suggest that any of the other variables might be useful in predicting mpg ? Justify your answer. +Well, I pretty much just answered that. The year is a great predictor: it appears we will likely continue to improve mpg slowly and in a linear fashion with time. There is a non-linear relationship that gives a strong mpg response as weight/displacement/horsepower decrease, so it's quite clear that these are a strong predictor of mpg. There's also a relationship with cylinders, but again, this is really just part of the trend of vehicles with more weight being designed with larger engines. Finally, it also seems that origin "3" makes cars with slightly better gas mileage than origin "2" and again 2 makes cars with better mpg than origin "1". I can't find it in the text, but I assume origin 3 is Japan, 2 is Europe, and 1 is US, just based on my own personal bias about society. +