diff --git a/hw3/commands b/hw3/commands new file mode 100644 index 0000000..fab2f17 --- /dev/null +++ b/hw3/commands @@ -0,0 +1,44 @@ +library(ISLR) +library(MASS) +library(class) + +auto = read.table("auto.data",header=T,na.strings="?") + + +auto$mpg01=rep(0,397) +auto$mpg01[auto$mpg>median(auto$mpg)]=1 + +sample(auto,size=length(mpg01)/2) + +train_bools <- (auto$year %% 2 == 0) +train_data = auto[train_bools,] +test_data = auto[!train_bools,] + + + +lda.fit=lda(mpg01 ~ horsepower + weight + cylinders + displacement,data=train_data) +lda.pred=predict(lda.fit, test_data) +mean(lda.pred$class!=test_data$mpg01,na.rm=T) + +qda.fit=qda(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data) +qda.pred=predict(qda.fit,test_data,na.rm=T) +mean(qda.pred$class!=test_data$mpg01,na.rm=T) + +glm.fit=glm(mpg01 ~ horsepower + weight + acceleration + displacement,data=train_data,family=binomial) +glm.probs=predict(glm.fit,test_data,type="response") +glm.pred=rep(0,199) +glm.pred[glm.probs>.5]=1 +mean(glm.pred!=test_data$mpg01) + +set.seed(1) +auto <- na.omit(auto) +train_bools <- (auto$year %% 2 == 0) +train_data = auto[train_bools,] +test_data = auto[!train_bools,] + + +train.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[train_bools,] +test.X = cbind(auto$horsepower,auto$displacement,auto$weight,auto$acceleration)[!train_bools,] +train.mpg01 = auto$mpg01[train_bools] + +knn.pred = knn(train.X,test.X,train.mpg01,k=1)