From 13883d0b1c9bbd7c96d382ea30810f4f830d676e Mon Sep 17 00:00:00 2001 From: caes Date: Tue, 24 Jan 2017 22:48:35 -0500 Subject: [PATCH] added answers for hw1 --- hw1/answers | 293 +++++++++++++++++++++++++++++++++++---------- hw1/auto_pairs.png | Bin 0 -> 103524 bytes 2 files changed, 228 insertions(+), 65 deletions(-) create mode 100644 hw1/auto_pairs.png diff --git a/hw1/answers b/hw1/answers index 50c41e1..8abcf15 100644 --- a/hw1/answers +++ b/hw1/answers @@ -1,95 +1,258 @@ -1. For each of parts (a) through (d), indicate whether we would generally expect the performance of a flexible statistical learning method to be better or worse than an inflexible method. Justify your answer. +1. For each of parts (a) through (d), indicate whether we would generally + expect the performance of a flexible statistical learning method to be + better or worse than an inflexible method. Justify your answer. -(a) The sample size n is extremely large, and the number of predic- -tors p is small. - This seems to still depend on how the data are distributed, but generally, I would say a less flexible method will perform better here, given that we have a large number of observations to average over. +(a) The sample size n is extremely large, and the number of predic- tors p +is small. -(b) The number of predictors p is extremely large, and the number -of observations n is small. - We might want a more flexible method in this case, since the data are sparse and we want a model that responds smoothly to possible large changes along and across predictors. + This seems to still depend on how the data are distributed, but + generally, I would say a less flexible method will perform better here, + given that we have a large number of observations to average over. -(c) The relationship between the predictors and response is highly -non-linear. - A more-flexible will clearly be expected to have better performance here, as it will reflect the non-linear nature of the real function. -(d) The variance of the error terms is extremely -high. - A less-flexible function will likely respond better here, because the bias-variance trade-off is concerned with nuanced differences that are overwhelmed in a high-ε situation. The variance of f̂ and the bias of f̂ are insignificant compared to the variance of the error ε, so we don't gain predictability by attempting to reduce them. +(b) The number of predictors p is extremely large, and the number of +observations n is small. + + We might want a more flexible method in this case, since the data are + sparse and we want a model that responds smoothly to possible large + changes along and across predictors. + +(c) The relationship between the predictors and response is highly non- +linear. + + A more-flexible model will clearly be expected to have better + performance here, as it will reflect the non-linear nature of the real + function. + +(d) The variance of the error terms is extremely high. + + A less-flexible function will likely respond better here, because the + bias-variance trade-off is concerned with nuanced differences that are + overwhelmed in a high-ε situation. The variance of f̂ and the bias of + f̂ are insignificant compared to the variance of the error ε, so we + don't gain predictability by attempting to reduce them. +2. Explain whether each scenario is a classification or regression problem, + and indicate whether we are most interested in inference or prediction. + Finally, provide n and p. -2. Explain whether each scenario is a classification or regression problem, and indicate whether we are most interested in inference or prediction. Finally, provide n and p. +(a) We collect a set of data on the top 500 firms in the US. For each firm +we record profit, number of employees, industry and the CEO salary. We are +interested in understanding which factors affect CEO salary. -(a) We collect a set of data on the top 500 firms in the US. For each -firm we record profit, number of employees, industry and the -CEO salary. We are interested in understanding which factors -affect CEO salary. p = 4 n = 500 - This is a regression problem, as we're predicting numerical values using numerical values. Prediction is interesting here, because we want to be able to predict CEO salary as a function of the predictors we find significant of the 4 available. + This is a regression problem, as we're predicting + numerical values using numerical values. Prediction is interesting + here, because we want to be able to predict CEO salary as a function of + the predictors we find significant of the 4 available. + +(b) We are considering launching a new product and wish to know whether it +will be a success or a failure. We collect data on 20 similar products that +were previously launched. For each prod- uct we have recorded whether it +was a success or failure, price charged for the product, marketing budget, +competition price, and ten other variables. -(b) We are considering launching a new product and wish to know -whether it will be a success or a failure. We collect data on 20 -similar products that were previously launched. For each prod- -uct we have recorded whether it was a success or failure, price -charged for the product, marketing budget, competition price, -and ten other variables. p=14 n=20 - Another prediction problem, because we're interested in a predicted outcome -- success or failure -- as a function of the various predictors. This could be considered semi-categorical, since at least one predictor has a classification nature, but I would say it is a classification problem because the goal is to predict a class: failure or success. + Another prediction problem, because we're interested in a + predicted outcome -- success or failure -- as a function of the various + predictors. This could be considered semi-categorical, since at least + one predictor has a classification nature, but I would say it is a + classification problem because the goal is to predict a class: failure + or success. (c) We are interesting in predicting the % change in the US dollar in -relation to the weekly changes in the world stock markets. Hence -we collect weekly data for all of 2012. For each week we record -the % change in the dollar, the % change in the US market, -the % change in the British market, and the % change in the -German market. +relation to the weekly changes in the world stock markets. Hence we collect +weekly data for all of 2012. For each week we record the % change in the +dollar, the % change in the US market, the % change in the British market, +and the % change in the German market. + n=52 p=4 - A clear regression setting, but this is an inference problem, not a prediction problem. With inference, we have a starting place and attempt to predict the change in a variable as a function of other observed rates: in this case, we have a known US dollar price, and we want to predict how it will change given rate shifts in other markets, so inference clearly applies. + A clear regression setting, but this is an inference problem, + not a prediction problem. With inference, we have a starting place and + attempt to predict the change in a variable as a function of other + observed rates: in this case, we have a known US dollar price, and we + want to predict how it will change given rate shifts in other markets, + so inference clearly applies. -4. You will now think of some real-life applications for statistical learning. +4. You will now think of some real-life applications for statistical + learning. -(a) Describe three real-life applications in which classification might be useful. Describe the response, as well as the predictors. Is the goal of each application inference or prediction? Explain your -answer. - Image identification. The predictors could be things like "distribution of greyscale intensity", "distribution of colors", and any number of clever things I'm sure machine learning professionals have thought up. The response is the most probably classification. This is a prediction. - Galactic classification. Really this is very similar to general image identification, but we classify galaxies using very specific spectral bands for the predictors that involve light intensity, but then we also look at how strong particular spikes or dips in the spectrum are, so we might have predictors for "emission line strength" for several spectral features. The response is the most likely galactic classification. This is a prediction. - Speech recognition. The predictors would perhaps be the audio spectrum, with the response being the word the audio spectrum corresponds to. This would predict the most likely word for the audio received. +(a) Describe three real-life applications in which classification might be +useful. Describe the response, as well as the predictors. Is the goal of +each application inference or prediction? Explain your answer. -(b) Describe three real-life applications in which regression might -be useful. Describe the response, as well as the predictors. Is the -goal of each application inference or prediction? Explain your -answer. - Marketing data is obvious. The predictor is perhaps how much was spent on a certain type of marketing, or a few types of marketing -- this is now sounding like the example from the book. The response is an amount sold for the same fiscal period. You could use inference or prediction here: inference to how how many addition sales you might add by spending marketing funds, or prediction by asking just "how many sales did we see when we spent X amount on marketing?" - I want to try to use this for my project: understanding the time delay, or reverberation, of a dynamic spectral feature compared against a similarly dynamic reference feature. 2 predictors, line-of-sight velocity and time delay, give a response of light intensity. Our task is to prediction the light intensity as a function of these predictors. This is actually a vanguard question in astrophysics, and I'll bet somebody is already trying to do this! - Maybe something municipal. I could predict the taxable income of a city based on a number of predictors, like availability of mass transit or highways, demographics, resources, distance to neighbouring cities, and all kinds of things, then the response would continue to just be taxable income given all of these inputs. Perhaps it would be good to consider an inference questions here, for example: how would my city's taxable change if I increased the availability of public transit? + Image identification. The predictors could be things like "distribution + of greyscale intensity", "distribution of colors", and any number of + clever things I'm sure machine learning professionals have thought up. + The response is the most probably classification. This is a prediction. + + Galactic classification. Really this is very similar to general image + identification, but we classify galaxies using very specific spectral + bands for the predictors that involve light intensity, but then we also + look at how strong particular spikes or dips in the spectrum are, so we + might have predictors for "emission line strength" for several spectral + features. The response is the most likely galactic classification. This + is a prediction. + + Speech recognition. The predictors would perhaps be the audio spectrum, + with the response being the word the audio spectrum corresponds to. + This would predict the most likely word for the audio received. + +(b) Describe three real-life applications in which regression might be +useful. Describe the response, as well as the predictors. Is the goal of +each application inference or prediction? Explain your answer. + + Marketing data is obvious. The predictor is perhaps how much was spent + on a certain type of marketing, or a few types of marketing -- this is + now sounding like the example from the book. The response is an amount + sold for the same fiscal period. You could use inference or prediction + here: inference to how how many addition sales you might add by + spending marketing funds, or prediction by asking just "how many sales + did we see when we spent X amount on marketing?" + + I want to try to use this for my project: understanding the time delay, + or reverberation, of a dynamic spectral feature compared against a + similarly dynamic reference feature. 2 predictors, line-of-sight + velocity and time delay, give a response of light intensity. Our task + is to predict the light intensity as a function of these predictors. + This is actually a vanguard question in astrophysics, and I'll bet + somebody is already trying to do this! + + Maybe something municipal. I could predict the taxable income of a city + based on a number of predictors, like availability of mass transit or + highways, demographics, resources, distance to neighbouring cities, and + all kinds of things, then the response would continue to just be + taxable income given all of these inputs. Perhaps it would be good to + consider an inference questions here, for example: how would my city's + taxable change if I increased the availability of public transit? -(c) Describe three real-life applications in which cluster analysis -might be useful. +(c) Describe three real-life applications in which cluster analysis might +be useful. + Categorizing star type by spectral band strengths. + Plant and animal species identification. + Tracking objects in sensor data. -9. This exercise involves the Auto data set studied in the lab. Make sure that the missing values have been removed from the data. -(a) Which of the predictors are quantitative, and which are quali- -tative? -(b) What is the range of each quantitative predictor? You can an- -swer this using the range() function. -(c) What is the mean and standard deviation of each quantitative -predictor? -(d) Now remove the 10th through 85th observations. What is the -range, mean, and standard deviation of each predictor in the -subset of the data that remains? -(e) Using the full data set, investigate the predictors graphically, -using scatterplots or other tools of your choice. Create some plots -highlighting the relationships among the predictors. Comment -on your findings. -(f) Suppose that we wish to predict gas mileage ( mpg ) on the basis -of the other variables. Do your plots suggest that any of the -other variables might be useful in predicting mpg ? Justify your -answer. \ No newline at end of file +9. This exercise involves the Auto data set studied in the lab. Make sure + that the missing values have been removed from the data. + +(a) Which of the predictors are quantitative, and which are quali- tative? + + mpg, horsepower, weight, acceleration, and displacement are all clearly + quantitative. + + cylinders I think is arguably qualitative because each number of + cylinders defines a somewhat broad class of vehicles. For the years, + the same argument might apply: each year is a class of vehicles. The + origin is clearly qualitative, and so is name. + +(b) What is the range of each quantitative predictor? You can an- swer this +using the range() function. + + $mpg + [1] 9.0 46.6 + + $cylinders + [1] 3 8 + + $displacement + [1] 68 455 + + $horsepower + [1] 46 230 + + $weight + [1] 1613 5140 + + $acceleration + [1] 8.0 24.8 + + $year + [1] 70 82 + +(c) What is the mean and standard deviation of each quantitative predictor? + + $mpg + mu sigma + 23.445918 7.805007 + + $cylinders + mu sigma + 5.471939 1.705783 + + $displacement + mu sigma + 194.412 104.644 + + $horsepower + mu sigma + 104.46939 38.49116 + + $weight + mu sigma + 2977.5842 849.4026 + + $acceleration + mu sigma + 15.541327 2.758864 + + $year + mu sigma + 75.979592 3.683737 + +(d) Now remove the 10th through 85th observations. What is the range, mean, +and standard deviation of each predictor in the subset of the data that +remains? + + $mpg + mu sigma + 24.404430 7.867283 + + $cylinders + mu sigma + 5.373418 1.654179 + + $displacement + mu sigma + 187.24051 99.67837 + + $horsepower + mu sigma + 100.72152 35.70885 + + $weight + mu sigma + 2935.9715 811.3002 + + $acceleration + mu sigma + 15.726899 2.693721 + + $year + mu sigma + 77.145570 3.106217 + + + I've now changed my mind and say that both year and cylinders are + quantitative, since there is plenty of sense about talking about the + mean and std in those predictors for this set of data. + +(e) Using the full data set, investigate the predictors graphically, using +scatterplots or other tools of your choice. Create some plots highlighting +the relationships among the predictors. Comment on your findings. + +(f) Suppose that we wish to predict gas mileage ( mpg ) on the basis of the +other variables. Do your plots suggest that any of the other variables +might be useful in predicting mpg ? Justify your answer. + diff --git a/hw1/auto_pairs.png b/hw1/auto_pairs.png new file mode 100644 index 0000000000000000000000000000000000000000..25757d5d411adfbf8ec17dd6146a747cfad85c48 GIT binary patch literal 103524 zcmb@tWpLfV5-w;wrekJiW{8;?VvL!YIWc2=%*@Po?8MA5+sDkz%*@Q*+;`vGeN_v; zRw}9W^-Q%!s-Brv>zfD_B^hKy0z?Q12xK`~Ni_%vXb=PhR4e>H1w_fm!s9;yVPK+TS z_|qXEaGkSTRR#YQK$$AYNJ4yu#f^3SLkLdN(%&H<;Q0R)j6j6H%aH#^=`5@BPl<%_ zp96Ac-T&=BN_S^5D+ma@9}p0LK!^*&zSw^^fsm6FQ}mzYOiMO9VRtFVwRvXJiI9Q}r54bNm;}hJvHb|BL@?=zrk<9}U~iXp0Ud zYV)u|%*k|p$=nn-^C1I!XQrwhduEHycbZGM7gTcQ*|6i zC(d0p^dXu4*6JvQ@MZ*MbuhDTd))bK&Nmx5xCtJA+@08XOLT3PDzZbz6m(MkUxpl9 z)t=vD*Wi)<7=2ZtI99M)%buOZ5c$4(qH#$dXgInB3OggV3HQH5OxZuL?P{$ogqtZZ zwXxwdi!En|CdS)U;4tTjO#OYeho`neqle3p+QrFK?9VP1QOueX-9OAH#OwlUSS;W8 z2GNl!HXuJ8gy*4z_0bt-)c<1Gu`h#Ktf@SEq!SJM(1+qSmS#WXh?Vd=e6OK&4(|@< z87ITppWQ#Am_3I{UafZ~kxsV8@V*f0r~_DMrIxM6yoPopHzDtL}%fHmQc1CRDl+$JKg#k=D~3U*2lU*A2lw%u>~(qMPD zBhjI@)23q)^LT!?A-xPp_00sc=*8qU>h`#rFM)r?uaC%`H#Qee5(ClKK}pZ^Unbj zTX$Il%BLuVBE(;qH#c)_-|k$(ufLg@@X$Oz4}~iz{v0v}bxP}J&ejV&p*n=SULR%B z;VM`CyEsd9RIo8ITMF?>>H#q|aW$uckf?02l%_p5zeD07iBRI-KFLnS#X>P4odx$yU@8lp%q3(-|D9D?Lo zbx@ZHuKWJKPRf>U!q#gX3jX&n08XIg|E~C41qx>*O0(;pZRBx;l#zf`mY?KG29z1N z{pNl1zrrrBy8DHB+EY?8h)0T*`i;WUm|F2m3d;R;lPSl4_KeYmq3rbW{y84sf< z1R3&iUlTii4}Gg5q!7-Xz}n=N^mQJ=+CzMGP>{^Uq<%wm4Kq+VPX2=$UFk`HDR^%4 z$iX|Wo54-b^o+B1e0N+vS*cgpLt}})rZ;)|x4-k@jEMvZ+Xr#& zzE~O29Fi4SG#Q;3S2%yv*2otAtdDLbkKDQSe`exwwZUtAynpy8Yeu3Qv9a?e)mC(z z4f6fEr5Cm}Wowo`5F8NBX>w;VO)5+7GJKtV>%4DqMptQQz(lX+VQ*%%Y|gX%t6k*f z_m1S|LSblXdSyL=@J5>@QrbVIH_65BNzVMG@`vI3p_8%c)uy>X&PPlILO>jDvFk`c zk{APdG4E`DzFlcFny(TM$jFQ5c9L|}5*zv=TO@`KSOre6AbWlo`M7P(2J4cFrY7`k zC*j*c_NKH+ZNNJClaZVSq;LcN{(&INn-*y>6nbjx1vatNwqe4Y9>P=^&|$G zR^RL`YltL^LG9r)(+aP@GQcTP6)ov9ab6;-T+ziR$~=4kW-a_S)+~(T#6U5pA*in? zP=_UIBo<+pXF|CP_<(9Tyr8T>08$#8b-{zbm=dEvn7|0xBvtTUvlvuABE7T*vDH;= z--Dj07imZ4^@C~^1=+h6zIx`VOW7$cI&gu~_d)g$Vv%fY3Hy%%{@6<4yYbf+SjuGtVArxoRUQjv))QHCJ0`Gc#^9{uhi-uOT+hiA z%(-7J-g8f2EXPvmJx^aX19lOqClu53S8Y@ zus6LtJDLy8S8^#;Rbg`z%|W*1lcxkAWNL{t1ux6m?S2-QVNeZj=?J<*xkDJ>sZQRB zAhpk|i}dv@IT)H-T}f(!N`C}_50ks1@rye0#(mhU9PKWxaIWMbi7()utp$IM+(Dsc zuy|o`Ea7?C1iBd}+%eh~dtgQ8jj+rJAgQpa_aen{ee_Bmy_rd zbCj_hw6|8d*^Ak~j;CVmP0Czo`B=R@w0{+y4d$?Ugeac{e&M-Z6;gO^4r8o9e!{p! zvLPp4&A8rT-D>2o(H=Bn%s5`&nF#->;K(fR~)sC|KMkkUxgCJb2|Fbm#UagO4?~ z_2V9dEMDE8t7|RG2vYc%7|HTsgm}=0qAS1fpe>9uzWSEYOL%m;JY`OtPk#Jd?*V@&$XgV;cxsxD3=>Xg5S_Hj2S6gJUq1{^imEUC6_iuF> z{KcjdgUdgE-h&xXztOACds;>ZD4=P32HX0d5or5SWC(M(#(W^>0=nTqLpvV0ByCwN z0K()*hHh%XX(^6$jibxK&vVf}InE)5vt6hs#MM|KJj8u3`(L-PFzT8(ML}+%U>w(E zkGdBRcdeDTldeY{^ zPFVKx1)BpUau8&thorw1J$4jw>-7sw4XScd(QdG#;=OsHG)yv~aP91cfaxR#L z{RGzxAjmR+`@w4t*OH6~x`mQdE6p6kd8X zNu@lDsbR>l*B6ijo^)E-oE&qofZN~0uYj8>^^_(%`lMaKEjjpG*CBUi5oPY2Nnnn4 zxUFX|68LJuk0*Fwy7z0tl`MJEQe};GNjZrbc|6y`pqosq*OOC948!{sr66<)$pW4} zE1)z7th>c;aB(wCm6n>lh@(>(4zb@Xmrh0r!df?XQnguIVln=!@j=p6H)whlV}g9w z!TssxEX5MQo6Y#zKT*o}ky@fJ$#4bjj{Gn&#F$m7)js?#x*U$(fuSoz4|OHdZ*0I# z)711X4tv^n^)H?V=(yKNpudwdx8Xd82xsBhh4ytQP=P!^*<^-(0D*Y5W>NWl>pW*b zK!U0RI&|`O;V7hEt2xQ#xCaZ9A}xs7PJST3;_`_VdH)=tL{b7>FudzJ0v-JHgQL0h zGhC}e|L8LAI_l)n^=A{dtP~|_Ihcc^B%N%UYi}S%b=v_BKNAL&vJLcaK+j%pqF)G^ z8-9BRca-B8*5^qww@)Izm|qh$vw}FCgzxCnl^i1?J^b@ILYp_P$%m$7KArF?7_99p zN09soj3|^GEQdL@3CbqgE2i;Wd3TVC;I3GyYk?%g#)^at{4CB!au!B9cpxKXCLZai zm)O4VjR<9fFq>U5e&1(?jT6k|=-;8dUlKN+`60am%L_?(4QpiiQ={eqVbeC+#4Su}^{+Jd5+|Qfi2?0-AL3#qYHg*oS5^OWQ%^@`y!V5-T4XcPIgg!IjZC{unl z>rxO>t$La?ple&?%i{aKSie@*(P11px$1LYtKP#z!fukeGnD&whD*{c!vj_flh}PW z6fMIjNl*oWFNy>@zJQmI$L=M&B-t#?D&Ji=<$?Lo^f~HEMU4?I?%%~GS!r)KG!^^Y(u@a<^7|JZOMwh`t$ri47qKwPY7{+Y|A-lt_do2 z>W%SEw{L8C)4GC8*PmDer%LN1bQ6ic|hn2Ps{GQas)qMFBcj+co*#1E^8V; zoePIvdE>|;K=j6AfqHxJ`<7(tZZktMISM20hi6JJY*{XM6v@cMMNpBJz}46lyN=yv zBH!qsevg~K-r9c*1Px5-eR_U&u|2VpaLg$kKA%2;5hns(E80{hxp<6kvSC`SQRDBiV51 z*Y6yyk(uFQ5j0EXC00A(Yyc-yL05mZlQJ`pSXbKsEDFf10t?{lZ=lnE)e#dX`y86D>8JW?^kG$ z2YNcf-j_5K)hLN$GDH@oGCeN#bT}vfFsacn61>1S!C(YWff?UEv#Un&+I`&eJyiC} z4mcokZh>sY^h-@^O{$RKw-WR&_xQYwWR#)nTdCYZ6+{P zVsq8<3noP2=+H_IR}U#%$h3jTK~S42O_t`bN}l9p6SEzm85}W2?Fbj#Ipd#^B2V{Y zm@JV#;^2?P`4llr0Qt0~%DI9oB5)($ts+#g{xW5a(7#bM(E_1H3fb(6*9`_S`))2E1Ki!SY{o*>#jPqkww_-o?vCIS zANfUv7t}67ZBj;eM#$S&#L5tWbN+XkT;CN~Wu%z!C(Oa9bn9<94M~OW3oSAb!#n6v zRl)J+FWH9MfiSj%#hJuGWm zgKsh^w-yX zLiq9_1Iy6A;4=AYqx17ykPsgv1-NH}3n?tKr8&N)K>#P!w#%8dGz8_4xpvt-F|hA2 z31=fm*%AwHOX(v-BWnrA$0@6KIGd3Z^rKM#)k1==QRK~TwZQjb*sG7a@LxY1qVdlz zv3~eZ%T*9a2f?q4@StN8QVhs>xXQuMM;XVjqx`-FKr-xncG||-X?2It{Wi5N3F&~h zfEo*s2p!X4dVux!{7cU|XK{N?Hs&1q2vV?lu2{xa+c9&Qnap>+fa;ExSq?UUYP~Ja z;pUz>yFHa%!3RD;@+B=wIiNQpnK6o5AaWL&05@RaFGV2qt__q(Az3eh)n5%$*3@z{ zz#m@GE4^9Bex{;14ckq=Yb#v7*}g^fz+76>O_i4U0byxqw&Jh?j`H502amLP?)?@u zBDN-q;N`&sec@2SKZCByf&Lmk`G_#w)2*JVvAYK0&54VhI2dpJkR`EP%StQ}Way`$ zdzOvUbDjK8Sp|Q#(fYedsdSO#PGQM{^l1E%j}57=WlZg1&7X2krKx7(xeZbumd8h` zQAX4(*>{}H3AOqHW-=%z5X^;6Vz>JN^c`#p2kODaWs&Vq)>tcunug%prKhp$q;wxqnlx-($s|wb?hKJ|rph z>BedC+YSkzj>gpw9Y+WN)*D-V5ja=$m` z_{6kgkMG9=(=_P?-Lz=hu&HQlsg{3sz`#XGvxTqs%B8ck;tl!I$5ov|0$4-XtqFz1 z)t5(YtenaA`5@UtCEDO+k-ol@33?LgWJSdE>FMM^83&}si|H_!^-o)Juu-r8iP_p? z8j47xO~WV6!kAQjB&Svc1ADsuuzOC7EODwgaT1(3T5C!DGzJQIc4U2`H_X2T42wLz z(9-~j7xd%!C5@;9*Ek3nhDAD`FjCv4bQI8rcQZon5pXM4VyCAb$hMecgwfnW{E@O2 z;Z$b=snMx?V+_X$e5?JII&Oi9u{IIf1*iQt90{2p>E2Hey$emKh-?YKSA0h{ROE8G zy?KGVY(FKz>y1X>NAD8uQXR=6LaC6A@zv@Gbv3g3KJGN$X%p)evOAEl!w_|1uyaVB z2Kgs%Nr6v_M`e9Q1m0Xx$nI`0`Wq9Hhy<}qFV?Uzgee<5E!+Ck4T^dKz0}Va-2e?+ zAa@zH4?q@&q$n-;GrZFg0>nkvfPUwn>kZ+Vwk8*JW}RjFcYK@%j3-h96c zqO`!=5{t7lDj8=HtajT(qNQ{Lk}x6PnA`@o4h|=c=dFN;r{mZ-!ATRN) z(7k+JpE;>;a=3zVi?z%}*Yj!&t~pY&d|d78?6cTyu-n`u46v}Dm6p8y+TC+c<9G=z0tPcA6oV{v8d~yFZZtR8hjvc0vx&b8OI2tsK!ws6gG=!l=sO zWAYpu{ms4&EYlqn<1$FLtu|~o*=B>pi7Sclps@9$)09_XSA#U`&>bD>nx*e{3tgar zGUzw{m#M;8qDAIDo5p0kEr2DboyLN^`X;%gt&5{e--C&lP}}A}4=Yzw&zBAMy_6VG z@>1|l2Sal-x3D}e!A=PM{=x^yBJqn%sST;eTXk?^b%{26CK1{aGvAmcva!OYQ5)yyCE) z_Do)LbZdAph;H9eA+oZr8Z0A3GUJN$5NgL&kJpZyCC0L410FE|##@h|D7+17LQC>I zeWtm6ctAJB&ce4uzUs9|Mgf#zG$js%`5hL)1w*WxF-zqO&Bu^tqnb1%kw5kc-hUbI zRpVU$u#aeIHM4XMq}mq!eiz-CXL07Rnkp)US*ZN-326^$Pk^d)ONmh#swmTdB{J7z zKlsb=Snt)taC?Sf)EOra?0*!rWG8M$9}|ASLzDF{UO?HIH%c_?bNDvmVR}Y(sag2^ zeP{tG@0;Zneq_d5{?G`-9BPNy96LNw#l;QffKqF6-Lf>`k90-uDED~>tlWxv*F2># z#!SiXxTRudH4x@`<&}Ib*aEM^KMx(6 zo$Vf^)7hw+%#Y-B2mg>-hY-6%;0n@unLgjNnK-D;R_r#8z@|6FA@^~aQ=*DmlzY}l zTqYRa^4ST|_JuEfAJHxK@m#jole58Z+Lrpm@q}IAi;*Ou#zDdo=`T*5Ez*RPL$0|q z@9H1XLW(7v{D&LiWV(K_xo@d6dB8|M$CPzsh^P-+yXyKGEKO8+yXT?dY-uv9=KX@V z*X6)}+uya9B9t!9^p(8N&{dtmQaWV4*!nGe!|ij+Omn_?Gd*{7UE!QY99U<@Fl7>u zWLksx-g%=x}GhvE|v_<9{x#(1kM1e18b{HFdf!$HEt6 zu@o8~{pr9_0+i*$e#J*TSf^--R)n?TvAdawGgeuclWi+eIbmEcq*sU4Uhx$fIOiNF zgp*876fAa%uSdKGV4ZhhO2R<5m639tCm{d_c$fUN)ad5zf>Xa5(E}&!X0x}*rrU3h z*W203WqyVF1>?oOhuNn!W5^YouyZusYr2_f$1V&SUlID)SWXFFD+VjcoO$8NC5Jwo zO*Sg?@Q2f3za!33na0mcoHClGI5+SiCueDVB$iC%$LkUmQDS9Y5QtX@ertj+?>G~p z=XiooHRT(K3$&|)?G~!k-X1^VQeT3zV-&Z8MhBkQ>XY*_p^%AzM5VxVNNXqvgxo(* z<=2_~d?GAGj)EfJrMARxd9Vs0hb({57(E)4MqOYbQLY4}tN2C3W&RtRB1;AQgM@ka zS`(3P4bg)>V6%sWR#X78{*^(WNYqyi&;i(dciN+}Js(ayB=~vlRLb z(CYWZI4!yxF1Cd_vo#WS5LXAQSzHkjJ)TLg!bJ_~#2Mi9IFWRI(3vL? z9`v5dzrU5n=t}vja9KP=R!@=AM}UaKAl{W6=8p~uO|~5{#5@3qjWJd+(tm_hmUA8v zCl&QOh{4oHR+O;wD~y(#l9ae)yCs&SXpv~ql_%>K5dXzE07A2H5VzTkfqSw1ng9E* zE}X5do1SnOlUL&(qw#BpBOhn|kjqbeK>5_Z%WdkO%;eIo=ZbIZurKRNnOXgUcgFj$ zZx86R1D%^UL9jP^y^t>Wv|`?l^&2r#bzPq81DUX};@B3AAe+p~2V_c$^fLP3>I@P~ zR@lKp@few1%FcLN_yHg5s#+CJtvbHFDE#1i2)ENA>%@n#-j!&cuoreo)WX_t8O^b8 zL2hPLLKBaU6th0(oX>Bc-BI<%4Xfvi4Yjr&ry`=wnLOsM?}PkDnb*dB?bff>SpW}9 z=rh3*{5#f-H~gT`uRVu_^J{&&l1`3d4y#82pJ6Xx!7^`YnMv(W{(*@<2R`$vyV<{$ zYclZkAw7pgvs^wBx0u}F#cEf7Z-7^k>Y|F0C1h$}V!l7Tt!Af-xd&{#@IL_Roc%q| z=i4b9Qftz6hn4qcC}=>@mcxK`S_Y~jY34G846#t0-Sn5Lp%MEItOI&A4T&qSA~tPz z7w(Y-Kx!ly>(5%5+FzGPzU_{1FGM;!5viLNH>_3m>_Nf_FJ^=MDCuLkxJIGUb%L`- zuSPU%aj6M=hQAJjg9Tt7)Uwc4(NmA&wpwxq!S_ox*3`8=7IbEB7~z_>*qZWmJI_N~~KAJQ?WZ>)^^B) z)X-Tkv)1t*2o5jMZfwJ*8q0y{Jlr_7V+aopSij>7KfM4l6p8ym!qc4YY7dv8iT(#Z z)5Ie%e4HF~63;54m`iN-N4GUv5oanFp^kZ07E+b=Wvn`Ya_VTN?G#TgN7B}BOCn)$ zr4Js-U<32!>Ao*GObZ|3Jfx`(n^{R#R}27FX;+J&-{?1UQ)^=JgG=8CqQv~#teUui z$zS>XmtlzTe_basVH{;Ed8*ZLpL5syynrj{;!Y3zek=nL9EI5&>TyA9P2}Xk>O|LQ zK7{B5YpD4vJDxPfyQPlz!T=|>1I;2Udo%XH%dqE-dfpZXQ?x^lD$gBJhyq~;MM9!T zHpU<2diOlQGnPP4_UYSeGi`bQ9;6MT2=-yZGMO*nnT z%`W5K_|>fYavV=QQGfZQOoL0PjL{s&lY${7h1zKQO;yCSafHa5tTp~BZj;4pA)4T0 zG}+S$Jm+g|z~n>N$mNL1c9W@Ma5i&8ys`5dQ+t3kwfI5zI^bwr`NZ_^BRG_@bbpcN z2?`cIr?R6D*P7g;%-0tx-raXMuY#6wN>#ap*Nh`Q@?7#+6>w9@^x=mt=PZqz2lxWh z&$k{QkUM6ZWV=P&2S)mHcd78yojN1Bwu5_;Fg49_zi%L2Y;vxk=DAD>Gn%r|wVR^t zO^SO7II~YRV{(DTtlblet71ouck$$gCy411!jG#vIC`Dsz=r3S z%Q8yAwOpp=vT6R29wLNNW^Czt^Dm2xkR4r=J~PjjHgIcp4pT z3V3%PzuN-Ed+KY_Ze6k@zq;QQu-h0V{kii%pzyZc`1>u=n$*;~`l^u?y3)&Q=-^rh z?%e~AsMwg!fpLEl1=uNajpv)e1e$G$G?^~Z(liZvyw)U~L|0N|QN>un{4E#A^FV_y z+Aob*mCZXp+;aCEA;)UUZVg9E7QTwUvo-2)Ae|x=9!ukc|LXQG=N9tHe0ixqjsIpm z7*D7MDU6XE9LRt2FDt>0_h!I=JSMfJNHl(zf8H6*I<|0Pz7(7oA?D|(u(*kcEM&|j zVa|7lrM{}UJ4Nv%AL?{-6mh`|QWKY`P5lU*=imgPNk!oG;)FyKO#)aoZE!kFhfSr9 z2*1KyZ_rZIsym*Y^ukI1Yc%#tLs?~wA^qo*QS z-}jnQz3H>;SumBWu!xr5_={OT`HDETLAe~#^|*)o)ixgTo$uefO z2PkRFV}w5P#ZP||5%L`I^VUD`SE6wi=*O2SpAx4avn1tK8q!27wyz|S%l`Xq8y^!n zhf^uayhEYE^ZT77eh|_GwP9T(__1fI`0Wh-lafywRfbN!otMEKw(#ZBH(m01l(DMCA1y zz5+)~S>!c)Nji!V%8;SO9Bc!9M`v;a36MCf<%S){^o>6A?%hb0t+QR_Ld723<)x0M z=HR?+<(#R{7)N9A^kMZbIQFnQZ9Ou%3!6BXdh~8f^NDX>wQti=BH{LN$hpu87hLk9 zua^A14#~EDkdZEWo}d1EKLKBOFZ+lwZ4HQFu`m4uB{?{biu0y5s|>DRn?~?9(^Mf{ zfAgh#V3Ap*9eicL|Dp0c@G!N|48+iwv#O}H2x7LK1&L>|Ow+kr_x0#%mL)FHAQZsxF;~O_xtDHJsv9>sc3CCwqeU<8L1}AU*6Xj4zlj%QKG8;3kz3NWmRcNUT>|>D`2A+zVZ1lQ@4xln_`(|fG{%^w@zpC6Gl#*NE;4ka%oXO zFS?Tcef74th5FYIo}$t^nzT|C_xo{A7SoDAUEOS5+wUvMd0l#MiFu7H_eHrl$GGb~ zYUY9{v#+0?9s?#W-g zHp_8(Eqr(h;UDpjQ!UU!o#r`^=s8g*ib zcounIZ-6&%i=mQYLa;+|TVlqvUH6!94Tg|baCqjIo?IK#Vp^{~W}txqB+@!4UMJ`k z)+o0I#xt6a4RnA`FHDqOp64xb{iD>%Nb^z>2HSSA|DI61dMDR`;TI?{cE^JpR-x=q zrqQXbySwM<@13;6`LOhUM8A{cLJ%(OtOrTX-F0br>QdZS3l}zfh(sbd(w9|9|C7{X z%Ln9grlsf3WXZ7Wt`A*~xl=AzS}{P36M!}3<^21h+hM8F{PgVWSLTIF=*jG=uiZ8U z@S^Li+Mt0rVk9&(*n;A-LKimvp?wK^!9nT}Sjs=#g2DN7-5%_?EMtdQ4pMkY{wr5K zMPpRu_B~8-ZsA~Vo1baX_jUr6#JI%h)02Z`!h|;DaXV+YbpmTBKhYq)4q)0#^{0R!?$86ror%mW!~9F}y8Dk(ti-(j!| zV|79eh^d9~)6?4RK20V%QGPA8%T1XeuB3;oJTc6tqKo8HlhIh3rU32hHaJy5|+18&D_dj2?u?H-#8l97Nep_|LEij=^sNclL z;5P*~MM_kT4pNQg3-&~;ReY#I+cjJ>5wg&@t2i=HTbrsFd48qOEygoH>(v`@-$g{M z&gc|rp1!C`u8=UisqLH85rh*FpJiTKjIFDaz1wF?b;zSIw+j1qM{42R%6&>#I$(^n zWwEHiJCO2h+I|$|$HAHqlhn-N>OBK+$da`M-c&mQy>@=?X#v<&9M)Ec(7$L5cdz>wvsUa*<#TnEn1J^6D zlh8+_63wQ9_5^*bTRL2J`@ZR(*{LyzVS+NzX)-rLfVQpyw)8@t{gsR7C5o8JYrR=c zSl-KMsvcJ|4~`cVz2DLXGQXB(Cz?j8S+J?(a4*}N)=)9KT%bAr?B;djXcl~SDi1+H zNV9bsEW6n%-+si+#3M>DB?wz$HEj54p?RM`G~A-m#+_JfRIXv-(Zb?DX-8+O#|QwThA#O zfoAy|pzoM;GpVkeHmN>I6+wX#%zlI9RX50^O?r@8t|i8}|<*J?cMq*9J49X%Xg8Bk*RE=s>~i-nLHr9K zwcFyBT_XZNvKHr0o&T`aKhgg;PWu1gtp9KL|AnJoZF%*P%r$}{(f4--zxG;k%{Nqg{jliE*^++<#&e?K<|K=<>nO4zgjoOxDZ~R*9Dr zV|mb|ArGNxL-4U!q1ycMk2{I z4nIZG2oPPb^an1ejcf1R8COG!UYc}r4f|;nw_Uv1d+l72W}vEubZ#%`88{WZO&H&v zlqOI2`lS?&EZYWw)#PFw-awogo_<4w-Ioxs|Fe0OM@14LsSa&V`u-Q=8$2smx3MAL zC0k4Wp(vr&?@d~Em_l@=HZwIHD+U+kPdYYOs$Q9v=Og&UgrWM~gw_GiHaqx4Wdm_Q z_^K<-G8Gk=Au&ljq+Jdk{yprka{Cn2WAxV!1v%AjP>f$PGT1KCZ)JS*9J1F8^_F&) zq@>>T;W)Si29?ZlGMo?IqE}pEB68<&T*XFDf~ix?^Ie9e2yxNx0d)H1fW9>1mXX@;J(h z4)iuRU($Dxt7@Zk(-7#cURJu`!c_KIWtSB=3(- z&g$yWK=u9C&3hIyc!FhoTuXg=tTfqXEnfi2HavtqcwBuO20$gLR5rjNc{1!RGH}HW zpg@8D!|4(o;C5}y8tZZ<20QNFQfHI<6Ap$itfUJiaeeD zBSm~~P1zX@ElU$9=z?OIz!gN)+BERVn3VXpNJOb#vR{_29co+8qD~I?7iGij)-Gu@ z`L4v>9x*BMP~fPl)K#1EbyFC2s4udJllV7DaOv?DmAaLMIqRJ7r2tpJPhH2Anr71O z9zVuULmSUCRbPI$5TnK;tHW%ju?RYb(eYN6qL3r`^HG3Ama(m?8Xj2ZUm zP4Ui&5U>*s<)VxLbfJJYErhY1@RG!@9G2TWf*mLJ&?I`JZ;}=QM}}t=p)(6IT&-J~ zfTs>A=ieGNZKIy9{V5xktozG9>MO7cI2FIzxkMpil~s9DqioThU(kF$dZ@3q8OM(I z!zQjrvg!GYV|J#N_}|omID)>E&Bq3^HZC3;h2TroX`ZGQJKMPRzIp~R3k(2cQz^TUveEI-m{r-(H{~_JynxpYC*#28l@Q-%C^c^UE$~~IwbFOp~%Yse8 zc&y;_Ut0by$I#Mdi{?t|yh2n68lRud`WGBO>R|22GJ z8gKExQ~CdI-2Q3&v6usRNP)N9KR$1rUy6i&9m)$81=xv^;`-1m+yekv67GK5#Uy_T zds1m!hBTM}c7hNIfHvdrm>iwdcn5BOtoA0c@a+xG8+Um(Xy;b{us!i1Dd;VuRbP#42>fQR?G%E%+U@PkOW;z|O`ZC@ne+$ldj~!H zQgGG#!7rQS%_Ff9;6Rf4BvlW-~k9# zH)L8Ahg@WrqOQWCf&k(-IY{QIlLkX|l7D}BAQ8%mWCvR7(M-(8j+cY&cg?qXgG)`x z)o#%wb7fFnkYM9A#JyZV&5b|O@$_-$$5E~2-oQ(?^m72YTW7u3xdTJ^14{kC1lUm6 zsh|t9tK?2)=`WJ#;|}Oz?yXbMB6(&hl?8U%NL~XVmM!XqV3Crctx*Va4&&|NL2GuN%hltU1b zvG^dqAkrd!QUbK)HLrBPwK6*cOr%#He(pXEfZo>jyHbHb7uqGN-5qec3W?L3dC33# zJ*8zUplWJQ{VoE|K)> zl<7bPHF(VprO2GOnzb+`rSt^1l3_B9W+7WX0%eTv#_(vyuFJeUtyi4k*`Vo1;sVs;LTfcMEw_wbV#SFL1y3%Gt=kS;izebd^ zcu%dza%w{_97csCiJ?Xo#oZV>!w@`^6&A6xTg%+V!dZ|n!C70x%X|F_{}K?xJ?9#= zh%wIDp8&A~U0$2{ZE*Hqj$=CS<$H(v3P{C>YoA2glB6T0M0AZ**`px(rLqHBwcDy>;{uI6+UP?2$k;BE z<4l=ar!y(^FXDUJ?}||zo#8*8#=moX(A`G7WVO8cOL$qIX+1o$q1>}LsLjyYN2{yzvYca1F`?k0S9P|GzW#cikn+CQ04%JdrA6KC^3u_LYZP?LJ z1G>v|*kQ8cja4YV4dP`JN&aSv!rre%1JU+-cKFAKZF+`~*h{A)t@KPm4xFsT|2;t+ z{qH#MjYnj)_?atVWMV`JO5*~+Apwkv;7*6($lX@l1}hcXKbAK zhUV=e3*2%`kYrW!)0_1YTKIzz+c13`xL`WDTnQs&?KT95s!jB@%^x`4(E?zV8`@fA zh#T)x*9)>XOyJpa$;7kQ$A|ou;sE9jAZaQn^tZKFFl$iR&koRXxJH#K-vH~_{D@G zNNX-b@D2kO@Xcot3eEH|*tKbKgD3>JE>A2T6qBy%@7T0$R(WC9^cenJbwb#aVd$^0|sLz)+J1s(T%j0jFfgQG&*L zKRa6faV3Td@~8i>S%)PuHGJ8|?bu-MJ$lSFQR$pqdTk0xD_;%%ZQD@O(!QXNOWtK{ zs2>tF?tzPQ-2@Y$mTWK{LMsNckuVPG3+@6kNrHN9&I8P&nVz84T zjc>ExMoyEQzNN7pt-DWofoICp?egBg!Q!v@U*OJ;4AFm+~A6{Tlm2ig&UTV3^RrvBV&~qX#6+&)Z?z&>U`?8QoGy zI7yH)J*ljbq?4V%%rUv*He3D|NhpocW6elzwo&q@)h!Ew$uw<@9{O}lItdJLb9UeE z+Nzh#<`|gmTBRJ*FEx`^6&3atVmY2z_qczhfVDiU8sfiB<#r3#UPt_(Vg_<79)%A6 zZg0s9U(XL1E;(R)QcYvyo&QeQ1~{i~EfJW#fA%o>Y~UDrvk2JGUBu5%-s5tdEfraQ5#@bvYRmV`YCqRJ?msd$U^lwd>)!$VXVyvuf16D4Q^}s_9-kl?0=Pg844MiF1 zrIR+=`ucQul3C54uV?!zpi&hcR7m(YC03A;Z=fRVwWwIQq^gv_;1;E!!a^M*Ln2B| zui7f+uL0x6C85;dZ5=AmUpDcJzRmXWQFp>qbU=~(SYyONIFIV(109Hh_gMS{K{0Z0Br-GnpQ?+=_~vKIY9ja!4u!Rpf6niLC1m&lFR`3U zs>2ni0~Tz||1)I$Uoq{O96;|c06yOwW=}ru*N*~h=m{_WBIk#c3lryois{Gd}Don&4Vnwu~+hZ$Kuw)QO17f| zy1jZzD~+lZA>c|OHC3Y#C#UR=NI9hifOt!mg4M}A6RdjjRd!2pfJrAwbYh44NVVI- zRE2Sdy45C!gd;P;@+jy6y8jmsop&YAT1*3JGR95H)RkbTT!O40zwCE{vUx?;3vOg7vWm;rehsF7#Ig_PuQ#eu{% z@Bas9XB8Azv~_E=u?9l0Cb+x1TkzoS?iMsSfyUk4J-7!Cja$&*1czXaOVIp%PW|`c zzTLXdy&u->+H3B$Mvd{!mawt)Qi-@Oh6cDP>bxd9YN3+jpw+gVYG1>idJ!5ERlA=% zs)|sz1b`$bGy)%UWX-;07b^il26-5#@cvwV{^UEYtek0TgSIMj5&8 z$L8g(1b+1IdJQEoSwiW|H*Ok$GXdfaO2$;itUW(Q*Zh4 z(`az6DSxBsU3~4^`U88<+sjE`Tl5z8L&G?mXF`GK!jg~0S%qa}a3#p?@7hph@Ro^P zk5|B6|NK?yGK(NzZ>`uLm)@#hFW>f-e~*r`<$UpZn8M9fjr+m*Z#vo5 z|9qp*B=FBs;C;>E??TnH(e8_!N0odIx)*igCcfg_#FI9+9-qfDLA~x~wVnbY8WUZ6 z;g&y}xD5we>tM%%KYh20Tmt+S&Qxe#p-ArmL~+zhbUCLhqbM_a(8>l^lMNg4x7U}` z`FzJjw&lE+5r=aV|A!}g=I8Ezd-0{Z)#8EAt1mTo)Aw@9h3x#i%YgyU*CQdA-KM(a zoqDhPipn;D97KQxy6ig$AFR){EBxO<_(mnr%kO>@sDE-61bpE8YV-Oe*y3dPy4#E& zKTcoV4cbs>EI*Ot=U8d}<}?qITdJPXoD{O_#Y=@uO3R7)sx4NUoe__y=*IcxdjoQp z(^#w6`{z5cWJz)%TP+jqtdK1tBB%tmBV+AtL)pDW!QuDgU-6`htlAB-2>{=d z$Eo3L%`bQ8nU7l0H`K+o(1>n35C2M%M0ipu1DD1_1lvng%RDpQm&@BKa8E`x(b_jZ z9(MHB8BcCgagt&)a(09{oQBc+g-Kp3t~>?17|Q$WvkuvyVJsm$d^UdcNpJCe7ijrY zcA26VESUt2tSGt@G@jlzH2N`%X&4N*VZnP@NsTjVp?2^))q(l}Yn?u0PB>1PYz2Zx zZ*fWHY=LR<%u+!bD?kS(?umPaXp0mVme#`U=*D3-aM>`j*U%k%FLN=dxa3A_SR}E? z_>X3WY;XhH8#NO2h{0fON`X8`;b%E>3?-<_NIRVFUl9~PV(=KfXix-Oxg`a0A>@>a z_&D>Bqe#x@zE=SSoOSBljC@i!U)LFW0)6A*_L*ngSgboN+e?rkNrhzZqB771C&&j5 zsTBL!nLAmVS|VT!{MbSU#%OXl%+BJ0oI>=E77s;2{lor`>2^xD5~+IdWA%XM0S<_~ znk>9s$F+a7IyL<#9YCpifv)Bg&|-g@c1$xXBI-ZNJC64Ql}Qh3Y4!pfw6;J>2=B@h z7reJ#-;L2=LXqNS=8|FE;oRTWvNVBJ;nNchImUTV-Q`{EPBQAn5fmc0Ld6ARth?4y zqf`^_ew&Xz;ndh)PAgulOm~aG__v+EczQX0j{&>C>z0>Gy=(3JkoyezsSvbi5T&KW z=01w{{)h`e%ztI#ygI?b{TArZaa2KK!CvEi$fTW`DH##<{hNK7qV$mCEoo3vM${fLk`EMXk1 z9$bibA4D2#@$&WT`chm|DPP|aT8j4t*W+G@FMCVo7;avvuSa9s$2F<@KRtoegMj1= z{9bb9zODQR4M9&{Cmzc*=uI$w47DgDOy>Gu6wUu5LFRZ7xLNzFEGm?S66uvmn0n+U zyg{o%E{yrp_ba3!k97MqXhf818D(EcPU`j9#Dr)>6!!2x6~2*-YdijlTDTQXE&nZ5 zgf-nBL8~aA#14*M%H?7`XYyDO2mKQTeuH1mgenUp73*(lmiz{|uAVnhb@og>%n?z# zC=HCLJCamN*C}yjNy{(0jgI`?uzN-VqtVFM1}WJT;@LD6`Rs9*0bW{Cjj(?Bu_Iu> z=cTk(g=84tLP4c+FZV0{P^Y9eGF^A{Mu&a>Fj$*+B3>cPg83cPZFJ`hojk69i+0(H zU%lT|(5{%AGFYsr4_`;{pzIF_N|%Q!f`m`(g8fy?a)xV7xyr!pUP)=E^OHBO^%^hA z1Qwik@_-S80#i!zcEi}fp7Jt@<^Y9#SC{RdgNk~~MvWe_%f`|H?JDwK^KVMJE7%4} z0+J9r=wj^aI0;TZg$J4BpzyY8#g@j-hRDRXGXF=RLr?xoJT_?MXbNOdTqObhg zME^t<_IL+&Sr5jBl{f<>_UM*R|45?<(H}`BF&gE2u$};xY(^`d36Cj38M`Ha5(kS( zMrPuH@|EREiCOpOAv=EIH`MRsA}XXI2=tIGEo< zB$6ynPNzGJZU0QR6ei053y)irz|%xbpLIGTGG`sm-SoZMbTbt7rzY~m3b))x7;CA} zSF;YsCzZcL`vla`GSCkR)tSe193{1c2l26BFM1V7s^__9a>`?Xy5qKm|6pLheU2`0 z#=i1;+vhudlMBKo4>zJ96!Vc;Y&MCTEGm0s^DFjb1Y5@(J{bwHj^=+}T*L?3IBq5@ zu-kqXPw|b+59c6bH~LpfPHJ{Zvg#$+&2#OCNf8RKK+!pVNFH@ts)h^M#ZzuLZM5w$?h^@&G-n4!xmFR6mv62CtLvf;vJ>NdH&0{1gf02 zZ0R+G9x9o18i5z_NE(a}V@#D?_n69EVu~(NlN5_DFg?RXPzbV(5@68mAjb-yck+=K zw#E}ccW*CwS&&JunRrezE0!Rbn)KS)XUv)CAOE#GYlm@9Usv@+rD>(EdPq(~UYyw_ z_RFg}l3p7k%y2#H|F-}D(1zlH(V?$8*p}i=(${*5^K;k^hr`Ar6vQEr*Hc~23hwZl zq$X&A%Y;v0&wJ1PlFvVbh#bg7H3as?v|~4$VH$GzL5q#9d~}T*J*dZF_52@d0EtQq zMzHir_B=k&Alai}?UX2NwZxAXK3PQmCM^T&Ur9`WI~tw7q3gD_JbsSEPL8~BYrnrc zW02k6gcjEIf%Ty7fj2A{CGl@TQ$k$Nt4l)tXQ(xO?RpX~YhV`EUn0XO}L62%#)hvv?kovvOmC(*4 z)qb^eBD<~OrE@R&0`E9?l^vteS~)PN?z1q%^f`tEc4U2BsYG9sjLK^&%0Gvn2l>ig z1(v(^>Jh^iyId=nHzjp3#}Xgps{iw6CP2f1RH*Vtx7xLZY3QI%9!#y0p~3XFM5~kH z0A6i?M0IXjJo*47}HKzAo$B9>w5>UG+yhe-xs;HGJT8+-!tbyo0`2Xb7q`{#U%) zmL|jl9ZH&UN!NN_3%zRg)}UXxtWUyN;NP6=Phn(gzOg9Yb+S8YUp73E!2`%Ck33yu zwwDyUv=|v0G6b91Pd8mesBk3C4nbw#n3bNnmf}Rearijwd)l$6X;1kUVXb0Et-<5y zF3{8;5a34o)#14R1lCiOyR^pjwhjp9Ni$F#F|iMt@6)Qvn@<4O;3n~eXCtav>J6t%wSTyM32^P^e0@9!t@; z>yN`s%+A_PmVV$|NL(Kza2%a|0LaMh&m3GNbc6I>HBoDAWlpB?Jv}+~IKA5g@Z`MY z3c38;_VVuWLtV_P;qNhr zFEiCtJwZ~Bd5|%x>q$WbJej#^GNxvgYlAj}tob#h--DZ)Pyxpn>uzfQsn5C)RP1-5 zzdi(n2No?RJL1we=HJ?XV{mX`MXXOeOb9{NGTgveDf&0p?pK<*zg6?aAk|{F`0m30 zGAFs_%AaqpB~o;W&yB7!oy_dK7`Ny{u}LH~H!ru8u{I8Ddl_`9`er7uf`!fKq# z6NN=uve5#el9Vl}^6C>nK1e0&iYLVvZ)Rq_F}>bggRviH-^vu*%lPDBU8JDk0)@E| z)7A1US4QUm<713Se}KGKo6e1ixrumwH!SnTM60f<{D)8x%K~i(ESJZBb-H0G#&TmO z#h4)Sx$hGOA`)cPTLAs z44*P&v^6i_e)hd84cJdSD?JE6Yv6HS>^`q2^y>=!P3)bAQjaQ9L(m*M{x$5X4IQ-7 z!F9%P5`by?+Xs`~36Pn;geJ}meg&_>t7SMZIwlzFcGmhg`i}o%3SdU4ma}oe?1gJr zZ|vpfkb^koQtgo#whBtyn_^FnGH>9|uaAt}W5UEHrJV?%k;epWICf$(ySCw}Z7FOW zYzNn^K2HUmc|!aABEI%N??TG#o`Yo+T$;K5xG$}JvEl+&kBuyDk=$NFoULS3dBUNh zKMZtc2bR{prE;=M@-2mO=0I{n!CRbm7~QeArIJ|Ryw2!cqRcot0Qo_HZ+hxCw&B&B z-c(kM)l?1olc^20L2TJJ2YYoIn?HEQY)$trdP=t#r}7k!_lAJ?A@h{dW@Ab9mPrbl zEQnL#VlTM^x!mHq|A>oZfV!%5Z8j^sz>I(|4-DY70%;{)Tz_?w0gKgH(dY;6ISf1! zq}P$mRYP}fYk;A3*fJU*x>EqK^7RcDXlXI4bQmBULViLnf(ID0E4z<3Vh!Z#zf{=G zU>KLR!+BQ5_Diw+{PzJ<9_IvQsUp|Mvq7Io;~!40vKh6d+&iHeJx(d3PS$zbE0H6B zKarL`U6iuLbuR<3%Q2=KcK#GMOKe0);p?8sCC3gOWWuc8#C>6Er)V~H;$|?Rvr)m( zKbLOo$8l~62xIFS_Kr`sVse}Snh-kMb|WBJd{eviPfw3CPRnu@x73XFOORCdOM)0D z=-iVATR+}_)>QyI?X~m%AJM7TG`?eM&dyjVgg}-a_Gaq_1-|jqJFN;yMd0zyWHC>IJ z;br?q3p<~>n=2%Dz3%N14Tl{CC;}y|O65p&{|cjncZRd+0O^c+1H{+TyxCEy4sblo zTT9ITga#4UvG|CcYzFkkev#tWVwWV#d>kXNgbl4#Qtw?H)BvC#%Wgpdf6MYL|61Z1GZeF?te?UWpwJK_^+rNr4ZhLh8ubPu3CuOa5IA(6$Bc3`|y{S$=_dm z-*QlAxBINk%I=Bb8pU6VNs&!_pnito<6DJ#p z9BXO(nbq6r6%Ddty-C$~QqG2Sacggb>^W&-9H%`|9tVRO^eHlUO<7H{H%wmG49L&y zyQ4FLZA^FTj^hzyo5S3ss>p9~#&X2mT4juX8n_l1k~7e*uM+#Q(Eo3GbA0wNXchY#a9Z=MhXPUGj7!qPz6dj2TU z2;?N=4?u^5;=JlKK z(6((PA3_ve+E=Bs^(DD%9H0xyF%$av8;F=QeSuG~+I3Sb7RpnTOgmg8cGMPyB{n(V zo@;9NeYb8HdplEY-Rtw|M9hj)xNd~phH}@Dd0;T~a`p*jAl9nM*@kW=vvXuBoZ1O7 z@;$q`g=IyUO)-uGHn;rJpeRU`rU!irWpZE>LJ@#&d&%#2N&FiP1GFZ;C<)M|8{a zlMi=Nsl1qjub)zWv6Gz8ba)m%&M7~4d5DN=XrLb(I`{2Rqo52WUQonsxzC(NzwfmX zH!L_7bH+Eg5FEB~*ZugjjkQwUnhGH9HQrOTOBPa83s)>G_wKzS4`WV%>J&bdfSHF% zTDz_{>G%73y6ayuX$8Ar-RW)js>@pr@DZtvH;EV(67ku^C6mgRJ8&N4hxNt6U=gbV zpx1vzF|2~9x$3nbSPtWtL@Y5oOF1v8Z6m%9)so{98pB!^)`ity>Dg;mI?L;_4BP#-lbHERAEdqWCcXO~bBxS;8b0a1~bEPK>wpq>QVL@D)d^|w5OsJf1ox);R+ z$xMRezSU1Hje`$3UX;rLVb)f^z2a9oEDmSJNl3#hz&($d$yJk`Vb(#>Y@2xDIrOOOse(d6ATFda?j zvjGe7_Gs=MS5Nv~k1alvN4z{8eK#1sl;z{f%2nk76c(8iGR-Y0Nqi}2U66%P+>r^J zJv7=3dw3JESgaEBn4SuPw%wv$aUYDfc zvyWwT=_X~asMh&zy~=!J17qR^6fpZU`7jIo8eF7p!dX=RXkQ;b&%zJU7l|#zx_vO5 z*Dpi^Js>k`&3O_YB>U~NuzbWR%Z$8_tdAH7C_O-rCf0Ntr8)*jKGVQoOV316K`^ziyDUGhwOx{Ho= zE{o=5$=s|7NF595dp`Cj-j#ws!#wYT);M~FQVIQn&R&WT~ZT;&;wkdCOcGIY5DO)l-(lJl?MX0c;CRpKl% zWk=^b8uvikW-&mD&1ZVEDdxzMhrldUTZhP*v}#R6jbGMbS-=m&XgUbC&I6(dNiR%B zT))^$Doef_P`9^};;dp}oA?t1QQ@h(f@N*TxoysPa2}q@QjBKYDI?{7>z+cngpgEY5 z6}2QP^4c2!omd>%94K-d&7q-mlIzh?VTiqNTeU8U^~)s#+?hHh_^BQ)2Zz;R_sxT9 zJ)}3Q#m`cTV)RF2gBst)w8WQt=+;B+EZOWZqzMJhdLH{Ca@HEI-2Q^IfC&q&LN_4& z-o~F#T>9%1RzyxC5-d2UZ%n(E$uG1pumNGd4J%IobI6C6ngBZ-;!^jQfws@eB7h6~ zt;O%QJg7JA`uJ2aMX8w1vmf5I@Tx_ywa}fxnWSD(Nb}%p4lnUpBBML38TW6?#{F6b zNqX?2iFWB<-6Q?Jk#7JIk7Invzzwt+_^XJlw*S31OtQY~-C)o@a$SF0g!7x7X)Yz7 zdW!C`#U&9&x>tu2?=qA>RZ@OMr_gYe(R627F z#A6&gZiZ{1DPS~ZMPBrTq`(&32CNPrAJ3_vpWOC{(P86?+v6FeZNz;UHX0Th+D7@s zfUe0>7IpU)Kr=#^KF?8>aWUo+nd;HY2=aclUD*9_N28cv??xR>jxNU~>lM{WBh2_!f zSP0gQMS$qfnF2Gb*QlGMOT+_xEgpA?;UO_t{RIP;yfNKg1yu{uiI?Z}>3kW}K^$F{ zMV$tSE}J#&Dwdaj1vc@871@e|LF`Ygd62*o$^zCFXN%I^k278&chu`B)Zhw7PNJT$ zEcZ!VK1lNDo$zqu!l`+m*Y+P3jt&Vbm-o(=ITMB+$G5hRA7g-hyW#S$W3hvNy5{l_ zl$d`^I=M4^B*}?qsP+k?MP-2svNQ!j4Zp#6rXOk-Us2+sDR+K! zF2&?vWLYSj7x>OCM(n0YtgAIJvqGXHxLC+2uVmF!F|s|HHs zPRRgwBf7?4ASZ2RiLFm$fj7r`rdS4E5HKBFF<{0Kc4e+*SJQ6B6 zH{&nS?+t@ks>hsZqU@fKfC()(UfXXTkZ;z86l#x4{%fjYD~7RW3ZvVimy$t*8^wZW z)&xmA%4hzRBaem3z?^zCfbK`jB>OiVh{$pxgeSXK(vJN)KaFVW_r!#@1Y)Ul)u-n{ z4XaDReAB0m1;UcO0rI^~J28fjYMTEh1R{yTA(Cr^o(CFIUFM~3l=?FiXw=BQ6_X7?2KT;pOb2HBu%nnRfeD`*)b+S=&#>84uuGaB6gQ3wSpcFSXeTM9XXCm z6B6SKyC00>J^!UK2`wsttY*IEoFYgmlSb8W0}%}Hg}+8a8edB?g*1yeA7am^NO_22 zFrj_;IDZ{qPMCHC)q0b;z#)rHSqKbf6=6{hedyDfEHHvPM^_O;Q(jO&9$tX#IPjh`cyod{{__$kmJmi&>9&m76J!yzoS-htM+i+lexei!%y4x0Xj$rFVFJ z>r*DNrp;$Qv-hj&<6IXTkvqS;R+SZjT&h@Xkb{hnWUw*=ExM8IzZB{QrU703DWD4t zYQlv?0*|DDJ4>91+KTSs@ojWnonG6eNz+U$cM@sdFg2GNw{LG=2z zJ80opCH9~Z4M;@9Zmkp3-+CYetVT=NEvFr3Al1(X`RFt!U4T zHW4{_>8q`$p|N-8Jz>e@B|$>M^*`Z^Ay=}52Yb-?$+o#}MhH~PX*k|?{awCsp*S*# z_~+VYMSW@PXdvpN-MT4!2Ap;6(PQB)4cr5Vi&KA*IOhTB8RYRRShO(a50wRJFu&74Fw1c$to z|JjJG&WBYM8=nK=FARi5-;o0<fh~bAWE93l^)+1}Q z_f!XnbC%vRF6OK!k4V6^GHs{LWZ#&(Nv4ps8~KsCKM&flovZZG_o03bL3z#aR$O`A4p;39$U6) zTv_NA;=!l|AXPyX?xjt&;~z`2xuBln=JJlfq{F>Zbdp<^E0~j#jH+T$@9&>%lw{*G zR(;7o36Sp^=9hv=`h&^9`H$ve^nW(cKtzPH=ck}&xxbXRuB!b--brc4aj8ohEDJT5 zVl3mTBi4bB=M6@T92hVK8y|h}gViv>ujLeR@%0w%4$|JWdP$CL5!+`14GOQ1{@YEyDSHggZG+w^4@O62o>P2blb(|*c&t9`kwbGI zt-1HqE&MLBmLvBM?NIKSv#4i zGXc*dT6XaqN2xe7W^I|=8buG7j(PW)`kkX#it%_d|5Jy{BNqV z_1QVSN(%9l*8a zzu*XR$~wQs<~}z^>${^U92%i*+Yx{Vzus8kf_>3LRquk}p6Q$7{Zze~fSWtjHi(k? zA@j2%WMS^Wf?Rw#>Ss=cv);q}sRkz7qTlbkb}Y5J(ZEw5ySD^G6VEqC(`|_Hc;6c3 zg?+GsT--_T^G_WG|p^jmBtspEhqYDVxqgQX{;b@@f} z8`e5Ia7Am`gteKj^0=1B%!CR#ZanSaeK|~Cf}f<#7}|}!sMFXC#9BBIGyXjIH8w}a z4QBjsxsvnEcXcN;8v6Gyg~IukNlmVW0~dj(FwNM{=#c*V1cVhsFOZ$~0FMO=+|XR& zs-8-$w_{aLkLCDwT#$(l{xlGd#2m3|qu&?gupUwZa1sURQUe zK$9Vl{UvH+vJI8*7^+s;b`8JzdZctLg$aJ)s~0{FU|eHCu;)IIvorh18)d4S%25aB zjJ`UwO;ImwL|@mU=AE0;@VB+kG7iO6u(=m{^~3pNh?gRV8%IynX)k$m7&~O}*%w>X z{{vnG_X?@)*Y-(WPDOYt89bRSr?G!Od?ZFp4Aukz{DROMgQYp*7Dwiw|q52pk#QZXRXKz1A`*t#Y(6%ue;j; zLqP`^hN@IV0bgZrs6@!#r5<1+LMmhcD#KHlqjns(W3H~2#qS>l=l-#&}O z89kL3N{SMsvYi+Yuc%t>kT#l{R*zmR8j*PX;tRZYTBO}o2lUUt) zZ<}YtTO0ZnAp#xXAyI!>FS-)RX1i9bhdo);pe2o4biD~FiAgC(96nY6tmm~m8*@Fy ziNSjcOoq#pYuzIdn_^N7hggLIxw!;>Ee}|2m(riDROmA+RqGke`#Dav$HG?>V5XE= z$npIs?mXYQm{qr1_|TCe!MX$V9wjQW$tFjXly?60#sWnGV=>hAJ5zi7s3>gN9H7uF zv4u-d5$9(o0AnUp307-=)gAvxk_a)S!gikPoyfBKG;BvC45jpFIyU~Cvk!l@GYRDy+V#;B$PogEWjRsmeOH3s<_;DpI^W~fd zytO1?X(YFXTT&>040rmxkXrlij?HtHbt|n}|dAE^8S@=CyX#iQkt!s}#CF z$HQN85U-@^qi}SjhnCEe*uILAfQb6IHiEVbU5@Mxq9TS~nGj~|#r?h{l zD`~*WXOigOsJ;A>>%R?DYkB#qeT)L%I;Sa8Vi}25FlRSFKUynS}jsqc(&G9A8 zFZ2n!PphY1{=}<6rkmpCeVEDZKjR%Dc#3M8OYC>SiWVjkbk2phjMyY|*aY7A;Bp&4 zaIqS@6Xspi>JIqZHVLuD&AM@JcT60qu;iksFgw#n6Vi;^EKL4i=fi_2X8KOiK3kLk z=DL{uOZxmV7mHak!&tC7=}qW+h#77?ew$%j^%1g;1`I{Ix_;NpM>5!?7NGSMH7*#u$CQ;A=d*{f-;#+*Q%XVIjF=&^fvi zLgCCzl?K;^uXD08UwTs_Rc&AP<4}(mx9W?VTC5JF3o>Q40DfrVYF|>WIxuFpY&4yU zTsmEBpXTVGG7%H&{IpR``>iDb_iWW9zYSlG;{BC?d!wYuw?ud_p6b;|e$o204; zUUjP@clB+{{&0jJ-*amlWz!YkPrD|hH?bFbZp&w%o6nNh9O&yz`#&|2a^;~~UJiZ* zJysf-7KlbN?}}sPE3t{c=MZq>s`(vxILs=7`boe3&Tf0}pMxHylg*UAi2 z{!K$Z7iHwUknq)HKv-(sM`4AFCWlfcE&5Cxq6Fqw^xl(wRu8r4sX`=LUjSwd`F+xU z8%{{Z60G3m7GN=ueG19goIE}nq%r&4vS*H^P}VEJTPUZ)ypK>^yNGPLDlGC77U(BX z!y;&wLe+=|3VE4w`yJ#984+6yACYw49y0-+!#I5m|AGL`fTRm}DZ+IW!LMya5BKG0j}zs2=uOF#Ar)cNw-U~_3?E>OVM;qWlahypSJoeJGK2}KMk)FB z$57FSJ4xqPxPLn*tEaz+kPP=fasNi?vHiVsY8Hdbv9c@8bzWEm{pGfkugA99Y1`VMF2il#yWCu8(GOnfA;0G&m==c;#yM8~ahI$q zRBz&1e#vC$z3fMXq=KfkOHQY5)4d|khn^#HANkd|plX_FgcJoWQt_4fYf5R@5H_jM zND`L+@ODOr%n$!50ol;}RfOHtG4$8a{{o+_?&%gN0ljMOR4j~0$(p*w!<)c38w@d@GvEdlDUyhN4p=2C_$mnNqs)Ib4MxmHf9ttvre>wg{ zoNq8r6hO1bk}c&zg5ugVh6nYe8?UTcpS^jTgis_*GiZ6{naL24esn2^kZd{ccu6lM zOzIFlyRQWt#yZy_-O?xlv(k{j+BiUfb+BZNE;j$F}C{_eCoVfrz62qexRJ6xNPni&KKhK525uJ}4{{XOWIV{TU z#bgSg?*H>}`qD3Ylysb{q* zX|pSkA~8LwxxY3+Mr5Qc)&P^+s2%<*^gWEHJeqOO`g?T_51X4)fNuAVa?Mr}4Iwv1 z_FC2P1uGV`v~CMSOXl)@4^8i36;Lbp8|c%svG`ow;VGeqIsh%VMEs-BsFwSO zC$K?YBa>u3w?QEDwD2E<7UTN37|PapfddU4PuS$+zoK5_bUm2d1pp>WavbtS6n;3ssxu7GDgN^5OhlY1-fb1WLlTE_V08uw=L} zS&fe)ZmwQitOb4SCl0g41C4L{pJnj(R1$;FN+9-$+MkGojTvJ&zw>v`Go%7>8oXDB z2U-_sD_E?Obv9S*xRve`^q`@&akD2if zWQ%L$KJ@NtZR}YE*h*0z6(6LR@rY*T>et+{A4<84%qVAxl7ykG`(%1*0;ue0yTKwv zHVSb=PcOgPv%Z+evo0HVq4KvEvg-O=fu$oo1b)qrauEUM>`*HWt=l8*hpAnZcGc--oP8Li*eL=(9<;W~UWW{flZVs2p1 zgY$;C)_wdL1W2m$6o-ORUyF2LgFaJ6S7DDQKMmt>LG?KA5gqFnZMyag=6?cpVwMTM z+g6Y&cn>lAx8*qK=AG!TTv@f*RJ(c}%rQPge0MJqf6C3+;&8%v0R!`N(KDs4shK{r zR$T(uT{lR=NIo=T)MBkR-8MFYIi+jZd~=$PJdq8wng=+=g(he zv*aL%9}jun-AFGH)n_w76qA~$Aff}XQY}M{ls4_n&+wn}rG~hF_OX0)>*|V=TpeGL z^;AuXdT`Z9CK-(NrM3|ptwaI622k^%PXwhxvMB# z&!0?9R1$qXTH>7LTK^ESY=0r9oHwwIyu4gZtQ}>_G~)j;Z>vcI7Dw@jH;~cknoQhq zKt@t+Z~#>bd6!KW4f!+2ZA37`C()vt3QrcftkqZ0CYEwWP5P`-3ICZ8ZgT*Xsf8pakQ9+?NvhVv?{7;=Rtgc zO9;g!@&`3y|FMRDQJ>4E99z2qvU$AOc#x{QjD1Dx;4}`us&@LDDLTYXMRbciD=R`U zn?V=4wAqLp7`frj@CSQdnvuJT;=Nk(9NG=gs_C6PE%U&Wq#J53JF72AJcQ(>X%$gz zbj2kl*b=34x`Fp1$M>9V)34OEgZd`;>YiAzaoRB?5hi)K+A-OG`FPij`yWH^n$RjX zUpEQ(pxCHoeP-qNY~yu0u0Dc6>e-1e!0-uCr%=}9-!Kl|o1u+aWBRXaY#+o}vqpj( zySt8RND=wtw?(lLo%fex;!6Z&Q$^=xj4Rk=-z_d~n1tVF)9>W zJBn-aTs|sE$%M@r47}I5#|<_s09)*rnL27emrC~}QkL})a*WyglS5Bb)h^{jlhcHk zm=+<0%Q?}(An=bOU*;y}edvN5^5-)@qW1^OF@?LTG7HL*!V^VCN2pwXk;q>-l*#y- z?wxTx{Y1th?@iG3|GQwTGbrnb_ik}Gl24HGPThq#%vgoUB;YIH*|X{N45mNlbQ(fZ zVF(B&6^l5BH|B|TfAgjyGHje&B>IA33@K8*xz1~5dzx2~eY0AMb*gjU>Eg~RvrSue zEyTpvCWqn!N0L}hhU^fU>xV(t=nfYzaRU^S=U;-wfd8gVL@@jNo*(4}6l&o47`i8z z7dyH0V)7o9wUEo(~he&?-b1ECqGT!I1Xbiyh?G{TaYiQe6FJ3k(qS$JjRQa z_nDk=PxJwUq16&2<;gB5o<~`KsW16(Tup?4< zxH#3Z+ABv9zSSU>b&w+Pq~M#X-9_ddejjEb8hyklY?w~{zRHCIfJj)0z#9Hw0$Z5< z)$GfqSa;RN6J^a*`cIG4w!Ni_)wz}DXtq}b+X&jHp zs7{ZeVbt)a?r9SAOphn$&K-aqsz^hVth@(@J&3((cukQJJO`m=twoARsqL4Uij*Xb zM*j2N=R3D|X|Mc=tloxPs?}`u<5O-`?>~vdywg7`PBoVP)<+U*+?c5+kt2s=M?YI8#=HRAM8drE zdlb4ID)T`-M>0Qy?eKvue`@MYCbkubz8S>SwBC?hax&u?H%6V{>EVuVEAdk)Wkabf zXQHJ>{^_%dFp#}@+#$O{VT06;V`=B(O!+*$??0+ts`iGl4Ur68HU$s4$ z^tYtgsuiX-eSrr@w#M1v{^RMaqYn&Vt|M)}HT3n0mP`wAy=^qU~kk0)vKyHQfA>!tp-?*c+!iCi(wb)WC zd2DKsh(t3qY8qH;b4KzsX~05HP1LI5(!riTbMD(zgpyyPVy z(ovWE`}_5Y8WMFc?Km-R9CdJDr{Ql89Dfh;u_XpRjvr)eLe_iIDy?COolfpoGv+fb z$tBs}HvrLhEoa^b-#i4z`Xg0%dy^rBwue!hqaIQGYg&2h7z<9wFr68}q5s4_+U&A> zEc+P$yW6o@z!P2*!`H-u{vard;pjV&OH~G#b(_O-y2y$M&vFjV-{YDzSCcMgr^M<@ zYG;M(FVl{tc{pBMS5{V)9LZjCEm(7)16a>;N%aK!oy7KIe*Ph)y;XVnw$FSYgNI4| z<`&o1pGdCZg3oG1CStq&I6fmfMREUIG``I;qy=3)!&~Hd883AfA9#2~?^!lN!F<0Z zOq)?1j8RwLy2_}KV{mMhD?sV-X-&*XPA7Pa2` z(E^kXaUF)!7xkz50M_(objR7%S+_(1ITdYUXigy48Ye9ym!2-AKA*jp;trmTp!3sZ zv-7vk@0{|}%?+qgiv~~x>xv*4{-D4)dGbnAN6Bj5HYkhD;ADdj&5=HnMH+H*{?*3i~R*gG;g`HB!G4J)O!=YjKVmb3Ak!|aEX zS*KUnZpJkj!o5W=2j4e$zSKr+&WDn=E77ibixG*n{@o_CTxiuf_2lOS-C6l3ra!D_ zxHmKYit@W((E82^b9O^Yp&C|=q68=vsKON|U9;)1P3w~NT>2@4)Q3$U!{r^ZELzFO z_B55E)0B zy+AjsWHA58l2hppt)pxYzY(|>MeIgLRu(DvgaA-l=meYO7n<2do`NjluHpGmCaG+15AWh05jc-XZ3UOIbBO7tD2bEx{u00;LKPT`}Z zmb0YR=}J;}YbeR~;|@1>l@f0~C?qL}gFaa7>?>Nn<*YO7WHSMkZ8oW(lH>WmbU1~V zEko$JwGk&tVY6HK7b&zPH(HK3UXj0>EkFlSxePD<^>4cuh47gKxXurATta;0qSd8Q z8mS|nKL2(FzT)#EoWNbWK>xP}tG#cJQF_NJ-?>&u`cpjlm4Wr6TqZa{>f}t;)bxqd zh<4ttR-fPN-ZKsDk(uQ}*+ewh(K$iw+!Mq&7*wpaL@#ro+Xf2=uCR3E;9&GLhaE~m z?5{d_C@k%J*?5$aEatoOyT9A%kD$>Jbp!mv&33VE6p-34L()8U$J6PJ2IY%bDi@T` zcT9=AW~@sSdC&btOzcF;w-%6ushE_~+ieJn3u^8ip)mX;jk0eYi+t7g&G|?v9YTBV z*S?lR2H4seJwpz1>GLs7L>_c8sU-PIa3=*|SH!-=sSi^lx+v=I*!=`4{i#x7K0K8` zGD)y%b{q~H+a|M&)%bU4w-p-7VTw5)i7Ic@eX@J=fOqur?4pHCiO(+`^&Z`@CBz-W?7(qF+A+x**ezZKEQcR}i>q`8{xg z^qBeD_{+i}y#o@oUt*8fGG|wR|COuPQLpi*1an7nC`7QJTSEFWdv{q#wQsq9zwVQ` zwgxv!N_#jDX6Ay@P>lZv?LZR0U54Kf1=l9< z)`|i}UXX|c`ec@Fcu-c-+*0084{2G+Y8_Llj>Ory2V3Ja*k%2oa`dW^xX zp11480!ncO)O>!;3PNh7O*?%Y^{+dNAF;5t2{-0dzJ&McpFEh@KhJ45LF2DQm1K~^ z{yjwoF#*UGlLXkSZL=;E+lhG{`}T~nUv7*Y-`L6g{&(1YnL^2LVLF_n^Ov3G zh`WwK-nG5luwp)^!(yz_#MT5@}x~gY{$w!N#)VZQz6yl92Me z==XW!uEu&SU6N<8W&5ZtEn(jdid@7dqAkpie)K*Dp93hud6m{)K>P9aqDDFV60XK~ z*jZc?wnk4!Ki`R;7nL^F`NmekL@|eIoLfVveBy*8H{qM-WRNt-f&4Ie)Fhq&`yer^ z%!f@#MGqPX1dt>l9|CVSf+B)3zFc1{IqvL3r`f&8iW6l#m>yraW(IQ$dBeb4ic{I4 z$9JDwD>3#Ap}D+ux=QVc3`8g}hlusTMtRDMQiQU2uzbiK+ILlY(vD(&cEz5dKU~KzUAm3gFn{;Oc@}E8%)FcGOnM# z%Tfmmqj=}>Fa}rjp^kHm^3lv$JGHtjg~)1ZOObM9F1p%r1}X12tbj#k3G%S$pRw5Q zo;`KgDc(e^-^lwFGE_6)AMQt4xekw)tVV9)fYCj~Al-tTS9lXPcWm&{kxI^xw_Ft> z*s0G|iRII*lRj-3;+~(ngt;C?vtfkVjST+gHK|PxxUZdaZ{ffHiZn2YP-Oadc;9HR zV=$~A3|N?hYqcNHiI@zMT{nEBwMDg_I4EWF@5>|3KS9GTRHCO`bvb$3N$W2G-FebZ z8$)5nSXc|7b8MUv3L(BVsY48&q+%Be%?hnX7)3$IiM@D^gRy4mR#e+1>nX;Tg5G%! zHAgT&=wL%S%%Fm>pCT(vyfjJ-p|zNcJcYq}j0!cIGL$78jocIKcbps1t$=>Jk2bs#a29G7Q94bBC#UNH`U-raVVZN%3 z2lHG@aahssK+b3;DZd^ybOD2ZmXCeV83uo@n;KP#>|=f=yp26ZU^R>`BN&{{*i}@2 z9PvTaHS~lDOSeP(L(_^^cTo+0d{li2?PlyV>+1g9vgfkXmoaU!Lu0jmqE-GHVj}ZXk#j0Uq=ZN@mYRxDBrr&{maFYF}U& zWD!JEvBooLI)tWv@}HjKm^v0r3T}f~!0I0U?Hq$ImaI=`K=<`&inh`95p<;iX zp0-lx+rk=xx#H31Jo;>ek&Ox-F^fq5^wn~VkG79@7lZ8kl@sjR*5)V-Hm&Gq2`hRp zndym)Vj4*JaM~ICD#~t7>I}XiJlB;dJIw)^=48Yc-J2Bbe_}IulCe9eet|GnZH0Xd z9pDPB8}e5DVVn7Yh!2UjToR-)>-bQZCOEJ-d#a}qPJ}{;Zzap%Ng~1c)3$$3G-(S9 znBqtTF$Q?eYG?La)DXjl_x!*i&YjFEMH0+Mm{JA0(NP91GDSFd{+~HT3;s^?3$K?! zJI*YO185}gbDfAF2hCm8ww%5l_Y~r_ze3hjX*Yw zqE{R+b!HacwaBi9M;CG1jDK`Hdd5bUvU~~ug>VEBJObVihL>c*e$ctJ5cJk|2NW-{ zq5f9U|5PIqb^mfGcY%pyA`e~Ca^szTo8fP`fPz}j4cwB6Zyn!BSpO25@ ztT{@qqvwo0vVFLO{t@PUTiU`bvCxZ+&?k$9LUe$^E%;C?8!l=GMtMj@=Gk@Lufoel zm+Hgqti@vRhiY}8K7Lf`7#j{D%B_zm$pj4AfsY4?zHGLZNPY}Utm_xem0pToZ&|@K z#uoY{oMp#;%yVI632I+hu?F~e+(%+Cn9LeI5R0T_#SK!hV$0%(s45zRbryX_2KMA` zW$Z7su)X?*+t6MqYu!R{ssRMcg<*5s6gs=Q;6UpMY$ttMx{g6#P@*#^``_B z#9**RwVgRC^J*YIA479*uE9%M9rD2g76-e8$gWd%`nN62GX#H`i;sgsA(CgXigJZc zBIx^~EZ_q$iX1QyLQ1Fu%C|kYTw|?gcN%;j#$u2)9p5ecWU?rq0X8z|kU_=LcedHu z0R}DdlWjLj7HjWk4Zgblg>p%Z_C~Y%sl%Q#l`C(LB+Ru>yGxkXuP78_K|atH&e&v2 zD{G+lcoyZqi`5S%U{H}%?2H?vOlZSk?gy*w0Je*4tV`wtK|A)~vN3G0f{MSfi{Ozg zrKdzcy@;SjRzgIp*FUd?ZEeq#(X`a+A!k{mb6wXlSWU-hGojHLtVBn7ek_DQFR5AaN3vU|5kQhzp3lG`-TA+t9apPNj`L`tkgjFhjBpEcFt1)sG{ z6^+B(L0zbejy@3OVu-<38kzynbE!ycul!|5jH#Ry%7%*BqrWSw_OWCcYr-AApub+Sy5E8`$^#W0kOJ5Q|lbhC6?PwhZ(-#!Ni@O2$qUn)#^o|4!Cd8CLuHRzTMW=X_&+8-AkD0-NGKC`Zj+MCcF44D%Z;x<5!WsNx$Jq0mm1+0J zTKWbPD$ZAM8`6Ec6|XH=B92=6C3^;twX8QVxXSwMdtu+2Ar!?BtwYo_t=1^MFXJ#+ zEjO`d8g+#NkXLi!!Rxjdb`J+iFU9W%SARH#pRd6Z-u#t}+UU=kCXxh=eSoOX9r{EU z0U)?aoA%M$I(-pVi@>j?V!LQw)QH&eVKwGxaunbhM!q*?U$lpu-Pw6Bi4GtZ4#PcrD;61@!-|MzoLiPC?#bZ297 z3|67X%eJiy7&0H)Gq%PmsnTq#%T~_d7+tp!`mzLIz05qu zlsB=4NmjS;wR{V&Kj#aig~8+`HiHE#xmpY*UWnBVin&Du1KGHd9c1tge$1ZX;5Y)p zR8sJ0YuLQKddP-P=Ap^!I1JhdC)C#;WUN4;=2wl6F{y+sSe3=-+v{sft)rr>Z8mon zJBa+Wct}7|#abyMd5krol8!Q%I0zqjatO`yq8{TGTWzUi{?g67zs#GgPuB?t$1jQ4 z73LQ$Al^xkXRtPf%ENLF@%9Q-XyF6f9%Zl)$JUQ{EAx>xRN_LHTAN%y2q5dOz@lVq z`Jh%d%WJ+D{p3^^YG&Wee$~bho>50v`&e!;$Fr|$epI}WV|ED8{+;0ygoD?=y@A2A zWS#?swsM#|zcx7nFpcFc?I44?3xQZ{2lEQUIJO`l_C@@S!=OvCIb39dma=i!D%&Nj zy*Jy}gl#C$lqeWQ)KUq{n!!^RY}#IgI=ViXL=b)9*UX^W#$PCv`jk|E-f4=dvofH5 zi#)udKZwmf+G^okFeRUY=o8^<_c2)iU5LxbV4U*nLm#pa60(!K`C>=Q#|vK*F^G^y zMMcpw)_#_;x5Rw!Nz_!X(|S3RE^2{%F&roc=^k5R>JSs4w=2HW2hR**)FI zU>|Lb#W>}dy*6Gx=LWnLxU~eU*)P5i#kNSNE#bOoscf~&(HSh9#n^7U`QATKQ~3#F zz}UF9H5h02^*F=#HrsNz>f@1(2{s(NdY+tmU7F2$0fS|b1cH1#Q@Jp@x)GN_F2`K^ z!HytyM~FP$s@L;J9A!6)d^7&WU{F7INt+sKd(}l!BSxAKG`E7={NJwm+SP3RTnVjb z?1Fw!4>BS;gAvcHNb`LCWv*BQw&iDKX)`Zct0Mc%N(i7|tOf1qNnLbw5slM?%JWbW zDG4oKE!qz^5-=!jorz*F_>|-qGGY)xWIX!)v0)AA><+?B2|^fa3U1P^G>0 z3#lhu26PpJeT@vxkCvF=Mk$x8z(g8^Y^CktUno3KhQ9P9gSB>wk`P@*p%~W1V{jDj z?J2lpWbC&Ui(iN3X!JGuy>78~Y0^arNVbTEp4^MLl!WnWcQbf5iR{Hz635p=Tn3-p z0lXLz^|HV0C)g-UVe3f0!L4Q(gU~+JkFY0v;0mTH-M+WZtLd;#Ff{`Gx`e^7r<%?mR6GFoDB~Pc#>$8$;W?;V8GP#nNYJ<;xdIng%2QKh&_1K}y)p>JZ%HLi zP}VYQ@lf`TNKc|O7^(y|wcRGzVh6q7fM^RAT0he@I-5!2kbl*#uRMk(s@82z9$^uuFiXY`Ey z`+IC!zyw6N+b>SD`A*+!TO*a z$>6_{{;-M(j^CH?4l@qT z)EQ(|mPHr}5hN@*@Z^EJPe}X!DUJg3o7N`8>QB~o15}=%#%8zRII46Qefs+@o0AE% zA8Z6W9l^75Ep8jKO3`)aXqvR4O_6($L0ZJCJ0cTzUsqMG(ezK0c)ErcX7$dT)wsx^ zWJ|t(l4dX)a`M{^{`A@JzsWKZg_xlSd)rACh_#$#2}qgb2@q! zsy0nK5@rXom*&$GT*XhF!PYHS`6b(<&AlfWQOKyk>Iy3Ba|*?gn8v9S*U^U?uCQDr zQ<>}ZY6(V)`^4s_Z4po!Wsd#znn5pAjE1(* zRNMVmpDcs!$SP%L)1=A$$mCU;%W}XLl_cfMxqBG&;gJ1Dc*^NTxv{zoNtlmeVXsiJ z>E})`$k^~njO~OxOTwNIp^H`EfwBA?mv_NK!U#$eur z2{F5zu9+9*GB}LEMzIY@CWSJsdx~@g8P5qRqTLV&X|=Z%bsrjbkRvjECRA*8H}{<5MAo= zVKYNMrCoUD49M<14EmvwMIDgf(`y65%|8MwV3>bKmNz7tM@qopUiBASjP}NFJu!?C z1Lq+sJk-9l-CD~I;*tmkvozn@)@-j@LUwT_1KZnlS!k=FjXR*Z~7dtO&Dm>9F-c-6_&rQ702xl;RA!8K-nTl*iU1^~B*?By}74!DcP|dz;R$Bpzx{Sei=PpH+L-Yi7 zm#pWRs@}K6U~uzN@_w+E?bB{gNnRKIs;V~nIO%6IGgxA5wD3f#Sfn>8W?DBfxY8P) zaR+U|bEQXPH=f6aVi%s9RK$rGWMA$yutQ@=oQXAFSOXNQozEl(`dpn){KSoCE{SAt zH4sc;F?QPRYHRI^$(Na44bEVf3m?*YL)~snuiWL@-bb&Y(e_2CjQW_-+C>aLp*B_h zDjf6(BjDiUiVA;NpEZzv4+-VLn7SJ9a8=Kf4NQ0J8cH`z>zQ+xqDtW^7AVJmWke1f zMj-`|gjzSPlLyInNFUu!&QtOaB+VdezI?U=M?0Ar^tV?p`N(_Lc;P~0ih0&u3|7g9 z!$BAkvTlBP;s-=VsPK|+!3Fj z;%vo>CyC=Zr0Z0Y@mwEQND0o`%GiDfaCs+NH4zon~*+UrP6Brxq4 z)fX7Ir-#8vziRboE;ln)1r9%F@TRD)=lFXUc>`}KJNQR(?w4R_^ri@4{vx4MqN~<{H}F%dKerU!Jsa=oAz(s#8srKZ+(ff zkzW{5$=EGz!l8)hy0GqB=)?QrfuIaU&anw!cBp@Chkb`&$cN|2kacuKK}M?JQV&0#nqSh(Un#FgO6lx2^sBk1#k) zZJMI%XWH%pc{cq7tzFKbF1wYBt7KH(QUTlgSkVsF0C?uW31|-36}SgpxUmPr1oj5nL`*)_P^#Gxtp>bU;JUP%dN|F)IdwgC_G2#w0*y>XPn&&yO0HH!a z2FJ+pyHH;uEQuF?0L6KLkN_EHwp|jwEQ*6m7uU0ul22K*j_pIwBv&pzQ^$4K>>onC z27M;&58!|rG-jIz4eT4z{fpLFZ27p*$e^u|1f+fmYI5S{`n9$|5{tna*^y`3p)o(J zfvwdBU9E#fs(s-n4)P9C!Wb1vq9X*g3mG(@yA)*5yDh$eylx!IDd0&f8#ZX^^nzhw z_eW_P#9#=2JKe-!t~nZQFu5%?8E;}R3kL_MIMw*tq{_r#@wT){g^9s|+s2jV1`|!7 z2-`hSnPS8PO$=5f^Odosv$w6ExkbEPA^b3rA>tq+;f7-Fwrzes=99*i&e&FL^63QS zTPMLhLnI@`J_53B#OoStGt$Aex)MDGwGIg{OcZ%mUZIPFSmBVp;+}h#`DAH@=^zz z>5D2LoE0-#r($g@Tp25-d%F!0PfI3=qIpf`Sq>Q@9v44omOEi=KC0)7?De1QDh8vU zyOe}9q(?n#XklrUmIn4eCe5t*e7kNsY3bxMrg-jBMlzC-GzrRNK}Ir? zVK5^Z$uO9ajASIkU`8^MVK5^Z$w-F5jASIkU`8^Mkqm=jL>7MBQwNcy-j=N^uvh zaa-r&PRC}DgNBIbc+(Q4F2-%0Q&W#7B1yUDyO+U`-NbAdzo8%A(kWwscy<%1$`YvB zPzEMH+ks9*#~*Wj5!sR^yNS_w`Z}MSjNL@qB);9mQjuGDZ7LC)>?T}Qnw13%+b{%H zcQVB$y9q0lZK#5!X~~M%b`u?vbvQgp-YMP8U?qQf?7^69VNAZ$sjfJl{a~uH(M>^- zP3KL_OgXaF^FCq3V*$+O?!m8G|51z%EPryt5uIa+bkUys9N8iOe zf3TAh&wlXMi4wV*F(>aIewAQ4w?h#}@h7v(cW>td&td)2CIVR>Q%UhmBZIP}0CjCj zOID1HW6Fykg%x(q`d%TDUamV@y(a`??nlHc9h^RV-~LFMAz>YjkU} zv@qD{Qe@=F^`Uv#O$y723lB+!!B%<3=M(q=dsMFaf2kIP&$6$IYA3qm_z~EJ7xn~$ zO@EJ#0}QV4jD!Oy7ZF;d)Z=fA zZOQEX0=zFLOJbqLdkId3Kpv5%a2u)b>6G3G&f^$suKj7;Jg=rTs(M z99Bp`91g}b%A#Xt8Z-Vec_xzi-YFr+>SS_W*+f z<~x+X*o|B@%(MvYP9ecu<} zc;SJHii(Phii@Hs%8Dq8tcW6th>M7eh%BU>#rZ6mKgc|8Ack|}afmcUPGigXM{0|nJ{ z0>fN;SFr_5r&76Z{64)2InYnYUw`k9igJ$6i*SBRhOPQ64nH~mJf&i1Td%LJ3<~4* zxSEK(N2;!CPyb5{RyDj9`5}V&`7-nFl(Fo`cVL&PNwU)szLuD>Z zAbPpVYBgse^$y)-8c~f8`;J+RN>61-XV`rPpED$1{)mcRN?pfdH%v9 z>TdqkW2TB8%@inE)cSeR9tGzN`0ZoB zvA9u)27eVS-tscCiGNxL!yHo(Vm{V;;rULP7cIgN5lj=ehstR2&R`FA1g_JD3&ml1 z_>+vLxVT4t3_8fD@v)NFAM0;~SF*{6N_=56!>5;apK+tEeXBJiueF}RcrdQ^V(_Z= zX6-7U*(z^kpP6fAvAQXP`6!@VcENJdrT*Qh4(_Wi{9U=rS26aQKcuHw8BCw4D2cyYVW&irD?Bm&v;ufV`BJ_T2>Z7GL$88(P)+ z*oF=GL6}Bj&;n(-hMyYOf@;+C7Pop?QEyy;g^>oVk>_;+gFa*Y;0dsi8Q?`>L8F6F zwQGdvr*&pD%0{{;455*EG6*kuBbF;?Hl1PP15Q@RoT|ZMz$&hvy#`p~a+c@a-)s#2 zq?nYM7(C&=9%QU?(;wn~QQU72nNi^T`9HQRMc-Bf)=i@T{}=20zjD43Nj(tL(f?q} zY5%^g45rW2@)H>hF^s~wrZCX%)l6?|qx|RO;7)^8%4mX$l|^HC@sh(;@o$GSxWVuBk~97kG7*pGuX~@@Dro?>*d4gBc+R? zDDQ+FqUwrMB_YV^$y-oHsuQ{U1YapL_rbVx*4^C7%3%6TEkBXL>I;~fS#{rkh(Y`z zU6jc{cmRMV0Xb` zaY>$wh(rGdEO&M@8_NEGG^JXWCa=KsnOc4(gWR4|Rkrnw{|J)C;;Y^1RJ=#B z$8vg4W(zVy&WDc%ZBB4G8LS=1l>S;gR91y*kCCCN+%Ez%4|yVKWgHT32A*RpNdm-QB#o03=&~x)+6dB4g9?o)(f#;z+Z!r5slxY zqs$~&_slPSS0~qhBHPZ{mh{?159RSrUgGoC^PO^b zrk4B6+ykXfr!7UIs7sw7OLHvlluRu@pTU=OO50&iBVO`9!r*O4q^LCcSS(drMTjeW zPsfRAhd)BA7#te-=PzPl&9Cd`+@r@#q|y)*l6oB!(p>W6A?&7loE^oWvWxC23>n+E z7`@06iIy;w5QVt5%G+uN365XAEtIu>p#h|TJ^Gs`H@4HZp2b6!`-i&)?Trf6W8 zUpgxnTVv}wjlq3X(SjR}m-QAag*L z*>CJ>W{1y{Vwm*noBXn+{|RjaGW@`Qn~+O-eYemt3fXyOoo1?&ghrt=@^eVc?H$qbX0jLpI1*9Qt z7Gq$*fvjw6UJSlgDrPyV9^7=%j^rG`(V^9#qlZ?5N6yJ8mkv2t4-)a9c)*3K$rat&R}he4kdeykV#!7qr`)1zq05}|;*IiDAQ z7=VV67~T4b}_ z2n8e!iq(Da&uk2~|GcR6uaVTb#6vZGb{kIZd)FZhew#7m&!5KN?~6~?(vCVlY#^Tw zwm#{u<&VTDNk$|8cmMFEU-Qj+I3Z_mZ=E3{%mD2Uud_Fv|+Uiqq<(vJav~BgOx%d6AI_Pl=HnF|W==h@FYp?8RDYslD4!*oBpX34tN~m^sPz-r)cPU$(mBD?> zDyDwiXZoKSfKrU$knU4py0Lb1QOPN38}5%YX!`3(-^&5T<}~AwA7`-P?`LgbaJjjH z8Sp12H9%Ryq`5yv%4yY{1`v=+UHl!b8DC0&al!~WVI85%zA>_e&vv`di(3CW?CTRH zqd6Z{%K0xw2QX+R+lFim=2#zm=Vi=oZIC#Pkx3CGPmdz^3jSM?NRW?32?Xc()qi;Y z41OFNai9lJl4jaQNs}Jf$X^YXov`u{jT=V?I*Gv=V^$@*yYJ9<-q?#2#5IW(`nVuO z^<58f;e)^J!~=y9=5mYHTPhUgdsvr^L65s z&3l1H6kYbKDK7&n*iM(dVvU)5mu5G8(C+i1*1yh_0aW>uM>ca_iw*VDoSyaV${?Cg z^JClPV4sSH#ww{~@lQ-y7nMr}040rlN3(V6%!)@nB<=|i{v>CF`^A^0m~_Pyoq}IrO5IuMcVBE28o+{= zj=Jp?cf!0V=ePW1agf9y-mmG)`C*NZa-aBB-O`>6T8>}e+RmVHk@K78!{6ov>70$4 zg31@Z+4`~*EWZx}{d*j>MKhb`33D=dUf<``O=}22^_cEWO$>(B7#8q3qW2w_+n|4x z!H-FEa}ZD1zVvJ^2A|;v(f`C<3@`87-5P2B)hwYeCj#GIXAD&~u&)&2LWUUu$;f(7 zEx$w!Sr{~cf=WD*{6>wWqlwu&ipPws+$Qe$($&P8D;^)Sq-LN|vwk@%0Sqv(WXgS7 ze!jxfHU{P6*%59fgA5{O%{>Fs3O1F10q09X{CPzDInjWA__PLV)*Ev?sxUEDAuSKVK>f^To#JOu6fNYTeN^I?u! zq-@HIl(`^(B@!%7;JYE!Cs%`Z){zSOVwXPa{Gh1m-fuOe75V>maswf542yC zr+0A;?Ml3L!d_j0fn~hW2QiwND;SVwy5T zwp1_B63f#R#Vx0zN@79^8!p7}WCE|iz9kFs?S?6*GBIeWv%zPT{{Amk2^7DROFG8_ zIfShZ^W?!vfDS{Tr}T`1xe5*nI9(nvw{FQz)50L&ZDKGQ?N;Jk)LI6O2pD3BHIOkS zAqsu3TyTB2`F_V?sBjEIVdrkDV?D*SI&{lzSO|8tVw-KVPzztR4wx5h^pqYPFNTHG z{S&GNA!HAR6U#5kL;ehU4-5TTu|Jp>Y0qSNF!)+`dS$4SnUy@4bopzIWeEl^%U55& z=@RPscX&<)D-0-R%#E0|x+v5-1LA|KDBGnJV5edHukOJuFFO~5BOJT|;RGM0^N{Dr zQLpk_nx<7t-4qEEH7$7?MR1VyOtFgh zgMwvlH2ee9(HR(2%~c17)_-vy{iV`pxj%MP)}y$z)BF30kw{S>4CM97)z(oxAfb6k z5-ZPnC~)JrxxJ~rO$;IhoJy#*3{G!)RtT009sS#{q%WYUi1*?Hsd2JU%x@l1mg-N% z)q^=rYALUC-l5GJb{v$&zJxkGAN{564DxqFd_Dhpow~LpR4uQMs;hXhwb%d44>9;* z=iYBke?){_J#E+@%&XSR!NyZNo(bKee?ML)cR*B+1Ij{8Z&(mv^ZIafThDRM`m=;E;PQ1HYqP!r3u>%q428@u!nn@h7@dRUNG#1 zQ+OX(Q$H1qJ?~#OYvpzZ8K^NA$enP1!q^z<(m`kl@u-31KX|QNV?-$XpR*j_loF%(y@m)w6ADS4b#l!0b z=mPZ(g2CZllTN{)sP$St3~t+9v*fEB;AD)Bz(3d>HuL3D=#{CkXeu^4AI2pj2>}<4 zqB&P1{=BNipXk5WzS|g7%sCmMe>)MZ5HuAm(1+o`qH)!eU2@YFS(A^#$gYUmrt^F* zhN|vXx_bt~={7NFiKx~xINX~1M#oM)p%9EXR z%#Wxj7I3Ke05)qW`$9oMT^^($(Ro4P71GFTj>ZZxHdWd8@XFiNVDQ+1ag#KpKE84k zLOX;y)a(?EK!#3C9SqHG(oVd<4?-mni!V2|jln#&`PvzrnYhn@k?`PA*e^z~?l{5? z?%Q&T%otpeHAK!Dq0uaiKVfMT>bTabPdvsSWbhx_elS%GO2wK5 zzxC^Z--hcRrN?hb&)do%;LLH5)feV=+GCZL6_b|1${A;+vRLhs4jR*?KZNZLkROS^ zNgM3;ab;-KFX0 z@DJy=UC#uAtLd|xkZlWt2V-t6(W%%HYy2d;DEEn*azJ4XC=Ij4c`F8pwzFbSZ*qR- zd&%Y}BYo40%xw{1O^KIFS&9`tg+fi^oQzWUr>0=}>%_E`5Sto~J2? zx3vs*OS;t>vmHP^$7jRbLqZ^ioZnqLPFYvENC3CbG8_|@#sc@=laNE!R3U8_}ncOAgSe@Ms1&lp>l_}=|K1yjDYhCx@qYL=D3$7zpQBQm9B zaACM`6v9YV16(>*dy{hYgmnWLe{c^yyV6zsPN~^hly>h@1NOy1E=URSAxsFJZ)P-y z*E>fIkq+N!%SW|(XQ{hBCxdqZzi}VT;f)^c*F6r8oEQDV3eT)p;6oFG?#fsBF}Rzp zSf{FehmQ);H}2kxrQbPAmE-6WE$O@~OuC8nGfJ_BKhf2s7RBz#3>w|H)+pnERS~S= zZ?1h64C>4Qi@*~@Kai!|${*kj|GbSy>5-f55u8pp^Q#_ITm--0=vla6a;q8i&0N)b z21DZR`ouL%w03z&1FpB|2vdhH|ITTrHEDxB=VX48OqY!!DK>>Z-92E%n>z{Hc_Xqk z@kJYE=M%L22N_&cHlij%!&+MLfbIZlV|2ikp7M&xS7a>iYu%h!vn?EH4TE;GZhOGD zsL}pl?xelGD4cBEU`uq+%-}a{QW;T$76u&S^YIOT4x7?eyk1;=19PQekk`oGWVEo2 zRh9omxRgJl7n$30M^GlDxRQH)P;qlUTHf@V5~89P=Gw$xKJ@+qjZF+Lq2l})3~m>O zBvsbWkuEciaJu+a=T6Nc)6G1wzDUw4~y(H!0Rae;e-ox#e)Jq|r0 zLkP(k+r|eMmrOik#nAc25?y83RT`_tJsC^|UFbJ-mh(d+H>?C*t5K-KWBkS$e9C;4 zKD>^^(mXqrfGr@$jNQVDpkMeyn%hqe^4iqCn3KV#Yuv7E-szZXKlUi?^(~G&XQpFt zP^#ukc0tHLlF*JQy~tW57pc{>u`J4UK)^J^kzA}mKV@5~SuMqh`*@qy=pV=#)(zPc ztE6YpBWSv<>e4H6kCt%dK|SRLVlu|2={Pci*Uj-p64w2DHBzHQl66t1+W54t$6%QC z%OqHi!O<$Z%o>Wkh;Fj!`?6RuL(JWTIMG_(H(&jrI}rM{g+a`Ein-RL+8FE^pS?r5 zXel>|(v3o)J(nqS%;T2hc0_z~klzx#);?_-mQ?J1hVy{w@-4m2BM#49SzdQEgZ!Eo zi-saZl{5?rBR^XAcSu<7Z}=tpJhL|+UrqmVcwkAE92rev&1?1C%C;H+`TAJL(&>)Gcv zG58!uJo{Z6(FO)5`<}dtR2BC6?GF{z`!CWCA#x~VGTM<^VWg-ApBIlgZJQVMlAQZo zpp%m{=?L&K9?PN^F4)V|`0R_R^?j<+-8=s=YxiJ9RezyB=x*sarjZ8L)PKd#mxE-g zy*365077PvTvga~g8{pJm{K^&sbD3RtZd-*P0zE}1aUUQZ;5^$?nB2Lw+yI&vOwG? z>Z2l~A}UH*hcn3e5{9A2{0^kmVwA|{^|OPr131o49LO&*x;sZ}%*x>92@Bq3Xjs+x zskR&1k6lcEfroT-E_0eWJDgYdwG|zA&xGE4Q zgvu~YjypSp=76)v`||V~r(ZDmUK)Esd-IPh^v@80S5~5&oDwob28YHSad*CdE<6#k z#Mjd)ltDQSiKbEAdIpQ5IZx3<^#hX`9BI`oCzI5gS-9ZqYHgT@9TR`fboJo}AsTNH zZ3{m!E|l1zAmn1vYN0<=XkZK+4(iwArSP(|bkU~L2pNh8h0$efdQUHI(1B+W1aGS3 zvNKr7s*Bja85q>A-Swp~m?ie*sT2l}Q)Msu<5s${-U$wGku`0eN8XI|YZC>%9-n4o zT3S?P5aPTfABTy~$pPxxEdy*~Q-q0@?c+Ba2FCLo3>x5NPOMaWPwlB6Lf)hZ6U7<*SOk(;0k_i9zaTxs(d=ve!Y;H0GO~ zLA=g+RZaSajl>kCTZ*5|%lsMiioUlfoL1ekoRFLq-l}}m`Sc9FE@hOa1A`jHL4{gg zIrut-!5ygRLi`|PF6D~oqC0sm28BVa3gQL}%W^ayE9Bil7WWkzF;|^$F?dgOckjPY z<_?KpEb$bZQV+prvL8)SO4>mejW0nYU-6aZj%pe2YZJS9E9&Xli{_;o1`g$RRIz40 z0=R&{n~;g-`C~et!A6*w;VC9Qb*?#8IxUM&^OP!&*U#UCv5|qch-zw_BpSLJA=XRMscY}RT-$6Mp4nrR^BvN zT|Nv(6(I{>@qg*w=W_RyxUWR*AO!zAtG4x0@SO!(Ue)9;n*8c>C)N>rwikng>AFT_Z3d-Yy|^VtKn)R|^Ge$Mmlq$Yyl z@J_RPpKpb(g3zA-mdQ^kWqnUgY$6jI$R0P1%Is${H4&$}V`&OKOtw!r)eSdtlJ+O3^RRCj}oXP>_wr`eiW6PMpH>y^dCZ4m{ z@BN8Md8i+t@V%6SqqS5|mVRhV5%5rwbRV^dxPw=m^&nGOJpE)_o+(j4jio~{ixNv!&->`v21ncX`T%b z8KTKK>}$+C1J75|iS~a_-J!oipGfRp%gf97MqHx~S=@g}tZ4nYH0duO2}%1c0gXZ= zJl;=nWu8%!VQ&lTZ$L=Th(&c?OardTP_~yUuUBRr@;F*ybg(n@A`px7CxakSr)${7 zkFu>9-3yNt`$y?Jf&3iJa+sy#9T*=-_*z6YU+sMG!0=*6yFY8={bV%upIECFc%CtF zZ59oM6=kboMly9QbbLqVtKt>J|Mh!e8V%PE6d$7#&G9%8-`Q*~99)!5+@GHTWeUI- z-@DAE(o&jgI8{y z$+$L$I*_tzCZ>w@bt76_d?ywNuxsdl$BzP&>tTlvGK4>+GT;b1Ts=dg?E}*~Z!V;J zHaU-6lVp2z3Yt%NlzDUkl-->LTJxW%tJha9%G*4-!R_5`p0jI(`2wUYHNPvXSkYYJ zz-czuoyK>vgB+~K_E^Mw2|1}){LFTTxOn}R&uUKBVd!^Rj&?#R?iS469bZB#M>k?r zw$K!}Ta*d0na>(yfmt}fY>NgdQZfK)ik%Hh zZ6#t&4TY42aL@io7KXwsExM&;WCJrtFvDxyCEO9$8ShPIBKX+HC+f+ZGh?M4FGL>x zwJ10TgkbH^qwW)Kk~ca;a%=E?ZU4-LL%JXa;F?us&iQZD5015`zu#TTrq@L?7eA?c zlg;V$CwW>piU=iGR9@Th#W2l8W;f-2e<2Jdvx41L?kM~rXK0U@EhFaaFeKo!Babwi zq`Q!q!-8hxi@Rt|t3ABbm2hxe0~Gkl?iqnvWWWajEXWiR3GG|m`Ow_P6yi(=CQlCA zI#Q&%8M>a08?3s9E0#pf4VL&0(X8Y!_h{OuGr`zqhoP;UTT*| zg0ksTq;e5&Bzf)U4rzQXBdloun-eJac7>muUquw@C{ zjsq{d(XfiVS9){3I2bhTJu2{H2V>Ca=Dw1Z!)0<&yDm4wA&v#Re3)!~v*-#Y%k-10 zALv#U$*@&Z(f)v8kUzbxUUWY#DcV>? z`&D})*KAdwmcw?U2%W0<&h(ro);bo3Af|tr+uZIk?D{XrBjC3-scBZ?d+}nO;)x;0 zvO%FS`JT1~UHrK;%8~8c?rdw&HI4tI*G~u8?=wK})@D4vW02=>I+IZ5R<+V_9Q_VP8}MRg$?9nn{)jIsXWO?`YSr z6)WIhHDucNTvqsxAzHi!&Rg~|5)~V~HnYCn$ELih4qVSoeum4veJf)V`sC~go6auG zjuF5oeNx{vK28vZ>Rf2Pzodx{JLR%oivA3vS^FuAxlt5wr8KIJF^>xR_5`5X29gzE zeM6(L?8-VgU|8gj7f|QRc=05npt3-;rb->k?yL|;O0d@ZXU4TXD#90eDu}A~43mo6 z$VG9XP@wP~&XTe$wIG`BTKE{47pP0FT5s~c8OgB7ePl69{}LP;(e>k53#-b;>Zd04 zISqjPkIy6S#?ag!re|i!l;S^=daxr$J$edoRM_AGW%+6NUtI)csH_fna(vg;4wGn3 zL!4o-lA~e%$z?jx-#m@WaF5!9u5=;wKl_#?kzY80^Ld7H37=srRHZ%OSMr9f->OQc z8tITP7`q?Ufg7*?c0*(BLt>0JNujvBby)Te#=cdH4GZPvUtX*eLK4r95rR1?lUC({ zcd{upuMil|x`?i6RKqCb*R}aj?yxT8p1$wA-$fLK@GTvj8D}a-*4gIIJxopIL>P|I z*`RJ^Soo7GvxbXOm$04o5u=FGcW7-9fWN;dZzW_{asbzMF(SnXVbY=@rQR`^O40&c zF9!^2@qYwLt)|LhxI9orE)a<0A<;cMD7kyxH4h}i2lb=go%B@HK9;%!fR`2i2pQX@k^dLm8eq~{0KZj#t*B93O zdB!0v2c*86HK%YK#M1zyU8 zN(RS#C8T|f4&}C%F$oh1jO2LFT^1CWH`QaG^D|O6eIwmpzc0>2{OUBO4q>DQr+RQ2 z_?`z8HFE#zldi|zaq_N+y zif9dNd5Q^hIJIaFyZc>Z4rj6;JhqMQVClPhUB+MM{0%xjr{8lQW2e=9J>A3L?OFOf zyna7w)d6mH=?IdOJUp3`F(qH7Ym1d*Q6iU%$T{gd;vzB+>U0Sk9a}3`FdCRMPgzsw0Bkln```fh9UtR2uC7m@leNv51W7EqxXLWuxpyM<%H@M$; ze1bFO{mr#8ZHv!Vk1O8+5n4F?N{$aV!yJUkQ zogH_Uo#M){88%p+q~~{yG=KK&BIvZ)9LuAP!-w@&oA)cmn^>PR8{paM$vi(YqN`+8 zSFO@gAk@lWO*JxKTz&k++^|Z-r|xU1>U|-aI5{mzB0fyxd1#n5@b4RC`6RXzehh8F z%JJ%e+_uh8`>J6dVCYuBIso3Z?NxvT05MO_XXOk!97!(lxhetl@ zQxulDWpXl)k#Jkm6`Y1<%s_+n_C=KbS7PMMCgF)l4x;5-S zUnx{mNvZE3<&iwyH}}gjaGKs(%6kiWp{6f+DwD<~C%ansD4J;sMMMob1I@Pu(_o{n8KwZjyyZd!ZAjCkk4SYy}m*pwG~3*-vqSA{eu`>d5kwH z(OGzLv*j*orJ}^EVD=3ir3oa#2cf*uX3Otka*X` z9Pv3dx@-gh@Nh#NGcm?GY>7mZBXil|`_YP5$Wi$Ndr-JSyRaO=L95%DxlNIdZ>sw< z88g`Hn{il<^RHkC$HlGV9b(Gkp=5zw$5M~`rs{ZRL;d>4{AcLMsf)XryEo3VcaCUA zntX@ok~;R7GHXYw9NYJOuMwN+{S{nJV}6I&P=n(-a!|vgejM-MgM0Q2134UO<)9y3 zqkR;^2CHhg*Pj^cnQaI>2a85kPXr?#+h{?F>-S!jf*ydA*Hys_|n>>WK96jvb;&mVmiBdqWaeJSzob0}# z>>mRvLmamoZ?!-l?6Rr;#sB`2dqd4#6;LN)ao*X`f_q*A3Fp^==O|EaxjyS} zTSU5zn^w9vojrQqm@!w8hecN7KS*~fuIZ`hN@wR{IYBH?7M#9VVDIEn0Z z#v2a6)UsvOq>zozl=bALkAFIsnNf`|$yVf_&-m`VyBP68%k!?PJvjphJmxcPBo}E^*Az$OmV+4lrPu$b2FYW&|HLaS4;9xQxz`Yew zu~q(k|2fpV`CS_d$2Cl5ssGWJs+D$(Imm8++3myM%{SMJNy9q>gnj2xI9mr#9WJb` zX0Iq*iW#TfH?vnH@P#Ow)?=tuxoNqqhN*5a1*DJhq#tf-f7FQ>zNIFYPMJFDxqEVDG@daIn zz_NNqz-pV%%g(II3fMQjO>6GF#Vo~Pbj|XuXOpDt>4HIxGsRau)huj)T&IBl1lsz& zDWm=4md*F)DiIA@Td^qg8pk=GRlL>HqaK&}-!oJX<+;I%OXwv97;|IQ{_AOO5002^ zE_Zbe{Y@1xnieg(6FSebOigSghW326j}f*96$QK2-tOCsz9OxB6(-_e$O5}k9qIR) zegNCshP?QDHzSyv{rTB-xL1hkA9bw~J^IiPl;1HxZLLS)Zm$Etqfl_(I8WMYT-Pzz zo=_vE2@5s2)>x{!$GYhs<8~rUK9gH|@@H99{FUn@$Z~>u-2`*tk5NHyiR4($9R^2T z`ASul1C4Mj_?JIGpSzM422NnW^!*(~*H$f$1NGwIodB$RvuI>0JVLJ(PYAm~>RY44 zQxg5s1jU=^{$Zu+(T(G=Z;)K}QQWu!6Z2(XHEmSdLj*g2YsED3SWnTWz-xUBS0JSQ zg`T15H<5Qg7m=6RW48)UOtYD^QM5hQPTN`p5^zR- zJJPKI6P&p>qrv^G{KVq;$#;{wl&(T7>dTx9n$Lfc@lRnYB~>Hec>tn)^FJsB?ahvh z2$_4QQ-ijn-vt1V2b{_)(uF)NrKQYyv6pr?11gK3_9O)2YsWg=5hsl!KVPLc zn?k*FpMVKGO2}>IGmPL6_=)^Z8Gm@-(fv-u1d%L3GkA_;Bo83@7|D>eL~keyVK6Lc zYbKyoB;JvYhsILa}12=Dn%n*@ujpk=xp`6bh~OSN#C85 zDS0`GGF%*tbjl1JzRRD-!d$WxvFh!N3lmUa9d(Kb`}T^Nko6bywi}Dl3dmO>0vm_9 zE$@wjhL5_Ce$$iLj}d_fGpx1l>Sl>a1HI4vg%4lE?ziI6ykH1fM__N#$D-cM-n%qI z1Pf593<`lhlvAH;imPS+hf%>yb!E2K>Gs%})xwc`i ze6g_g-KH2@Q)RsNU#v$oq%WSbkbfEnR64of?*hsYHN!^c!K`7aN^;{ee~!8~z5b)<@T$8iCDr295Z~3%3gIIV!eADiPf$Ugt0#M`IMlH7I z&sdRNx#YLJD{7#vB%si8glwh{LqZ?A4(+lAi z{0r9cZPxsh;gUa?UWwEH|K;c_?8c8F?amXtww`A>HG{Ok+)Imt8oy@;YJ*M(U6% zdMK2}zy9UU z&R!%n)nCQ{k?f@zd5IHT$IU8)>52XOvz0N4&rz5O9H z25j6HYL?`?8@1qOWv!@ErMoCcFSoR!!nnu)TU}>P1ih96O%S$N!wf>QzKCj92fN1$ z)+fVlhV&N(7SW)H`of1irKLU|x1n!Z0nx!^q{_tO(*k6dxp0K=tl8zWgWs_3b_YPS zxHCd$Hvg^>{npYlrNfP>QJrQFNfE+XkOUqD?$O-yF3Mz#C&3s2HyhHfkJ2>(;_v1T zJ_K#*9&=j?!rc&m)|O{TzK}WB$^GkMa&iM0Z46H_qeTj}UpyzDbWUhV;nCbAp3*w0Nyh z4wmBA{ST+{3NaJA?B^$GWoLx@@TrE^$A$Czm)06J=vASgvFU!pb2@I1`DKY9Wq%QN zjkJgP_^q9tFta60r8pCSXfF3}>2}Ib?ImgrCymUDs!Q)uuz#yPzmk0pf2z|TWu4&O zeKp>LJ*YfHQq|vZ-?w1}uj%)P+JLsC8mFi4F_)5kIFr;Xfau4&5?d5 zjoMs1p3R-_Ec*?0!fNNDrlAH-UN2{JWKco}4liC<8SdbpiWD-L$@nYB3G=@`a@NK2 zuR@|PW_+HVa~!LmAMZaSvva%3+sDQEdY?&-@?PLF-Ordd9MAZ)gwTk9SlFaEp~?9w zlU!JZ5lRR}$9dYAn$6}F=eaXx;gzi&?EZS3X}ijKjW!=%*TrXI%cO~OdCWhYFhk0C zEcQ(*RmrDmG@zSy`sjMT+>zq$Q=JvUqD`T!|ApjGCR2~6wz7tktX-#4DIyH93Un@g z3)Z$ zgzl$}dPakrZ_yVLVa0o)1Xv@9L!J04f;B~&9B;1$wwk4k=q`Zobfak88S9QRO;Zk60H&etZD+z{jN+a^sS8{lr44(8*Z4-3-3O^3K5#?rbvoBS; zXCr&VF+Eq8T5n~U(o|8ha&nYJ&5l}SkaHJdT+09BF`%f|noxT{45%@74e{QR9FkPF z){heTR*syqrZFLGxjIzG0dp1{W2v!DEP5EGdkdcO_ zfmzwB1~>WqyFNM7;dhRK0IkMRp@ok>E#0qZYUtlTZDdhGx#>2RG)Zz+qR}qPRUCRY z1<7=uNjbr=hLEI8+WOQ35m&>1N_sLxfdvBh^z7o6qSydo1HS40m#5G6jgwi;X5yAl z!BiWLeDrptzYlZ1ZLnFsxQeh3!=*FD7l4ovuKRynjT*LK<^F;Xuu?-c=LdZFM7an6 z&Ku%?*S=K-11t%>$*Fzcs^{g(TR37xDF#$XC{m+R^APG(K_rG_Ba-ap(ctlzd z3rk?m{Am=r&yLNpH*D@+TfmCBGz!_1cN`Hm^)6^ZSCFKo-*dto3Oo@Q^K0QOB4fSB z76j)#XwrKh{99T*E<(M_()6pOPilun1%tM6i^mUs0*@0~X;RKxRxj8C+iE%taEkpQ zb{@K-05pctxVJJksc>t0y1*RtI$2TRrl(oQS-sL?+NWc`nUEDB$578Mu)h6IGwQwC zn9}!BLrfe(4Q~lpEH_*;|AxXWwFyG1Wg1RIcktt(Qnr3+R`bZLnEYa!0Q|rmE^#o* zT!s67Y|p9zIU*ny@_4N3BVfu&tjtRZBc;EBBfi@xa-Y@3M0xZOimUQ0+QVmu+Jm|n z3=ut6xJBw@-++dr4@G6Ut2E;Wpb?t&-&l1KjPGrHCmYzXq?wW&WeOwn{M&FC7hpVX z7UWErhG%Wp+sK-(ZQp@riL!xs_MGHE)9$JO#DicrsMowq59@63DMLx+T%D zB0UM;(No6V_oO&W?+G!$n$bWrb#6Tn6+!L9a^0mX-$ra;*B*1=87e_ln3`gnM4{vf zJ$c|J#;3~B3$dGq=Ff$wUI&hCxWid6^blV(M2Z~2-pOGj`Z+`uCG=Es_!g>18h)>x zi_g3zv)s5OO|fI=@x<&L<-6zm>9@A5V9o`yGK~@|pv;e*faB7a^ESbAvFGV|5*U?^@S^eCV~LGLAhtZSCDdIdBIjcZPOpe2EK>hLi`;c`twNlRoC> zFx%3mZ{R-&JG1I9irE=Lfocq!0kuid@_Mvv_wr%!+iVqx8Uxdn5{TetcvctAMQ&)M zrG#n7r!ew~J`!37Xxo1mX||zu9jec*E>bB=O|xp~s&I10^0b7gyi~a-aFJFCt;JYO z%!hDR(*l(exWl`#82%cp?>B~CR>*AnVv3Pkrlvc(iIO6^Rn^3pPGy?M_G`|eA zko^5$vfwyDzf1aR+DAsdWrWC-c6@SZHnvT$f&b@WuCN>i^*O}V*F|e>>N03U2hE&ndJ;o@I4>{v?G8>CDYL30_oLc;t#3Dok z{1sbUh?EgBFvu$M=~(7J1yJTg`rc`c2T(HCz65=~!grkO=Yc8juor$LvSPdy1xa>##ka;SXMN zV$=~tuCRS$mvfL7wzsJ|z6cj&G2Z&@BVVL^DN+ti;HhlTL74A)yn#u`*u&q_U<0hh z;A0u;NQtd3soF99$jKFohd83*KM@cf1w1H%ii(H~3(`IZ_lnI6Ov{;(bDGTvyCyMx z`6D@<=D-I91-&nkyBhaysVDl6<&)tR0!ku9FRGv<-uT|EX7ICBsg)ffx^6WGj7d*E zt>JL_+s>zvEy0rI(OWj1F_Gq?3uPZZ@O#d@YL`*r{9ArDgmQtb-&{Q+RQwn(N3Lq2 zhS2yF`Jiwqdu4BH6?h&j%sWlI7(vEKr*)ryE8smi9F$i^wg{p@Qf;g|s&1SVB{aVa zHqVKz@&U%OLG$YI2319TFyaeVZ{^qKDgXh@t)Py;k7AllN?_t$AwIRRtXmcX z(MucG%rS57zO8YbTBP2cN|gI4OO zH^~_nYZgJXb_e(nqsSV~zd}NcW_!c&HY1&rHZ26B*rAluHQe&ZI7~gh+YjGvCw2(_Iqe zDGSfspfm3NEOYm~6@ydA#IJ#wS<%$YzfrIT%J9bQhd${YA8v^$m;xf=^*KBCjH>A6 z3N%Fw{ar8jyxNUVfiejX=1EXpz4nG&r;hkza@FZw$v#3G*5jFIF-#?dR}=q19Ax0D zMx621um|T8E5drXPB`tG4T@^KZn$7a!dZl+GXX{-w#}*@tV8nQ(J(I3$_k>Xb~I?h zKLVkhR4t(hD`h&VyLugki}PgN$Wj~T#+@7w%W2^1dp+`cFMuLwD-Cd{cQRs&*Ad!*rSU)tq$wR^P8haW{GH{2Vl@=Uwc1zGweFLtWZh_K2 z#FF?XyUle7r+1sP*G>yA1ekc7^^63g8#(KOjLMTc0tZzS&6rMBO3drtR}PJcj@nZevRWZ%+pO;$cu9tD&ak8g{FU0Dh=pB+8Q z9&-x5VM=XHJxwlcL)gZKb{#{l!EcmON5!+V#>gI@jZa49Esp_J;c+pZ>HVA6Ia^!; z>wzpY=k@fS2NQb9O(PL_&(-Yam6iQJkl6qOdCdeOTeGqm*WdO@q}@#xrj!8R6WI(z zj9Ih><^1f_%q&_~J7W34uWPEv5W}j$G?;`gJgTXz?9;A8i)QviOApQ_`}ba03$M04 zQPg+S_Oup~MFNmi+a3XXsZag*UuF(bHVfkOZMy(SstZ7SzwHnp!E+R@@~uEj=&Nj) zAn93OmbJ`&=q>ndRzM)ZZrfwK_Rk=bi}P%}Z2CXFvv9kKRAxz3oNRd=+&%{#C@61U z_Z3jw76hO9xw_W8a)RmJ+VVy*v!H#rWL7^XuX;GeAQ!sLWnh}yoxv^8quR=qRuyrR zlgTIGl#mW90UbSaWN;HM5}UBIpxz^xO!ccFOz!Vm0379T&@n0-!Bog3IzFLPCx*VO!>2Kl*|A{&%PjdOO9;2T5ar`)LNX(A5wdbgJ0*_>%Ry zi2u=#X@;Tx&4C2f?a4hJ>)sCnFr;=|U3Qy?mklSQ*JjoVcs;;ORb#PT!~T@r+7ezETzwwrdg{HYQC#mP1eD1HYi`^9%tVY9UlN} zziS2fa&(?~kbQh1R?ZbP{#J1eZyM)G%_ESK^Z-VHO?A-?tA2r6@4h%<4$gE`44-Wy zCuVBqXvb_tDT!R~&k>!mkZ`9FJBMLcj{(L9Pp^wUNS`@?@sW7MaRR) z)>G1O!!pO#;wwLZn1yO6ji^FHIq??t)@Os5=y)#r6cVEkP&^f&&UC>W?1DtFlsa(?$>yXF7$a$aX3|f1Jaqh zm-l}sTL_BbU;ZcYgE$A^z^1*Q->iy^^GZn##>D<5T|@cF<4!FtFLbzE(X!PWgm(&| z;04QusM*vQzVP~c2Is&1(T&4xXa7pSUKl*_1RdNaT@OPnv{p$8{o;ePwAs?jZz~ZJ zs*_}ia@9y?8X>r2N}s*`u>3W?U3P>(Qh|>Zg(|@-dr<93BqyL|lF$-mXngZ2ytj|^ zy$*0RX7^kOs@VuA+;Nsya7I(pxg^ysK2*G4Ijvdf1CaqQfQ~|U<*8K(@sXG)5nq45ehVO|u z-P`S1YXDSTBaMn@k6XS%_)d~?WWIeOx)F5)bGf-T*H(aEgaheHJCKR66Epm)UeTlv0s4{mMd`Cg_!e;2?{JMaq146lk`qVU@oK6 zf#g;|{{Z|5o)Fr0$Ex)*`_wV(6E(TjHNC5RiV^qn0B-<-=_P!6Pf;Qvp|hmr?$_QzIH?E z=N9wsV)5EwKY?yWmy}-ArB5g}no$;VQU+|Xt}Hc9X2hDwczeQ!v6N^E^tq7cQ&Mwm zP@GMcy9N({u>1AI$b@>r7PsE^i;5;S;6q5;!-MNdXE z-P9!V^cO3PfF+oS2i~OTv)G2bP|p)PKyxebJL3$<`hty6@g;dZXG}A~!dUP6nvxQT z;D3K`?#Ac~$UGP!n6IKe0x=4%;AHvpDheaE^m@xR63yl8_|}j@`b%!rF|9_Me!e?39li_% z{fiGF@rUK1Ou2hnowLruAWdO7vg z*&y#51=3NlfT!2g0~e`6tOlOIf(H1~ zFZAYMqd)~~-5l9c5?vz?nrOu6x+cH~7IAd){=`xw>$&Lq zEek^t0hRQjluycSE=1q!$;yj24mpYo60o+n&%!CO011SM|LR4HXIT#)(ds#(GBRZs z@^~G3{P4dZ*`Z?&jz_zY;T`PXG=gpJ?KwSQB_2BcVJD_)#3?9i9_JhY;6tLHy=GRN zCr>NY{NOn#m-GBLgyXm+Ba>1BKh~t)p?J=JL-p&247nohgT5#(oIwY2oGpapf}P~| zm9l5C)_yQYY_CtWY4hx`ZIEz%{-&wPx`QjDDYKsxk~>z4OTbM1g!VH0{u^0BSy{@u zo{lTaq$I`rJxf7sai)XMEx$1BNQlPDg8d5CevJi+YFGOP)6AM`9JKE+;`(FHPT2f=`+H-NcvH&@OR;3UX6ph$Vc*-+q#OA>15>#cy4Mb$${=d{R z*K!e6Mo4(W$lQ|_0CO$hQM?f%F}NcaPPdOsb-yoY4StJO^N2xHeq*62j8M_( zU9h*5N-1Ah3E{Z;1bgThM4#I*amEeMP(gi)lG#A-=3_u-bYI#c1odXf%2 zS5+wPj}QMo0c<5FHUYL^B(-Ypf%C1xU#9$PDJ8BshL>Tx=}*!k^2G>zd~2{l1|8QM z)LzP!GYp5?)Iigz3H%=@CYe#COm|U-xh01M#OeWZQ2DbgpNtwW_9Pu(qCAJC7-@tk z(OiIF2Y19RKqr#wi~0{RlYzEvwkHq^Q#GZv@`s0B);K=Ss`N9=oDPtG$lm11jB%3J z>^3btH0W=8ZAQ&-Wj)+pLS>kRj@*;-Ww2Ch0zR17 zc3f-8Y6tlU%Xsi}N$@+D19r#3$mZ<*$o{H(j+@}=F`Wh#4eeU~Ifr+Mu*Q0g@fZX3 z7IMhj2uAbSh`RDhG1Q>Q>)~=^8=3E}6zKGqW3CTTvp|U1EPye)NJoe}cEwUD&qlJNc4x zKrn{EpK$4e{_<^Rfwv8{&31qiHzy41-%E;F>!q&GRSD?N1Khj^h2yH{F7j9wWAVWe zu+1%)-L0Sq{@3^N&`(^Y)|B^&QOeZUP~YB0_A1}>rH8afT`YJd{{P|; zL4Xx?sW*#Un5sDvvSC_9Sdr6DxE9y>;mYPxra3pS8yb}No`D{Jb>6u@mi0K1xVExk zzg{XU=q((Wcn(3)7-=#;p-ImptdPAG#>+%~1|N%4X3h+1nPcw0^aee{)Gc_?*Yd#Z z=IHX`vAdgGWx3NZF5d;?c2wt>VzJLTM_XG(93mx7@8Wy4I!C&PiOylXFr*S-G}alC z#D!+;g~#E|v%v4bfn`gfbV7p9qPY!6@&%rf7D6-7Qly$+O%@IRc><_GG?%a zLoT-`S^jmhrFeaX5}AP$?$Q1sX47GI`mIbq0AWYyNo!FBlQ{0#5Mzn9L&Y2x6*onK z52V=$cX^93BCUAP84ysx?#p=OfF3fb4O_ZbLt}GVRR8T{9zeY2`I8Z-_A z(P(!NDpddcM*k?OVp!Dbt)@Z-dGDKqJ6=k)!u+j(xr_f+VY?4#M|@bg($SN@(nP>G zHCHn!;q~VPUl{D68LgTQk1l2XC2dNL5O}+?wJ#p&yRW#6>}ey^kPj*;x@qbGGJl2G za3w&NVUN2*7(vzYMgb$$9H4v*+`%lQ`+P4eH@Hq|;(?0uzY3XT?Rn^Or^d))aQyaLZEt8<3Huk)5^a zoDBWl#ldU5odx4tJ8D2YB`%RFI)pLV%gL$|vp=RS1{n6U)rk99qhek!_)B3eP?e;)O5|v}bpnT(pIR5Gf;`xRr z*+J*dUh}?@(`4FdG6nwz0gZ}Fa6@Tm)6Mn<&*4+LD=L`AJ;J8a&yV{yX*(&#EHQ!< zD!~3)Z{{dZvnD>y>!#rKMX_QrBhn`wd+p#sjNS0{5<=vls2n~!7x56fp)$qsPtw$8 z;~i0Jzs-Qe7DUA?F_b5zI24}Pl9LOPqIC2e&LQdkNhL*xwMW2Ct zoBUVc>^nk_oDE3^Ck)^WqoAjmCGHj@zm7g*2j>F3IqhAg>Eb7l{Tcvvg zYMN9sL!VPLt|km7L*F>u+QPXm$y<6>&@i)#@cOE%>Xh2T$`dI?i-_`;3q08lh2gbk zxIQHJQbjUt*l_bLR}6O@5s8y{z)(Md9;+6!I|n_JX`V|;mt|?XWFfQd5nR|U<*)1W zOoO%)$rPE3oAxh=cPk^+3Q_YJxVvqSRd&DSSmQ$EwnI1Tx5rYuw2$*mc@1+;P8CCS zto$|}b8Gmn9T(snXL3!w$Qg>lRLI420E{S5Gb8xMQOS`r5XB0Pz^?m&x45n}*-p?d zWjBz~% zfp}jH$|R^Z*e70VrO^rxb5cfr4^EiMnTYQ)@0@QL3$K*MM>KbIVoTn056ryQe}CJ; z?bBP1=_QCQ9=`)w+s57LRgrTHLBI}n?Kjo4Unza7W!qGqwa5KX8|oqi#_uIR zA2(Qy{mMR}iLPClI6Ol`JY;IqNCkQIVhLH_r2FdoN?hc>`sB>+cHtT$dJKM>%2coq z#kq+p)pnA9NrkBKME4KqNTtU@o}*)IUJ8EED(1Q3f#XMM7b*~68$nu;MSj*#HMc;z zM0pe39}zwlfi^*Hnd8IS>n&1zE6pP^<}A}9{MshWDe#{K7P+Mq^QmFscS$xa3xfC5Ke z&A0C>Izh`IAngmLF%y?_A@96*UcIx_Kb=@Z7S)dOzwjZtmhu=@K_t%Mu!+K_d0Pw&Epjo*nTnicw!U$Cu)j zu7Wc7E8{L?OWcg(2m^f-`i5G+q6-W4ZDlH573YN>)MbBZwr!yqJ7^zwr2%W_e~<;4 zO8>(F!n!J^mH)R{>hvE;fDyf?C;sWv?@!`F0!sgD{69Y6Kdhi)`hP&d{YYOq6O*S5 z`Q?8H%`=()pjCfQGsO7s44Lf0my+x3SJ3Lgh!Rdv&m>Se+Pud2MhR?W12jkp2hu`e z#9E{u{vhWXbshS)<+5nW+#_6!=@ZHrh}l6yy2S0;?rwio)oWH@Nlr%JWj91@1F-;J z9pCNI?Zi;&oI~8ik)U#Pai_E#mj zXlN53FUDh-(fuOmk%vVvl0WaEGU=UC3YmRdqI}xCLAyrwoMS_l=H!D&FxeX$($Fd? zC|N%}NJ7?eB~j+7YMv>{@g6cRO3C41dE5m;iiayklQ>A8Y98bR4O>|#?fTQBauW`byvfx%_mNRcR05>Xcf%<6 zlTF|evud}-$p+h;MHSqi`6vXhvX~5}_#<|sG|aJrS9kR6r9Hb|z??8zevX8@5aP0@ zO)m7A23!hzoKbbMrx+@_N*)m8blp->*TaJ zd3RNw!3JA{fY&S)d%aq&@F2W2fM6A+p#slD?Cs15I`MgfuVucQTWoRnN3-p&OqF59 z?UEtW#M|$AXS%@|Wrd&OPNjxg>*Rd+!sc;K5t=HrRxOMWfBF70q-1P3P{nQKRIc;C z8=0q&?_qF{YPkLRt%y7EOWDToAg-pL#>J2lN7wiuhc{g%WFTt|R5osxKP=^V|Le?o!RP#*1pyxPZGVff8W*4zTpRxSdA3AP@8}M3 z{iCe&20EXRFKNU>~o;153R;KQoQ;L9H-^lD9>k;XP5 zPU}hs^#1>#WO}9_kEuzj)Uq$?Mus0ZfA=8J_iyoOXZ4^$#2DHHK9$`>28MbT;Y}O@zhabfTNnvjQM(W zYqWj20JkKZAvUPWvo)SI_;7vM!KO3^?{ep@vc?Qe$&ep@x)Vm?9KCWXSBQ%xpP)Xh zn_%6#hfyp|b^y z?8!{Q-VTQ#7+kv802&?f<{g+oK?&9H7=PxIVL!hKte*2n{y)afDyWWV>(&9n#x`yn z2^!qpU4y&3yAzxM8+Uhi4G>&{ySux)LvSwV|IgdK5BF_#^{QFjU0t=h*BoPfu+pK_ z?lPzaN-AOW9AEv8;*KSNkIXJ8(dD@PPnR`a@hBpKEv>6ObrOHeHE~sx2VC9{SU$Y= z_t%=9>p(WCrIx!LpV9Vrj6;eTEN{|%oy{Q+Tom9mwkAzb0 z17%g?C$2P@_z9(PUOJD?H>47!cXAG}goTkcFcIv)6ARU+m|iT@xx!A!hwzl}L*eeBcHProV;%Gl&`cghLjh8BQUK zr111SHg;ec%^N7|DX?8gy;>ks$Qw~{VyLdPqCFEZ;rF(PMLfPhQ{VD!V9RB3pT^GZ zXmVB*36hLzKBYH%9?ziFu-wZvVuZYXSD=e%)aeXb+tr@ic?HL%;YiAp$Jd!}Fk!1#Rc?Uc+i`A#Ki$lbmw%$0Wgjd;HuPg)l`YE_2OSvXA6pOH-imRg~ zdHvRNnXsb)ds}-%DR6@0k6jA2R~Sxihd~*4Rmce=SabA8C;&Qiw&Z&RW-3yQgIMtK zCpasKSS~&cd7z)=bR?{A`p^s9>M!V=QC2l2W6%rwn*T*E08KZE%c6UX1qX?SMH$B= z=CT{%UHqI8pj#3c1{1@%xVGIvoW`huAd)7t&C3tiiY`F|YcZ(ZeZU{acdn>;DG=~b z|6-P1ri4N`ZjI`;m#xEP#%$%3E#*U#W z^dF!+=`R8Wu9C4(UYg08IzT(!GfaO#*|CIhWRwb_>YyBiIqFY$>wh*}ER^`?MN&8g zF6>yq`34TmIW!byJ&deWn1n`8PWVA&83)bFTvO^iOd-#p}$E)av2E52__T_73x^{e`g8Dj(= zrGP&2aeq_4t%tvi$U+bwG7sDqc<%*n&v2<^iwX|;q7#dsc%CbPeG zTsHF#F!Z#E&%AlZEfOW+1-hirU|?pMU+YC)X%w1;SrjaO?KgfBvZn^Wu~mJq`JTx` zeKKj}5azo@M5@&qu>||4`b+)P2Zl@OG#{8RvfVs5FeJN%iPOlk@JvdnV)<^opnv+{ zy})!@Z1Ydqp%q3Oy(fEAei2%bH^om_7C|P-ALF*a(iT1ljwhU%9-AWY>0A}LiYWQd zg)aP^;YaP8!ah4~cV>*xvSgAI21*!ZE1d26`qOHFCb5VZcx$N>z*n3zEgaLP_MV*}LoAm;g$NPu%KvZtjHbMH(d>8(z<_%af+|j$Y8-DDP*!G2pNfGy5Qk zS;k)Ph*oqfDPm8d{qGw2@8FiKjFMTxV;tTttmbl7g(J~ItrvKXhz946jV`h#cE zH8-)vp5CY?7Yn|Cg###RW(<9ov!eRY20Fq&|HK`$f@0L!Ac=p{v4lEgh!>}Y$iubR zt$Ockfb;Bms^7@GbfZSp>Ae@3Zh|ogW3&LHIyN-zp_PCsPYhO6FO1-Q*~R@CZyNT3 z@q#~`_-p^P7$&&J3Onu|rq2rG{7A~B3*wyRy~NXkYM$=BrV2lAp0In zcdymqW^c|&f|*;qciJNd4$XXrV>>Y){~ot_g?fdyBH-%&!(;(_>K&j%3Iw&$A05nuw4)!S0x%huC^merzeMetj%>ec zjBfVoya%3eGU%-t0`p}&vPmz|zB*S_5bgG?f-to9`1=6A-J9j_Dq$Q@9oW>rJkdc5 zWW}Z@zFaZEz>P}be3`Xry$}uotHHbSg**6nq5*oyH78t1z-Aq#s>05zXRe`f5m;(9 zOP+pl!lu;pXs^1Mq_(uVrTo=B*$z3vLr`GD+~z?Ofc2I(?`fi|MmcR~<<^nDW{`!lL$NTU9WAN8t&PfySw6<=A=QsZH*L{)7mWzyxbI#T!n3 znX2d4rjDwX`FPjqqsnDUGYl4W<6FIvbN#*)b4=Qu0B;_3n4?!y4J!sasxo@U7 zxKo2xh+qL&SJP?$nVm z)yGWvyB5=X>ekHl_&S*DV~fCQys66`YUU# ziE?etwEwd%fnyV7Ug5#0c%dztoDgc-!H@ zNQ`%V8XF}gug%Km-T5u_3RM&2k=jgFScADM(i&r57;+IFMjX%biUZWP4>MlNT=zTK z6PUd9UsUiKc6|Kiw6IA0O_F(sP75aBJ1xRfXmAHWo#$UubT_xc zak<63KVIB>tB6qE841|mG^WV%vE-3Sw^uKi`Vg)d_R5XZZAW^d0O8i`Dqm~xv|&>M zwwa)hr=T9fza3_DnHOe1=yc_stk8%)ilXXNt{OF0E3yw?06o9~5q!3;aaN2CtaAe`Dh!J_){NSmtG?KK>7sMzHeTOB^- z*~-|~6yivc|H2vKOUnRoWCYb!%2h_uVfeUBxw|-~#l0|GJ6x;71gczXF2^r0Jythw zXes_UL&6P-p#<1^NXv!-FPQ4?E#N)h* zz4>{kvOuarbn8rO1@Bn0G>J@!(N}&i4~&=c)pfiXg?Gm76D|4Dm?9tWBa`6=k$z3q zEyGkAP%T9)p=rLf3uEdHmU!CL3^wn4gIJ}_wP!+I!N zS_=M}I=XGLYpSDO@Z)wavwV?bIWVD`WD?6SPPt};`$i-(cvF1p@=AXxBgNWNb z6iGwtv6)CYT|(YcoJQ+PN?~|T!|REQT=D+LsMcF}JV^A*1w}^Mv4iQNwYKnE|0EB_ zQm%Bo&isS-EHeKCWAq4SS#hu2&J`9i&Qs==LINA!OGEDq!? zgAPoJ}Tf+{FgBiuTu+2CRE? z!y2cpLF))U9XwKcj#S=tQXW^t<}D6KgM^p`-z|wddtsaG=j6weh|`8|`xU`XpHlOL zHR9*&+BGdt5v^&>QAGdQ?X*?;+3WS(8ahXBD#Y;dHpZKLK8%Q3#pTg$qWus6R3K=efuw7q6gU?d%{V(l=rz z<1#4MC~iz^Bw4CQEd?bZlKhq0ghE#de!+t?RQt(c233ikfbJ770R(dEfP!r zdZ}laANPEmc45NPS33?ZCKeylW3nFPg6vc`>r6c#-v&VlDM z5CFXgy~Zkz63(!^>rpl{=pUFkVEMkPgW?HVYzGp-BUE9YOYxdwraK&a`H~plR0rpN z(FF5*vu!+G4%1W_*0_!L!i=uxB>5XzP|GEQl|Hnn`p)^UjlBZSz8}6sad$sfOc*Gb zuRAf7+VCbQBVFJOo;fjwZ=MF?yI3gi^&Q?|m5mk1C^l+x#SHZ98$se2a zR!EP76-1J1|M3q@L4_BTV8b7kmt##_%5Z654>zCBHX5i==A56N(&8KZd-9;ZqxlpH zFR4?U%}=dap{4cd$0P|7>&m^d)iyjBr2911XhfnnN-{puZ>z(~(Ni2Bj@pOpbqoT5 z^hc8@OcAK5th%n6lI$X}7{W8_qVH~8puO-ada0KMS_n}q<{#Ha@4yRILZky`mLdv8 zV~#4Gx)*=i$H^tInYniAed0ddo7gW38OP!NWWMGirqX&1)1SXiWdJ4cyHY>?C`&^G zb*V|iWvSTSWA$xrqS01>`s}WnGMYxA_tZ0f`tDnTOl}_~CeiSu#upzw1`iHw&lC5% zAIJF+!n1_(V^wpcf3H9zI{G{D^iB&lDa%+q^?aq3AoqPC;LhC1E}n94o(LITSCrmn z&H)gzFb*-$mmAEgTIXdZHe)cY2Y@Oyj^X&%w;jLK25FQ!@rPvXU_QpRY5MqxiO~a$ zg-C^%(0VO3=ufaoQdI4<7Ady$QB-9Jf6?{yY@YU`&;_MT*Y&>|m;vxoDgJ288A$#T zZmWyoQntAGAc{mbFHu|Hu{EfX()#A(^QsKpd*w4x{etSl%-iqbrpON*5J5A!9Cktw zeDF|Y&587h>aa7bhEg#Wk42x9hjQJQGg%=KR#i+AIzzEyf-DmEo*s`5?`{M+-ZS(C z6sAs#nc%lV?bPWawnKyEJFgK&tAE0RdqS5CF7!SnJr+s^gguU3EYT20^v=eC1DfON zw7<#+^OIedL6s1BuT`{mt-N%j??UlRSp;S%;P(FKEs8GW87P{sDM967^2nT+_ODwc zoi2~_d3N8zH#YFP+0Yx|EfGY5PIA+Rn}9 zuQbin+^bxOeMBfuQwaP@cmAODZEp4}fjb@GpFt$z4YiT*2nYNMdOM8bt?qG@u(q?Z zrtN%@tjL&alunwrCm+9TKk~nJx5iftNql>DOco1a1eLO}UdO7|Nd)9@B2&aND+S(a}4|L zEqqU|h@={%Fw<#-T&3DI?>;}xVgkStfRpsBAeDj~5DqV$btkpyHhF;$MC#>%>=PP} z%CRMUil0{XptVjNwq zLJ1ssxk_0xpL}v|PD|@9nuhy3EiATVLHsG}zzpB^Sb_Z4VxCfC1Xj?UX!x>l)6ZlG z-iEora<#iYG@5cO{Gtk?GR^bn`(&^vMh*=Ege=-!K^P(e$5A(jr*NZcT$4K%#}B-t8_J{rC{eA{q(hoGO6#ag%m zaA%v10x_s=}jgezwg{ruUiij@g1(i&)zc1M6xG3a6}Oa^ul(baOdCnRuMTM^zMwer%v_3p(9&`k|Gi%Z zT);MEDJpCT^>@GLc!X(i|6>+BRfQuZ@p++HN~)vma@NB*Ik%><|J0|t@H_H>d+8r$ zQSf`fX3tMGyE1Jpvts!G5iq}zFpxGVVxOZg;8?=#mY{L2qxrig|Bed_S)l=J=Z2`1mWpN$-K9nrk>{EGX|t9NyTbtds|_a^ zbQo-ZFpDK-&<0-fy&*Y-D^4)j-=k>h@zF29IEFnhe%p`bP}bF4gwcF(|ICc!oHf6} zjtV)%czd7*`p?pYS07Q{kyfukLCattlpcaM;bF2$^A&!k-7&1K=0B(a=82HUdz_PT zB^F{*uXlplUs5W%PN#%M1;25mURA!zT}#ok4kkx@(19}jJ`x`VwHaXWWU1RG2au@L zTHIJ%8JIby(Z#2WGN<>%lVIWT>RyflmOy^kORPdX7wpeWqJ_nK9d3c7Q<&DfY`?g4^?+A5>kQ?aVbaI?c4Xm zxHV%ic$>{ysXk38wl49q1<;PV{)j*c7AH+N6TsjcZe~U64?X@ zln(~F5a>kkk*FQO(F!rVb?+&ed^P^!kBG|nh}ggeya@awK25tX=Nt#Q-&c#jy+4W+ z*f%bRPjtB1^GcmySfe#aR2_SuRUq-=8q?bw)4f7*8mjlE12E>2k0U+rz~IsdO?rjc zL9r>c8YXhX1Lze)0P7xQK)-LG0vELyRF18@Cn}ViUkyX z^+A8|rRMl<MO(Fm`$~wpIwXHDyWan9_33^dAYFR$nDhP zVYrbjXe5wr3F80#fu1hg!=XQfZ?DWDkwrPLkHM>I&lAx7t4{OQkyrnGTG4UpA!pox z-OC}yV=S)6AnVNv)8u#Qji(UNAEx8{muva(`QHOS>Y|{*lS}oaWF3*fj<_})N))+G z*ga<}R{oB=pAiCunjsN7(_QV)yddxIy;257{to-OtaXekBI9}hanV=B@U4e0kqlNy zJXulQB{q=6CipT{Y-dKU_lmK#Xn~%(cV+j$2}NA(#a^v%yNf*}r&N41jGX)}73m-J z7yAsV`$GkDcXO)t-rj1X-vF%-D(UhC!1&(ev^J`xsyQwko3*`E2hy0;cOgJZBJkS= zD~NN9ZS*n9fNb|*f@iJkUOLkrxiL&=ZIG#e=JPRde5*{i-EK*NGW(n2s+Z>ep?c1yCmfn+2my!x9?6!v2)G}5Y&oIKYyg2p{dP+L zH)6<$E!c9tByhH$NTc|Or;RVLW4S`c(iGYHFFiMB2_NP83z!N>UHUEVdammpt0>}D zeF;n`3PXq@P=KXUitf`MDnNvM*mi`{`t5IE(c?E_HIUXegc|>nzy7r{0)Xp-eYPyI zi39BHsV)nML?%twAz@YChp-ty?Hk>1=ci{@FGGG>>B~)TG2CZahW}N_CvJ)3jXVM6 zB$I@Wl8^%W-e&Pnb*G3T{WP|wQX^IPeih+yhag`7hkp9>q)7dd_V}>EOovd1{#y(F zVIaKqSTZoU3;voA3uq@n6(xOuLglTK$DJh~8<8^uJ08*a644!?ljSQFA(}W=0wjVYS zxE4KB<20n#gCV31t|(Qj+sq=s5e3=R2X)hcs&=brs>~h4UTe*{$i_2)d7fCNQ=b1g z=K2@$468Dk(lf3Mo=HG^vk>r)))+=6EazRhC8=BL*TzB9OKR7G;e(#F(Rw9@3W??s zD;eE97~&bGJ-J*xmjS4`m@RwE404_O>8s>`x}%KcXj#j=w7Z;VJJH#9mDpAHS`E!R zCm22rotDRcX1ACHuVlwc1vF|Lg1LRMj*TDrPz=Quh-n~i$>|X*>Yf8{qH)9-p2D$T zEfH2z^=DUDodePBp!2OK#zzk|HywQoGTJ0dM11j{All!2pKQWO(@#O(g%QGoe_g^0 zVreDG9h~l59!FcVnei2tZN8B$)yrIE9Gi81ky$Jo)1DW_?_h`8WbUU;ruY2HekJAL zi`aE_I^Bts4Owm9o>m){0JrT}iIP8dLA}X%m0KO88~O`wmlF$}nG75?Lr>;S?rU~5 z(8(}NtV6R#QNHdSP0wJUuNvbhTpQaVg za4u_-;8aKB~7eQ&>KnE+dk4(NP+R=xb-EbSys2jQI(JB7IPMbC(Ps<#Py$J8;;> zZ!?+;_lb&k60bDzwi9mP1`Yg3l{HD@EB>*=r!hehH}eSDaQnmvVnBQZvilP+mYXUx zQ)UKI{pppufDZ(wllh(@`kn&;vhPmE`Tp%Y5f3tkHK5-QF+yA9x22s~Jsq`x1EIf; z!AKDsp-ho6Fz!T8FfKX~`)Yb84ly0QC05-glm z0>_5a4f0{r!kbm9z)aBkkRw&rS5AwetB-yo{Iq*iBw;)pmAaRRjtP`mswlpr#cmf6 zy1JKcXw|f1eB-c-X0Y}%Nn7)f(PwYX|ENMlqP0ZD2e0XD> zS0VBh`r5F79#3akTG{VLMJf0d;I4XzQjtDqfF$tT zK)Nvsz+%9b#l<(n=oBj^+z~nkROJ&(t5(>5{xhv977x10j^ErVDGZJj!4DhEh9mWv z<&%i3A>vDI0Qt4*D%i`e>#Af;kWQ?`USyC6);h75v1AAATzCe2cVC&R^lP(2;R9=l zXhlDRVwJZdU@aF?)bQY$<6kmPddd|p?W;6eUWaNi7nMNmr}Ir~X!-J_HT5ZhfD05% ze*Mn3h-S6HI8`Tffv?EkZ>B?uBY$?nrFYtL8tr2F0gGz*hb74jnvSy*Tbw_0)OV8m zda^9X(a^r(M)^yE0M(gcCnIlS0GyI5sC*d6gBI!v}7-*{W@koK?n795_>HZ_e9rCMxoa9cN&p?1GiIP1Orx}|G z&+u4ut#bMm>{P}y9lIc2{~+OgO7WZkQaqi+EJmx*-^G|oO)hzYx;t~f zQW79A5a|bpe(-K#5LRJL+I3^jm;L>97e0aCkuz`k8RVaZ#r=|MmKd;~cHWJyoESN1 zCUd*`CYJZOs*fAXh>$0)Q7uBGH9eI7ioD-jfLz#KzVdr27HBQ^bjo)+NEy3d(bjAlkT$4b46-Oy;QgheChdCM2Ik@oTadQ)Q&2N+H~aTLc=Ji7+f;yr)WmzXMxR6f(9 zWbqu`g@1((hDXj73M#O(2wmLw?m+L3$fwvM+6b`}CMu{wSx3zcXY+-=_y}`%r<2)^ zF%T_bYzAfw9({}N3q4jLZu-8-k<`b0LM4~vAMCyXTo`JW8s`JNYA(Pi{w~!U?IMzA zBJ%8I$ei>qm5?w*mcl-K(<4}TGHdCuY9;mEn(YyqAY?RTRvC>tD?Y4)@P*oMpMoeEU>G$ew~QHZNg;q}hhEH^ za8A4}`K~-mJ1q=uzRcZeV4;kv7vp;r?yG`Ck_|>D!I6mq2z_0$$t+5FEplSu<*3PY z6>*Wa^dp2g#424%L5OPQsU~S;paVNa-6Ym9y-i?lLFf2Q*iO7j{u7?tLeL42x<_}a z1bkHc%WCim`5yaz@;IDV!4l5Z$X0&_zgHtu>lw1ZrApP`8!agsoOlzTz1~v02WBG2 z%~>Y&S=dVIy5s-jiS$fc5=+&f52V|%6xqc|8Yd+F+pk&r$zrh>5wb}J&wQJVE&Fa5 z4RC*BaH`43k9k|g1%ym*oFcc$+Sz#*nUQCI1#8;rx`G4PG_Cg+Lk8U~~vOmqzr!fM-r! z%o=`frSD!%qhMM_n8}eD_;v)X{Y{n;Bk9?m&_t2g@}QfsU71$PG3BAi*!Ft4Dju!-{@NYS{4fO{&z~Svig2 zNfu(Mw|mHr#N2ht6lN@2OCW*4aTlGBmQ0!wg3FgXem=%|RuWpH?^OXg38IBVM{oW8 z@g&WwdHwyB-(Wi3FBUurv4|9s*VY6(ny-8&guF*DTIW1(YF;CF;`o^c6GHp2Wxt&1 zqP+q>I8l!=VbiCa$>Ag%4zO_{8#uI@7yN7TdpkC4;Ul_vC#eH zbIY5kCcRe^#@@-1G2UI=vsBjUd`n$g}jauR}PmzI>VL9)^8S z=C)~R!=Ad(ZCl#G;~^{>i|APD6QBEaE1$ROtO`plt6Xh2cs1UO@bF^oPKxtuXeo?& z=n8Ptn`*dTs;z3g>$latWuiwI_C9QXvDSHNnXd8gbv|3RE@P*W353K~ec_V8^f%B$ z&YR2W=w#xBm)GPDAIfbZLa05b!M{~u?X}(Me0=wMT2aYMhKJ$#X=_@mW8oalsYXLm zs29F4qWCbG{w~eP5cOfX0Z}TA-LRZkyhpk%M|+cX;o9E+>D!=zFH=@(y0c#WR0i5E zhf3ZvYm-0N?Ht-PRtAQ^k-FXishL1VguP7v-{ zAmd?tKbOCp;Z>%wbKeb8loW)cs^by-Fe`F+3t<+O2Df*i(gHWY+QevGRW?j?FA-3` zjXQg`J^xcO#aI@;B_(A~^q-J^FhjM!9;&WCOEJ@+p(aUjLShS>(*d2U&sD{kQQO$% zt}vdK9UGi6#8eDIP}XPP;h2^_A=QID%vicdXul9dR$n1}IzMJGDEpEz%QR$ahsuJO zo0!Gg2ODv!ICKRBw{jZ| zvD0N0oP#N!I8lRId*As<-URvXK#M>HTZ5YcnpG2vf!b+fGtHj!=F9;TZZY5qU2d=TlSg`%W{} z=UF-42W@OW*jT{w9kw;A;0wj}?Zn3+WCwLWrLK~d;1KcYs*_4!liDB$4o#Fkxnf|~(zp{k|k>fDJtl1&Awif${twjneF>dnS{c_C5 z(rt*5^aVi6F45tv6bs`LrFK=^WfMDVI`s@UhEJ)m{+xTJNB_2`#~SgouS}d_KX267 z8iG59BG*sFuqIDqEC9tn4Lp26#ul&=ZKh5|9CmIhXg!F}9UZB=QhY+HRG#$m#}DM# zH!55g4GHGv$N8*GUuIX2$Kko6J{KoDHF|m~+9Gb>uSv56;oII4dA=tcl!y1_AT1i2 z#Olz2X*5<`l3ScAzh9X8DC)g#{UvLHspX^YHX79@Yuha}qZQF6vHuothlEI^H6mw! zdHB(dg1d#;OGDpQ*Q_-09rtS?j*{<1qwSADIun2*4s6i3ZHlr#kd_KoYZS=$$0CQ1{J2x#cd5}W6Ani6@*)b!$d30x zt-1&=s7Li#zwE*wYa99sW`=}Xwa5@3kUP1#$yF8Za5D@>#yaAc{J^|E@!F&vVya1= z=+E8#u?~iH?||Ju*?-!L_?lu8PpleSi{#lUA54Yay2`#RA-)vb!;bG-P&`H0 z_4KVYwlQ94b}PIi$8n7{hy+}CqEv|N*qJZts>>akIqVfVB5W)(j-F8{yHL;8^3&m; zzx?~^M5ej953c26=@R%F*RXSolg}pLut8Kw9l|ky1r-<2S>99v>51`pvwEaz*7x!$ z>SqX^>+l_gw^{MZ6{HH<^PUk%C=uvjwd*kI&xVD)m42 zAEY2ay!aiBG|*zcQ$QWVkq&g%TZ|?+T{SY$VlSV0f4PWhyf7NrZV}FmjJaJNd|%V< zi*xonqnG)m+=m)Q{dJlx1O=TmeDL&o!9vlV*dU00mVW(%yV(-?=<}}V1j3{55{5Bn zf9U-BsV+z=8>uhQObu&iL)ajq?y~L@l2g+C+A4KjiZv9dC0u~|VH0!j%!Q4JZCglv zO{B%tqABm`hJpBfR}NPot<|~HhA&|-yNd8u6#*MJv@LKY=rD*Imp#+KiTo?3U_Uyi$eY$n@vS0(qO2n`W3&~>}GoW##IwE zCOF=X&nuDMn%ujM!7J>-yco9OkebBFCyO+-Wq0W9ckx}l={i?Cl&AqE;91oQ{;!jC zzm}e9sj)Q>IJN0Op)OMbnHHi%#ckj|KDP6HppjVTnCe@J=}yK-m&5efUx_bl$O1WLU9>wib=&qufHe=`R=Xhgz{ zKr^voFcCw&+^1h_M&p|Yo+}kGJIHw>q?BHR@7$|W7pwrzeJ;3Pj%9^g>>la*3BK!4 z0T^3$%j`HTXgnql99=7rH`pZse7QdaTMR_FFVX`!GhqNuuXaV~BpX@lf9NXd50Sqolqb@D@x+0FRZRkC) zwt?2n*nN*3)7 z7pCZC954w0N@x5;z;Rk;1_N`-+JH%I8b#k8%7xWcT7FnJMs?#rMRr}Is}OAVmXKHd zhGW}8wNE{FnZ!G}I{p$i#kiA%V<-#wp``wAergOSPfv1MOxIr)f{_%o(mpQBBdbdY zaQaeu9TNn|$Iw>?^}9U=2P%n$%f-=QGFm8iB`@R|h%w-pEa{{rLNKGp8Jq*A{QkYh zE3`bfjjQ&2L6-tq;{=x*gX$yC<1{-B^n79}OMq6E$k{i2h}Pjj1wLSxq=ST1fkCyL|4f(~%WRG>HBFZJ+&xCECD~0nH*2C*wlgw4S zU~XV+1D#4#VmSuXofS%=?^A9(g1`!n4ik;ivbM%TA@vXG12hq0dz|PnMmDNsW<`N} zp`f^R4fuUb&d=%Zg|{s3|FHOS8|H7$tJba9 z9#UucjV~xR69w2MaP=)E4`}(FC}T!`3AMOYZIkOiI*f_&V}^3Eq7YMAW^gE`OoAQR ziam2--GNC4L2Uz*cT*rB#krhPPcf*;fXFussrYswIu=GkkuXr(1~KcPe~j~iA&XrC zMmLK{x-S32V*ASQ_I7Dz)eP|AS5Y~1NSy#opP5?1m{$14-(%vCW5Sq^ocdY-3}&Wz zitom|YMciqhtgN@$oC86Ku;>;tRYE-O-(%uyDJHD(STegkAw26;Jvyy4Li#=ZGg!` zEtpJqeWT9P7(ONr%za``JM$hR&10uQ*Bx?q2kTwo6tz&#WDgp^44Qy|ZuG5gkuhkp z?yP1`*^4^Y%n#{o(&;GmK3F;&@9&_y_ml3R%wJueBqfO!@!cE7CQ|GFc04k1$UtWu zR&xELfe_}#Qxpm>!RWF8Hj2nzUkA{~z;R8oo(3>@tJc7Qe?-AW_+k8L)Pte>m7?+m znWdS#gs(JA?U5s?dqai;hZn=#;f+O0HINW{CYB(eJAYo)9WQw6kZYlDaRHJesz@rZ z(}FB(YaR1#Pnz5M`3eSq{!gXU-1-HRZ(1fJMV=j7hJbL9lb>C&V;z=mm%l2yQ;HNG zn17YYI*t78AM2ENTC}F4hHa~bf^W71)SQLP>sZ_uUqJRA19H>PacW`VF!KUNmJ+B| zoLfemAu_+8x`~;pWE#tN=k8KJAlWfURfTZT6`s|IP8q~2LaE1$Wo!1-$Yo&T*5b%D z7G+qp48D@Ku7V=NSHjEMa}KBtAS{39Qgl%66BR4Rytf($P*AZJhlsO%@FS3lvzou= z=dQo|5OocVYixStX}Xh{ zvM5inMJp(|vEsmtBj6$$gsAoKS%zou#SGe)`*A6y9) zj(jPpX~nFw_aHCKou6RxWk7aFPo-L~DD(IuSb>!4F_zRfV%l`#E%itGSo0-M?@zYO zW`NV1x4eLKb@n>*T#qBC@a%=phxES? zJ!!AO$Ma9vUB#YBY?FE9=6^iyQV%m5|2;2I_Ft>}|CrU8Qmgjbpb9=s@xN#2fd_y8 z|A)n!{p()m$E2v8xx#994%W~?@yt42|`O^%QYjQE}6SjHWO__|2 zp_8<@A{7eN_MWap2eF$SjAA@nO43h9JJH40gn}#bnf!E~(Y_Cm^7zYmiHuCSd+PuO zWS>i3av_g##cyvlrT$%|=;2Z2v^&{J&^nv~>R}kV_UqA3VYoGhVuaCzAD4X3LJ5lfv+d$Q*Ti?Re_nlCu?P6B9pj$aIz! ze=a7MXdy4wwylF$rHx1WjskZOsKl!LVINJnaV5W>{%OoC4y0ihIBASv*HIYIUHUSQ zy5kz`2=S`h$v&!MmY=mwyWT#4mOZ~yT^65YSbFPv5xMqp`IAQyPu#yM$ ztM!A;{#4Kp+M*re;fq)Tkhfvk5rB`u1q!j8-XgarAAuP#6F&PVUWCF_*ZimS6#W>p z{{BYOHa6B!6e+VlV)MAh&-tBsEOp!EpigVN?F;!r34z^2-k<8@IyTvy7W&HEg0Ps3 z-leRRUs&=M`T%?Oti?@}Y$f#a&cP~9AVMKe%f=mL*}h1UZjL4HCEF#JV}}?aQFf-0 z@s+Jp=|ZK4`*>uu8;kxO)#pw;Ht|1Pl@X4=%XT&*1w{i15bWf(i|6|$4n;=wYoWYV z`uv!y#@vSev@H8-+>~nsR^u~vjrh4|dCk1dmIEKTGDavh-`$WDShW9|_0NXeKN*KD zqMNB*$9>5dr-UIK-&#HpdLqM&@BFUUDR}eSWw9)$>`V^ViY)cvnBeQT^7qj@!pPLYGsk%(^EmYO;iivjk;YJ!3TbH>o-@3xb=U9izl6hbnTdpN+RppSAQ${?Z;Z38oVw9&#TI8no-Mw^Lg8;8@bP^#L<~+Pa7ieK+=q6tQN(kF z{$|*ErX9Y~x9-clj=@h_HYwoG&8b^Tm%`(^{_*vcMd~K)o#(PFoY%)Jfu$r|IPxiy z#zFTeqR9XS9F~sj?dQ4dqa0L+)m@uW+46{U5!q)1JR77*50+H55*C9Uc>@RW;EvNs zdp6~gc2O>{rCkMDqAhQ?Myeu58$-IC9 z5!5NVHG_X(iEU**vvfp2GGnRnRNuhL*o9-(u|}ZZRkoJ(Sha{8O1EpujwFPt%Pvh# z`embvKkel|!m4k}ImwdyJ!7=3i8J<+tatulH64W49Tapb@SVxMfh4xV4O6^-C|iOs z$a^w|-+tay0xv2U^Q)g&py!)(Qr)EJ1SF4=G(`m|<$4tdju}KU4aKE0ET!U$UcFjS zy{x51wY?!F*&1>lyUVirhy)DQTX{SHdv!%i)59%E*73q8HW3oJyXRv>URR=}Z47gn zz{VDn2#Q+~vY_r9b;tC_e1Q^^p{JW&G8(Xe5;x_74-E6t!Avxe{R-aj;*(q2Z-5QX z>N8M$#5(K@8f^oe8P!B|PZ-wxT$i1|rmMRA&mld4C#3tX=s$!1PWZnEADbZW)D88j z|4t$T&{XN-Nqt6<0Dm$qaRIf8q_NNcx7Pow#A}W@qiy8of6IObP!aAn{io80GSD~B z+H&JPhB1|Y!2Unw-b+BQYEP`=s~@O<+0P~BKSe(Hs}9g>neldh?;G1Tih16;10o^V8Pwp-3hLXJHZ_`f#B}G zxCM6!9^Bm@-}kECuQ&HsSI<;+&D5>wzTM{>eDTw%cVy6^*-J573#Qwki){Z_=J&zJ z2-DA;yg!dE(BS{jF~3)Laze#XJ`#F$mL0jBQDycM5B6JQ#i{%p6!?q(*NdqN{GY3& zrJ{vyG`fNg97)MYIa=2eIb2r}`F|H8B_$RH5(V3wmc}~gtlQp2w|3{JJXg_$#Q>FjjLqnB&O2m&lT&I8Azb(3Zob+go^QVQy8;xO-;ss@_3|C(Aq zlrjYsYqp9qd9E&e?OsTQ6Va*ap|PQGYccYCGb#N7sFi6!q!MQc%9zN)mteZ+wIRXk zt(fifuV|y%3FYSGjRBO;i&>ISiy_0JgURB%Uo*PLvA!G?1xrEl@C^@AApQs3X1}LJ zm=Do&dtTWP>9={ zKNE3gL|+Q9)4=|IjHrj&*o-TQzUjcgVhYL8qPyUvjbAg~mM?93fcS&cFm&Rk8`=zp5CxDlF&=|zAL&~Px;t#Xs7VEJ zFEJXOT)nQgZh_%(y=3^{`XDZySs3DN>ek$Y-A}q_R~6aF{+1C?nShydQ=|({1PS2u z2O$39x;tSRK#JkfWCw_53-53lM(*u^E&Lr@&_8aCngM|D=U(DZO#t`rYy~Sjy4XRb zz;406(>n3hHz6^YDIh5Boj3^jK3+lDVC`RQi znea&G&f(~KX5oC9hJdtM{^xI}g_krE94*<{C0K#58P#JI5zXMsQu!SblAv%N>0f9{otD&rD3rVXzi=^#wkvjU5w19w!j`nh?@nVMjVT#f?(n{M#*%i6ZwAES$VHVmLFOg0Y}wyL-#V)>#_d;jQ3{3}pk|YuSHL9Q+b?y4<}2H(pMf zB|dVfm%GDQ#AwkbSF=Ro;yIXHa@AfXpSTg2FEVI=Q*I~@d9d|9n^2n)s<++r0|;`! zkFkxDi`FBp!s@yFJaG^{@-}s}3!^+^)9P3`Fcr*MWJC{{Br9sFY+@a{-~i-=F!EFD z8hym6ea=CXiJrHR&v;Y$FL!bLCv(Aw0F_oTd(MYEoILHX)5m8VbOK=)^CygCSed^= zPkIVoUR8)0f3RNvdf-26?W~4jc>Vqgeh_XKHS+A;#E%l-p2h?jNxzkwVYh5+{1ChI z{PeP_+_4G>pneQDyKw>%sU310a6EL!LjbK@&2hDjxlilw2n58x|Cm%lOn3k5%Z5l# z-E6k3+>n{G1sIc<}L-R%`H3+Vq}@80n1!0!L}Hd4iS2CK&k#y0OQrs6J- z{}Y@)fxFpD+eb73M*nwPIz*5?APyq?+r{6lpXUk&TKBna41iZOlsqylAnt9(uLJeL zj`^}VnZ%WaDO~eLRo_=;%;@*|i>{UbGqx7$h%uY6!6I_I8gVHR6`~j=OpEO< z!!E6YVZ20%=$uvn`smngo{6(}m9#@wroorpO9bZQg6>W$V9F2N9ejM#l~V>tEmtkH z#ejh&n@|!C)t*2M`b`$$&4iiAD=S%vK=gjC>aQ*Fz}1gHf)yh^TN!7Oo=_rdBEph zO6n}|$$ZfK1hBkDgg}Thcjz}`w)^$MPk@C{O+^x2afidv2LvmjQ!f3iGgQnn->jxQ z6LFz?b9JH6FiraLOfV@?39P>$gv^{;BcfTdwUpt*ZCG(2f(MUd|0dekHn8b8&Gv+mw-S%$&k9e$0}9lgr$~lyjA7t%SJotIlDlIyQvJg1 z_@J;Mi}C0;j_2HwOwtBqS>u$*P_$3gFu^b4&~HBK!%I^G1sBc$NFyN+6g~*p?US1{ zj;pGed#@6UKtCFh-(yNf{Gi*b>jdJP&b0hw<&q)b3$$G~Ex~w-rF`MD#@8j{7pv%n z&6KMz@SQgM6&qZ;De)6xP0UC5D+0fxN4+qrS&u25k2oF0ikHEVa153^{{^Cy^L%nU zRs>Og#d^s;R8%g}?qRG{o*)jA-^<_+cCI?-J*ARErW<38Gz$dpKdte}#fR|rS?(A-Mp){|s)`m85X}q28wd*wjrYU4-4J)nOO$C1}HIy}4Ou zQ*F(@Y-)4m|8NzQbJnk4XESYA)aj&=IZkgWyH|=2O}Gq2p=WP1`0X$$Eq6PT(U-I8 zL4q~OF8YiGFV?`Hfps4FH9qtnmD3_|^Q?%8HA44H^lRtOg5289z#sJ7Uwbj6BtACA zvR(k%IV&sDsM3!PVlI>+LGo^*EAb5*>E6|>ZZNM;%F^J9euC~)hQXH>8~g9rRdJp) zFN@8lHB)&1q8Y3FP!3ZdoDDYB7|kX6E_=^x!%`=%awE7}U9_O8mhI@V0>-KqK-+dS zBg=nmj)RY9{%il&@n8FWl3?wZRdm_mG8o!83`3*va0uyB(I?T}geP7s!_1_h9ALH* z-Ska-e`~R6(o1m8DBYxu`ZSluyP%EpXF)YB_CTC4vb5u4=YIq1tub!+%Sd;Vl1HZh z8b?t$I-MhD_CjfSu^dNzQ)Su6-yG|dl#dsXi`3Iv#px!2(;u|6p+s#zu(#!nQfw=X2VVBPLOj-8MS|#yG0K0prCl5}cwi^H8o4u!$As;# z_8^D!n#FUfY!AUasB!)HGgRJxjk{HYV7e1BnAqTP<3`-QOftg|pZi$ZWNorNY^*`z zTn2C(&aQ+(VGsL@aIwNEvPF-G5502yJ3!D6<%~y{b7nz->GTD&GIKuHNGtUtnm?J< zG!}n^#*M!|ZETHr7(&bN`~xo|4?Z-bM2GxDiI(!+^Km#YLo{oan~TKl0vVb~vt5yD z`c2(E9v`3#BX9%xhs`wwGhd^qKXo*s-w`NC*F|kjdOzKGaV*qP1Mq8J@FdR(t|JcR zPo%prIG!2?h~(Nboa4PXSjASLc?dBmZ)q#TVni;Q;>*{HPUA{q*sb_uXt71=wz#v2 zwl!lK{Z#t~H+M&xaF3+#K8cVHbJaO*>v{d*{#jGFIbUHwkjI!eek}60#wti*Dlf(& zm0JPjCJH-_Ub)6HuB;aOr=_sdP-u5_lyE?mxb$fS+(3te!=j0Etx{z;KP|{WTVzQ^ z!)25whE|PpGb{1;MvRyjfJgLqUvJo&b|&g^=xd5TF?QuceWw951qi_7o*B86 zJ{baRyL-IS@+v^4V} z-Fqegk59|~Nu7-DdeGKr+_)5%zNd9t9uuJh7qPNsE)<-6c6t%O0%C=G z4yrgvq6*24K6Uew$QliXg*a7x#C!NZ#^*_C+fQTyBM#K61_P&w!(<}Y_ksD%e|0nY z7*oO9`NG1r5iQ1flPU5d3vi_9ufY!`YMCnIi01Q)8J}bH)ylufo3yCq=&*KFhH?fi;i| zAO4w)iBzWF$BsxJlRz*Y@BmV~)bASb%L6_Pi@H_=GBu08uFJkk-F+=6L3Sw8(y=&4 zKjCH@+Xeya=3i52V@LHKf%`^|A~g~pO!MfHB`E*1hNHOv69 z4mu}is*vddI7nwhqScTfZNP=~4%G3U1sku+Fis?;f9R;j`kKaTiw^xw9wk)Y@DbI8 zE#~TQRa=c*)EtmF~f;M zH6+djSxpzm$y+KS>0%^YsNC28-j_4A4gn0Gndv6GiBsuVvNGpX&X@O+e!fqnuk~$g z?3&dC>*Y}M_0fA5S=2Opsax7MPx>D~gF4F%3y8%cm_R#Pku)s!fx>|oXPArbxY63^6^<~$n z{Vs;a$5}`?O`x?f=<-ewF!8QVq@C`LR1fpM*$dcQ8Eajgb7w_KopqWa$O%apE@*Bw zD@cksk@9FcH0Vew&!CXnkT9$DxjSrXaJPG8B+Q9{G{vODwQ8lG?w^sUqW(TlBv1hW ziF9TL|MsrN17Ryi5kMFRK@3T~MvYRzJYB#IAEKQ^p#aOzFJc!ZlohqgG5hM|zCIM| z>JF1xgs{@eMzo+SFFo2I8{707WhDS(`E`Qd7u|aiS#KnpY3S=1OL2go=$j1K{db^Of0H}B zjvezbF!W<2cl-|n?rU<(Rka0zMDF_#tpi6+6JOt}E;2vqkH56_ARZj>Jud>D7o3?= zc?6{mrLGjcO#M7jjWOO;Z|5}%e?*dC0IlQSivm^zTK$^V2v@sU$VA)PMy zgU2^&TUvLneD6|$4Ksh%88K5)L2lZPJt_5(DIq_1u;$Zf)Y1&v*me!3zSnI_&h_u8 zrJ~q$*kE>MvmQj|TIj-qVqbwK=oDj-Fu$M_xHmX!OG8(eg}{jQ00&P;i`(!!%Dp^J zjBjR%fpo=qiE8tzquFCjzZ!8N{I&X*?iu zk@G@PrBuP)r6T}!Vql}UcSL3V(P2HAy5u=HIQ@}@&& zX5usTFLpWwsVdD{dT<2e+7umZG*V7~TYMla2B$41p#kHGUA2kcvY57xP=b216Y({+ z*&0xV^k8}(`(379vc0!}DQYyn{FEbTlZWUhkDqJaczvE_4PULK3OG!P8raWUP7^Vt z48t-*CFvGvTpm_>a(>77f@9erdzVNfBe&6M1B3tDy6a6n^X&oq=L4xx<(BajWT zDNq5PY*)~#bngQ@x0DJUJE~z)gce9IxHMQN(c;z$HXR4nt+wgn`4AiGM{C!tpaHcHUkxJS={J zrT9C%K}6XuJlv5U1D&IpWbHnWA!HD+SHnREMWgz?A3D8uHs3)7y?1OYCV|ib&EZ@RU2&-~OOR4v# z5cJ-===`F049RJ-=3Hv`8Ew+JiM=AU6sM%;?fL8QxZajET1ohXx|w=mYdd($b?Gn_ zn)7@iHJyD@%S8uJeC(G>8Co_CtXFUHawKcZ9vHxBTKx`f6{@1!Dhi$cp`W#CtT7@1 z8Zh+j{Z_U!MEFcPu)=p8$|(H+>uQy2Rx#O|1Are!iM-EeuQhye!GDGxHEu%xVIVB^ z)SqMJ%p3y#2vr7TU_Ni@kd-#VnHkuD|++eeEct+j4nt* z{tp^N;O>LDKa)XscJK7!?U;?uaBC=Mzk|+=<1mQch0SIzy`md@w#_9NrUsHG?d^1k9>oleEs_B&Hb%C|L$VY1Q>&WLrz+TKTKI)u}`geOy2FZ z-}PA?b=X!_zyt$Du6)PV*UIZO@1vdS>5R#NW!Cm-ZfK`kISlIk zLYSA{mFYhOh}IPGBxTZS5ZdQsju3gkBh=8R;8>1XRQ3~!ExE^EH!X^Wz3eDNluSo- z<}tPFL~v&PCT8B5+doEEEq=7H_BS5 z*lFL6uF?FdJUq%=nFBwVagS{0DVE_9Y-nhwMxQlTd8aKSQ=AaC?3^b8>j-XkG^UiM z3yA$v&ZJLhCP1LFA7Mn=|I80TrBoCi$y^uU!)VlUWRdUF}d2iE`ke$+kDsm>$MU!R{n|9r8o zaRMU@IK>P&ICs4|*;&=?eLHZ8LohIDB{1){I8lm-ngUw$=A>1&i(ixrl=tH1$p*TR z>G!wT{O!uE+K@DvLA2NFX$AV7M1(?E1)0hcpO5z*vW6T_I%cx%N>uw%fTL0nI4#Y{xM{huZHkQ@aprycskKj7 z0?cOpxuu$@`9sT`SM(cMR>34jsvC1xyDL0IWa{6F65&Q*Dt|XQ@J~M}5WFDFy9lUD zs{8KXk{0GrWYqTM&(U(R;@#yw8B_bxGOYhtNXF{bUfJRf>oyrVZD+)#SigS2r){LGN zFS^o01q`Y+9gwgxCy%gGT3zCC2CiY^iT=F?fDKTvYXjLk8mZj%h zr(miUD_}*D!lm-482++Z*yR#6nHJQXJQJ#LCKz;AJv|z~6zi1R0qqEM{E}Csd(=Fp z`Qj0rxO?;4e@;vD=y!L3no!B`AsX`8PyxKnJv zRTBTfqj=KHWWy7K+(Gh?M1r6`ironmjrOR)!vtRGq|tE|F&bY12O633a(92ya!aH z&iRpf^IG=*6cbl^a~q8Yi2rSKk+5qM;izRglGm)#K=Xd;&*H&pB$JX4oYfoL+0bR1 zk_Gci_3m2@)h&@M3E6i4);Gsir{oCW3HY}u@NeV#Xh3E5#pJEd1Q&6%bC^-BiC?W# z)tfZYH^{aQ+N0SB2ab#E%!@f{<)_+_D}>Q0I$zZ;ex-LNG}AZB@LRRw zldJ1hg(r*Up{_%HL$%SeA<$R(7s<4-sl}w)?8d|K5^@S!%0bLA|JYDkL>IZCHo>E$ zmH$X}xItTG6$FNCBa^oU@tc^}(2RrT@ifOnx&CRo{_mlIOl+*{pQTpY4<7sgO+}un z6Bx&If?beuA4zILbe-e_2h@3I0drDAvbWqXA4P@)ilNZLJ%cdIO&XJT2d2nLB&70* zLjSi$@0aM@pYn&O(ZZj%SG`dg0)v*WYkev@zrr_1d%Hjkovq&q&!q5pOmDVs>ssII ziomwxJy!e7>qpYQ+35((zdI%Vii@ROGgv7vRojRb$A2YZ<^1|WGRW^jPy{%ofIoD* zeAIlk1S}}sh0#RSQf(~Dfw6VRSq#B0LRwqchA84=PP1kXo_;|jpfGTI%68Ou!U4(d zTZAei!3mq(IBQ1MD?va!gWra3@(C=EZgXVz!aqe(VWka8S@kyB?qblmH9QKB*}DQS zwmCdC3o(_g!N;q;@H!fgb&B%K?P${_?60ttk%Dk{=E_mm&tG34`@WqAaFhF9?8NZh zhD+(f2{xV?rZbD^%5U^!Aey@NC+xv`m(D<$xL7hT_V0yGYtIvEs1q5dd4V*l!}F zys1=VxI0$3;yip6eSNSRLP!6BiU4yfSbhE@f`gzVrr_e+zr^4SEAIze|M|&k7*R70AX^;c`s_S_pC0RuL4NMZ(b=XWFI`ne;Zdw7o{)1^LF&euJIE?VQ4t4^J#)wPD-LJS_wq;ij zvXA@F#cviS&@OkRzG!odHgDvZ$GV!kmWkQU@fKLPBsW_3ji$ML1We<)nX|wv?zGZs z>5?{yz9BAE(Ucve=`2wSv!PT6g?8uf)k-uV+)vBL0iV97JxF&81ln_ZW^TPKAO6~1 za(TIKRe!^eo^EaUsAmO-433Ul7uY}D$tVuH8@!*=KklEc=?F~f1>B`9J?2}vz|d*B zM6LJbvT08?zNn;fZIgQqVWsGqr=QTp1YKW$FN%Y=7}vd(!swm zexD$i|9(NlF+4wAW_W@x zswkJd3J%|_kxFSwcz)7dPAI+nB&jmxbtlloT-_7Yj^JEd{XLKnT?j;Pbvk)_~ zPHSeKfUbC!ZfQ7;=P25IsqYn9_4mRy(dG}er7Lb2aL&{|kC;dxL;mOK!gCIQ6w3Ex zgQ6Yprx_pCW*c?oE8tqx>@xLh;z!A2 z{hJQuQL6;+;(5sQG{qnFd^YRt7Ou&zxocsMZu^=nfPccpKl{NAS=qOzF&ghQSfJ_m zn$ngjsX}hXCa#E&?_Os}9qEIELd=icKi!zne_DaNRlpJUKj!gu zcHMj~*gn`=YA+pkv?(u|d(9Zo=Y42E^C6Nk4u>ISK?xFa-$CwyE0mW3yupd2un}J^ z@HboRhbQ+Egbm3S+=rH+XGA9*v5A4F?E+$EpH}JzMfAmK8xnSFS#1^2OEw6w1u(`;SAC=MK3w#Z+0_@4nk0e>{jV#O9#}ik>i?ODYj^|k26#1fnbipWH>vJ8sV0GB;6KX?dK+!+-wp{r>h|};k%oQ!i2Uk0xnJaJ{>CT_HZr_Z;HO^SU0QZiyKPNx^~a&#B%cjyY}SkOGQ)B@d^jn~)T#Z#m9)8?vCnMLl zo81_2ZX^m%<5ewT_iMIloJKv(zF* zuCj!>lABgy@KFXH?Vp|+%vjFl=b6Ege~gegVEWd5J^ArNyEJ9XmGT`qda@3Kd*9fo zzv=5dc{9v(yfC;JRL3O(qSRj|U1HcwG7yqlKoyt49>bKAB9we(yPOUjsYC+aEZoTp55Dh`-uqXskEPsXzz@FQ^SB{ z{O6R;;6r*L@-IJgE@VT}{kl9)pAnA3L8W5$?+IDpYqQw}^WUP%N<+q$NXAsoP!H_yVfbYR^VFLl(__gQv$Y(rVb#;&48|NlY>s zpN;43ARlSD0#C(@dl9+9+x3Q;Gc+p{R!Xj-S@JS3WRHf#jgS}&-2QC7^ zP|bC{xJxx!kW2p4EDM#@LsLb-^giu<{p|5d7YV4kAeXuK+k^9{L!oF#N3{Ag294og ztWiD?f8cF2M>O&3&M7JAao?Wj`-dn5NQ@WId@7&SQHtk=u!}VRiH(pnHL9mRNb!n_ z@icLX@yS%d|Nmy<9NYVQ<_(kQB+|=ma4g@ z#E8A)5lA?e{&DI{uk@jRlmig%@sgvTRQzdyJylg+S_bO z8h|QxzsPc$|DJm1S4$9!-q&)2uDfZTD8xF{vg?u#JSp?*VkRsjg&PUivc|(i4>p$n z$bX{~(YB;AMoF|uP$jRY6Dr>?%Id;iO9PmN9gB&GVj_+3U(F3*M5#-3h@6ObgesjC@kdkw+YdPi2@5EwyXUVoM**izX)rAi=_ zIys4(&85)~C6_a>-Y_zl-a`pl)_a@z_^a>mIZo|N+4}L&f=S8gnpJkyMLyB?vxK)y^Lv-$}6p>VaO6)03-dlbFEuKJfPPNd1_l`KYGm;7uUN2Y!3|p6*?J@ z{Q2r>->)LP-u98gFYdgJZ()HbLF@US@c*U)UUUI3bB*o&{UNnM(Sp;6L41x|r4!u{@81)iYWl*Idr3Bike6r)4rU*SQ@)DCn+7$u11S?#))O{f#=bwH>2Y* zXG5xt#dpp2mI{?XzQ`xxIDo-c*9AZClIzaHe;8~2e7H5$r znn5lyP0{ux8q1TrazYJK-L+GXn+{h8$@gp^Q^Vdz)~1*>q>-;*$L!03)wMxxhGF+(>P-PJ7ssTT4%){VsjGg9EpFl=rmxXw9y83x+v3+Z z!PTIYv;kD2ZL@-sBy!z57BY~uvx=y9?^*Fc|Gzy-+jM>3rE=D`&+w3=p)1R+k^_@1 z{tGbI<*gGtiff7it1DXz+@tl%X2&+9o;6-Ycb5ybDSaf^yN9bF;epl7zoO1lS>SYM zJ6s3jC{Up0qmsjS@gSM22x4woLH?X&5(ocSUQaw`9s2TYx$}fy@f99b-k-2kTzEa= zsqb*1l~N-Ikvh|lbNijK`K9b|c(bvOzcs3vB%^_N(dER2Gf<#qwW(x0fHoNJojp}Y zXmFEYA@@4$tn;ME=@!6rey>Y zgDYilr^*|z96<7w1L#MQ`?l8@*ngeMNMLuTyuM#xyVRy5Qh*%lTHVD6>$Z1>z19jk zl;FH5SQ9ZzrBWX+*Owe*iu1pLvWMhQ2AgQgI27Kqg)C6Off_;Y;le;;I79n>+m>&XK&en#>`Kd2vb}E3=?$Bw=mH|9?%F>!R|>|YR~`PWkPw9y8cDle4P%{ z5=mmycvZ6jIzn97$!NJ&cToX;!YcSDU6lfaOm0g9-uwxsUeQ;bSiaJdKS7-4Fzz0}AOjbss3>J0tl zQMl7z_p5XFuV_$VM>Gg@b#CtHhN(2b_`1UVweg+2uqM{}xbVzu#Xi!_&ywxrQv>Wz zlh~{J^hbB--E>te^BO}U@(J|X?htilzl@+N@^e`Y7UCL*Y)V@jS=`lClj%ZFFO&RN zLICn4gXiKowT{!Q>AKQm1|D(;UNG>6(*i#oy|E^Hm|*bxhfZci^|7GSvZAem`kV8m zjUznkjN0;!=WDF#O^U&Q#K1f=ha;O)$-On}G6exDcss3-jp;{r0>szG?pw(jnx{J}wH5IPGl!^#0FmJpO3~*F zD@<8Q4_6tkKulL@5Y8bOx@||YnX^mNJXXrFtyfSxG{^dJE3~f z3(8h^b+kry(sOu|QKV3cUMqWuF=PgG{z_4VH0xMK-r8S>4L@*(71RtvPs27dvnnoz_ZcxsKIx zD$6+EH#Wd+LE;$-B=bQfZmQ?`aA#pt-Gy08BzWq8RMeIy;AE~SGd-myFJosyvwAz~{wja^vfJKc1rWp_=Sq(#IvI}pP}du$?RT1X!yVuD3V z#qacfpafCVk)vh`QMLHUwAV9_t{5Cs?4fGVa9kvDJ44qAC&p@VsQ8YF78h3nom3UoYt95t@rC{ zdpQFiv$z(u>YtR`v&{x;o^D;Q8x%0l_(!UuhM^s&4F=V?nW&ggU?FYQ7p!3#n+W^w zQnaiwwSNYuKN<}wK6hHBdrw{Tai7>*hP0jLVJQ3xHsk|-8fisWW)v7QslRw_5YreR zi7>`MN`~JK1|{_4&7VjQiCn=uW4oH6OIpGio!!bJFUc#P0@y$oL$Ip5$DJv9?NNVN zTsf8k9`kw2GY@r|Q)p)*gH-qDz8*JOy8g)7llr5f#Y+Bs&2}&(Qn3;LJCZrAWsHFk z*y;$qD?3@lBl&2E6glVw+|o@z6SJ6hy?}b|iHt5bB4k*+jIObt)MZq@d)U;flSFv6 z0{Vq7uTGcY&Mp49lEB@n)PbGH{Oe_c&W%9Oxp%Z)dQ!>t(>?$1!w}`wMGQg1(co{i ziK5#W?nJGLq$ci5)z;~|*=P9qk^|;*>MfPL`Xr2aj9X8Ern7T~n5bfs(*V@TWjOHU zD_=6?Vg3SLw>OmNDC3Jn=VEzFG>N*ofbLO6{hAg_e~edW))?j%pFYWeQ$G4Ym{Q&C z=0?SOb3F4mZ%~>>WZ5g5Ao#s#S?zPE_z)qG6HBp0SN7W$;@`hU5Of5o@Xql8>hZn&?y_M~zDX~jeoI<6a=SF`nz zWqnMF0pRm}>84DFY6^a0!^Q3o^l~*adT}}xKh;JKtlp|a%zloIa3(-$fs*xq;xa*ZTl}w?dq6jUUY=W zP!Km>veGrD8A3-G^9h_eo3;Ude!?X%Kt)3}36T!)1*MeN7Il4iC*udELZx;3)!1?% z8%@C*8>W%D+Q^aSzt!w{Rv)W+;+_&XRPVhy$}CYP46q@|^Qonx#0Jaw0XpG;;RMn1 zGnxu(!-gAMq|a)rT8%%F-?yeC}oC2_&Sqopw6{rsdqSb0zxx)F9`b0f%CJi|8->QT5Na zltE-yI+{P}u*6@L(akWY4-SQV|9%jJdq&l+Z=d2ij$#|7918EE{Ia19NqbcbLKa6_ zo1e3*vHatlAaB1ms2M|-)MfNBdDlmD-lWlKnO?)pTN`XZ`Nd+TT>iT)DCaY$K8&Dx zXG*ph++!4!>Z?mT?Ht{|zf(0eZZJirtiZC*W+-rAii&3G%C3ccZ1JxPcj61iQ_}3;EH$dDC&*>Vl!pb= zThD*^Xota@%+i;H_$oxpEcZipRuA)jy>T3vzS&iiO%1UU~`p#tqveS z&vV%k<2vn(PXt1AImzOPqEDO9z)E{>hV40&y4$jF@yRPT?Z`b%7P>iWhdTPXLjeON z=2V(YUHOBwgXEpbC56a8Mhbs-r$Cag0eFh$#-}!8r48Q?M1vs&0LnfDnrI0nZwt?Z zXf`vYEe}U{1sl^r#_tHI5kI0B zw2n^Cbx#iN-y?u?x3}UGcb`EgN>1?LcOA@G)!%}#WLY=D2sBThf4embRX`~kY+@*@H54L&F@*+)WN9;9a=>=8- z|BGg;W}^)~l<%hn6C^Y2$r$H-eF@n=mKQqg#xRr11;$z2z@#^B$rmxf)r9R6iY~WO z&yvR?Oj~7Qcm*0z?;f@OdUCES?iP9GxJsd61i6t(;nZ3H6`zNpAD(U(#eGRqYYO6| zW<}(2K!tA;1pDdP_XC=EM4$HiBK`@A)Ro$k63A^&M=!XF7l7B+cD z_qtZ^$TnOhFRQ^jaJ+Z!d(ob|3tGC6CSqP#I==dofW0r*PlER%DRHut-f%Zmu%_6C z#(78Ku&Htr^EaDoXQ4ex!X0@QFcwsyL-hb;2u7zMD>EBPoNng#TOrsr=2g1GUdhQ8 zyZd7A9WuiEy1@Jw3h(*!N)66F9~V`+pJPWfnjo|$V|}n8ZXnL+Iu1RW?qS|b_MAFu z@AS$@2+p*}l_BV3qM6-mrOLWmsXXgC9$j`4mZ3WJXs`KSD9*(!-4(9M7k%@wPwIvg zG$Gl-3aQst?4Ig$PT%|_G5@Ev>k4XuOQX^i5JW)0pGcG5q)Q1%06|LVy-7!klmJqL z7UNFlcr3n^)@X|H7J%lf=Yba zaplxtpwZSre+5H}kn~*J;=YH)M*AqFdu`8wr0*fkuujD3#Rkbs{#-};ynB@z6^&(d zzWI_Lsm~RB$ykzDz1T2?66Si%bQrId5?e3TrP*Z}6AB4J%>9^NA)TQ&w1q*G%$W~`jbAZw`}`(mdVYcdaupeKl7t?oV>);#D6@}~8HsQtirno}N`GMn z+3U&5Hth$$tJr_$Ec(1yPvlBx0lul@k^4PZGw74rX#BEQUGk%rq{t6d`Yu;UPKy9k zf-)u7mrK3F&}&93LJJAr{}Ik^F``M6NY(H@+&>_YZ<$v98(AlB4+EyK6Q6mQg2Szv)rvt{B*y5KqVlL zxw%+HHJ4*eMN*#;Xoz#5qP4P}M|E4o7kD7N0>h)t~i{VmHL@EZnE*+ z?^|Ygds;VC(>;;BM!wx2q%Xs*tj$RU^9$yD8kP0BPv;)okEi7x^~**N{HbV0P9n+f z;tJ~%5&0EUY0@SO;x8UWDPz$I_T`6s>OT~*Trj0CkC}sQgD9p!cAxgQcEe)Y!B4C~hC#3sT_Y?0i9kEhVZDr5kk&k47Al zz+f=)i(Qc&CTYe&wP9$PpFSbQHhdNJ$G|dXv_FD8Q7p#u#4w0~-|RtT*IE(eT2)p% zUxjHpfcAxkVK3Yo&k>Uiw&cx^;aT*2+Z*K~$}wh~La1Ev7Eyt9q7#QUhB|&ukjyYv zd%~_fau-1q>keKU&NF*QJixEk!&L(1?zsJ;huzD1iOwTe5 z!`4r~ih;W26*}7VVy0z+JbedZ1+TH^Uk($HQ_RKobb|zovnh(PYGjdujKUn; zrOi5SyW2JMbMCO+e9_tLEY^kJ<_!$&^h#lw9SRc@)qufpzagctA0Bp!&WHt?} z?hA!NZz6g%bqp96VD9rb_J&mLQtIzYR5mYEnOG4;Zu!D-HZ+wTeC@SiOl`GYvqIZt z@ggGXpwwCYyH3faVY{HgL5mPJXPTSuu{2zB^OhNq_Q{x~*Inro&t4N${zUG}PEf}c z_HG!@FzII9{#=rP!SPc2rgTtFP{cv(K2TSi~w*)=pE*blmGg1Oq19;tA3dq~cHYp{U#)=Bn z8kO7}q~n6lDcdr2ycO2=OIgxHvuR@m}E0pPG6!E1d>w-E1(Z>0w{K z$fXbRe2KgXfl!sx1sF1;tvH8H{p3rM^>k=GToZRZeYHdG!`7Q2S*w9xWNyoAoR#4q z#nlZz|IFy^&#H280ksKlRrl@{d!+ZPyTou9q2c3OLKI9Ic$X2Io^t`e9bKxY#QE#}opnWWj17rwY z!%sWXequ9M!UU5aM3K7R1pZw|fJwJ;;OfH%9V^5s@_x3DP4}dMLD2X?71CI9=T(K$ z*RDVURzfQ8#T2<4HZvRK}pv!qPRDWlq%jkh~jc0SkR_6l+9P*4IX z4H~zjrffH^G67`KsEAm8 zdb$s+=}je(uO4>!*l@K1GwRt+NY9?v9GA{&?fznv!OPqTJ?&({XP|C>T@9bHWKs(u zlPbYi4@Zx|qg!RpqYC6{s16a{$M^Y$Qhpq|g5o*MG&!XA4gy4#tN&B!F%Hs=J*|H34oon#K*HiN$~0i?(b*z&(Q( z^EW35`-BCk?In<{W;Br%coDplhH6yEEI!{mNrr04l8Yi4QOa5T-Jh~}yFc-pFAo^Y zteuFiXXMuD4&;SzE>8RdS2KIg3%A2WeYlfT>++#5NAuhw)`w0n!v0KWH*DYnz0i|y z6vv`)HYK7zk#PxGedRdKY;J@1C)#-oFz2Y6+x$M56Ky{H23-Dz{sUmH$zg8&cIPzj z8^y1Ai?wg%qLws(0&o%Rh_MyC$GF=?Y#_ax9)Rhad{MdZt0ehO5>(UGrB8X>qFzH@ zEOo&tJ!nxeQY=4jKPs4Ka*27FU|Ud(68v#Ljbi+M|5}iSZ`i>TDKZr@g_s zdx1%P2Z(QEESR=}EV8_;AZfo1(vY(QNI~^Tc4tGF4 zfc@|ftvb+NSKdRZ9D$3Y;SHsiPB?uu(s{E!nfd5Dy7WQan%T=!%t-F`QI=2I*tgZl zDl3$sa!o-H)HXFSM9{79PF&JW5+%`#(~fqVvg_}U-2phJ-5*u_{={MxYWd9mRcu#z zSLaNWTF1K*0x>gqL<4BkS-XlJ%a9sE38T1k_DFq>zEKfb@w>n8lE^x{-J_2n39KEQJFEF>t;iktt$WBT^^WMQ59e~@|ksc>E$AkX*Qh)tLT4IO+##j z(kL)24*$`A86OA~q`@rj*LaCE=XkkE3Z%Bq87S}{^rE9Y7;OD*>Cy6