mirror of
				https://asciireactor.com/otho/as-500.git
				synced 2025-10-31 18:28:06 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			77 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| Homework 15, due Oct 17
 | ||
| 
 | ||
| 1) Find the ratio of emission in the [O III] 4363 to 5007 lines as a function of temperature assuming LTE. Use the energies and TPs from NIST and assume LTE. Give this as an equation as a function of temperature.
 | ||
| A₁﹐ᵦ
 | ||
| 
 | ||
|     j₁/j₂ = g₁/g₂ A₁/A₂ hν₁/hν₂ exp(-E₁₂/kT).
 | ||
|     j₁/j₂ = g₁/g₂ A₁/A₂ λ₂/λ₁ exp(-E₁₂/kT).
 | ||
| 
 | ||
|     g₁/g₂ = 1/3.
 | ||
|     A₁/A₂ = 94.292.
 | ||
|     λ₂/λ₁ = 1.1476.
 | ||
|     E₁₂ = 2.84 eV.
 | ||
|     exp(-E₁₂/kT) = exp(-2.84 eV/k × T) = exp(-32976 K⁻¹ × T).
 | ||
| 
 | ||
|     j₁/j₂ = 1/3 × 94.292 × 1.1476 × exp(-32976 K⁻¹ × T).
 | ||
|     j₁/j₂ = 36.070 × exp(-32976 K⁻¹ × T).
 | ||
| 
 | ||
| ─────────────
 | ||
| 2) Plot the line ratio as a function of temperature between 5000 K and 50 000 K. Make the y-axis a log.
 | ||
| 
 | ||
|     Attached.
 | ||
| 
 | ||
| ─────────────
 | ||
| 3) The line ratio is observed to be I(4363)/I(5007) = 0.0048 in Orion. What would be the LTE temperature? (Orion is not in LTE).
 | ||
| *
 | ||
| 
 | ||
|     0.0048 = 36.070 × exp(-32976 K⁻¹ × T).
 | ||
|     0.0048/36.070 = exp(-32976 K⁻¹ × T).
 | ||
|     ln(0.0048/36.070) = -32976 K⁻¹ × T.
 | ||
|     (ln(0.0048/36.070)/-32976) K = T.
 | ||
|     T = 0.0027064 K.
 | ||
| 
 | ||
|     Way too small! Something wrong.
 | ||
| 
 | ||
| ─────────────
 | ||
| 4) What is the coefficient
 | ||
| the Saha equation, in CGS units?
 | ||
| 
 | ||
|     ⎛2 π mₑ k T ⎞3/2
 | ||
|     ⎜---------- ⎟    = 2.41468×10¹⁵ g/(K erg s²) T^(3/2).
 | ||
|     ⎝      h²   ⎠
 | ||
| 
 | ||
| ─────────────
 | ||
| 5) Assume a hydrogen density of 1e15 cm-3. What is the hydrogen ionization fraction H+/H0 at 6000 K, 10 000 K, and 20 000 K?
 | ||
| 
 | ||
|     n[ion]/n[atom] = 1/nₑ
 | ||
|                    × U[ion]/U[atom] 
 | ||
|                    × gₑ 
 | ||
|                    × (coefficient) 
 | ||
|                    × T^(3/2) 
 | ||
|                    × exp(-E[ion]/kT).
 | ||
| 
 | ||
|     nₑ = 10¹⁵ cm⁻³.
 | ||
|     U[ion] = 1.
 | ||
|     U[atom] = 10^0.3 ≈ 2.
 | ||
|     gₑ = 2.
 | ||
|     coefficient = 2.41468×10¹⁵ g/(K erg s²).
 | ||
| 
 | ||
|     Temperature     Ion Fraction
 | ||
|     6000 K          4.196×10⁻⁶
 | ||
|     10000 K         3.365×10⁻¹
 | ||
|     20000 K         2.552×10³
 | ||
| 
 | ||
| ─────────────
 | ||
| 6) Use the Boltzmann equation to find the n=2 population at these three temperatures and give the Lya emissivity.
 | ||
| 
 | ||
|     Just following the process from hw14.
 | ||
| 
 | ||
|     4 π j = n₂ Aᵤₗ hν.
 | ||
|     hν = 1.63403 × 10⁻¹¹ ergs.
 | ||
|     n₂ differs by temperature: ~1.1×10⁷, ~3.9×10⁷, ~6.3×10⁷.
 | ||
|     Aᵤₗ = 6.27×10⁸ s⁻¹.
 | ||
| 
 | ||
|     Temperature     Emissivity
 | ||
|     6000 K          1.136×10⁵ ergs
 | ||
|     10000 K         4.024×10⁵ ergs
 | ||
|     20000 K         6.525×10⁵ ergs |