A spin-1/2 particle has a magnetic moment mwand is placed in a uniform
magnetic field B, which is aligned with the z axis, so B= Byz. It is

known that the Hamiltonian operator for this system commutes with the

spin component operator in the z direction but not with spin component
operators in the x and y directions. How and why is this important?

The commutator is defined as [(,V] = Gv-v(O, where O and Vv are
operators.

If the product of (0 and V is independent of order, the commutator will
be zero, and the operators can be said to commute. To test whether the
Hamiltonian and the spin operators commute, one need express them in a
common basis and compute the commutator. The z basis should serve as a
natural basis for the comparison.

The spin operator in the z basis Syis diagonalized in the z basis
because the magnetic field is oriented in the z direction. This result
is known from the Stern-Gerlach experiment.

Sy=h/2 (1 0)

(0 -1)

The Hamiltonian H is the total energy of the system. The only
contributing term for this system is the potential energy V = -u-B,
where wand Bare the physical terms described in the introduction. The
magnetic moment of a magnetic dipole, such as that seen with a spin-1/2
particle, is uw= g q/2me S, with Sthe intrinsic spin vector for the

case of no orbital angular momentum, and the remaining factors
constant, intrinsic values of the particle. Then, with

k £ 9 gq/2me, p= Kk S.
The Hamiltonian H is therefore, because B= By2Z,
H=V=-nuB= -k SyB;y.
The Hamiltonian is measureable, and therefore is an operator. The
magnetic field strength is constant in this system, so the Hamiltonian
operator is related to the spin operator in the z basis by
H= -k ngg
Therefore, the Hamiltonian
H=-kByh/2 (1 0)
(0 -1)
The commutator can now be computed. A constant factor of -k Byh2/4 can

be collected, leaving only the matrix multiplication to determine
commutability.



HS;y=K (1 0) (1 0)=K(160)
(6-1) (06 -1) (61)
SyH=K (1 0) (1 0)=K(10)
(06-1) (0 -1) (01)

The computation indicates that SyH = H Sy, and therefore the
commutator is zero. The Hamiltonian and the spin operator in the z
direction commute. A similar computation for the x and y directions
should indicate a lack of commutability.

The spin operators in the x direction and z direction in the z basis,
with 1 the imaginary unit,

Sexh/2 (0 1)
(1 0)

Sy=h/2 (0 -1)
(v 0)

As with the spin component in the z direction, when multiplying the
Hamiltonian and spin in x or spin in y operators, the multiplicative
factors associate outside the matrices, and only the matrix
multiplication determines the commutability of the operators, so, the
operators are commutable if their matrix components are commutable.

For H and Sa:
(1 o) (06 1) = (60 1)
(0 -1) (1 0) (-1 ©0) ; and
(06 1) (1 0) = (6 -1)
(1 0) (0 -1) (1 0 ).

Since these matrix products are not equal, their difference is not
zero. Therefore, these operators do not commute.

For A and Sy:
(1 06) (0 -v) = (06 -1v)
(0 -1) (v 0) ( -t 0 ) ; and
(06 -1) (1 06) = (06 1)
(v ) (0 -1) (v 0).

Again, these matrix products are not equal, so these operators do not
commute.



When an observable, such as the spin component operator in the z
direction Sy, commutes with the Hamiltonian, it is referred to as a
constant of motion. Such a quantity has specific values its measurement
will consistently result in. Since the Hamiltonian does not commute
with the remaining spin components, their values may vary.



